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MIT Multidisciplinary Simulation Estimation 
and Assimilation System (MSEAS)

Error Subspace Statistical EstimationStochastic Ocean Modeling Systems

Uncertainty forecasts Ensemble-Free-surface PE Generalized Biological Uncertainty forecasts, Ensemble-
based, Multivariate DA, Adaptive 
sampling, Adaptive modeling, 
Towards multi-model estimates

Free-surface PE, Generalized Biological 
models, Coupled to acoustic models, 
XML schemes to check configuration,
unstructured grid models



ESSE Surf. Temp. Error Standard Deviation Forecasts for AOSN-II

Aug 12 Aug 13 Aug 14
Leonard and Ramp, Lead PIs

g g g

Aug 27Aug 24 Aug 28

First Upwelling periodStart of Upwelling

End of Relaxation Second Upwelling period
•Real-time consistent error forecasting, data assimilation and adaptive sampling (1 month)
•ESSE results described in details and posted on the Web daily



Mean Lagrangian Coherent Structures 
overlaid on DLE error std estimate for 
3 d i l t

Up 1

3 dynamical events
• Two upwellings and one relaxation (about 1 week 

apart each)
• Uncertainty estimates allow to identify most 

robust LCS (more intense DLE ridges are usually 
relatively more certain)

• Different oceanic regimes have different LCS

Rel. Up 2

• Different oceanic regimes have different LCS 
uncertainty fields and properties

[ Lermusiaux and Lekien, 
2005. and In Prep, 2009p

Lermusiaux, JCP-2006

Lermusiaux, Ocean.-2006]

PFJL- MIT

]



Goal:
R h d d l f li d th d l i f ti l

Research Goal and Objectives

Research and develop new formalisms and methodologies for optimal 
marine sensing using collaborative swarms of autonomous platforms 
(AUVs, gliders, ships, moorings, remote sensing) that are smart, i.e. 
knowledgeable about the predicted environment acoustic performanceknowledgeable about the predicted environment, acoustic performance 
and uncertainties, and about the predicted effects of their sensing

Specific objectives:Specific objectives:
Research autonomous sensing swarms and formations that exploit the multi-scale, 
multivariate, 4D environmental-acoustic marine dynamics and predictabilities
Utilize swarming schemes based on control theory dynamical system theoryUtilize swarming schemes based on control theory, dynamical system theory, 
artificial intelligence and bio-inspired behaviors, and update them so that in the 
high-level global optimization, data to be collected affect predictions and thus 
feedback to the optimal autonomy
Combine the swarming schemes with our nonlinear adaptive schemes which 
forecast the impact of future data to define the optimal autonomy
Develop new schemes and compare them in idealized and realistic simulations
Motivate our fundamental research based efficiency and robustness for optimal 
naval operations, undersea surveillance, homeland security and coastal protection



Consider the spatially-discretized dynamical stochastic prediction 

Our General Autonomy Problem Statement

(SPDEs) of the ocean state x and the data yk collected by a spatially-
discretized sampling H of a swarm of underwater vehicles:

( , ) (1)d t d= +x M x η

Consider optimum estimate of x knowing yk that is a function of the 

( , ) ( )
( , ) (2)k k k kt ε= +

η
y H x

conditional probability p(x, t | yk) which is itself governed between 
observations by a Fokker–Planck equation (Lermusiaux, JCP-2006). 

General problem statement: Predict and evolve H such that an 
objective function J, that is a function of the optimal estimate of x and 
of the evolving sensing plan H(t), is maximum.g g p ( ),

J represents properties to be optimized by evolving swarming plans H:
(uncertainties, hot-spots, coverage)(uncertainties, hot spots, coverage)

New aspects: swarms, multi-scale, nonlinear, knowledgeable of ocean



O bl i h l i f d l

Remarks on General Problem Statement

Our autonomy problem is more than learning from data only 
(based on eqn. (2) only), which is often referred to as onboard 
routing with or without communications among vehicles

Also more than classic robotics problems such as obstacle 
avoidance by swarms of vehicles or path planning that minimize 
energy utilization using the flow field In these cases the optimumenergy utilization using the flow field. In these cases, the optimum 
estimation of the ocean state (based on fluid SDEs) is not used

Also more than using dynamical system theory to steer groups of so o e t a us g dy a ca syste t eo y to stee g oups o
agents (also not coupled with ocean estimation itself) 

Our Plan: combine schemes so that ocean prediction, learning 
f fand swarming are all part of single problem, with all feedbacks

Theoretical work generic and applicable to varied domains where 
the fields to be sensed are dynamic and of large-dimensionsthe fields to be sensed are dynamic and of large-dimensions. 
However, applications focus on marine operations



Foci - Optimal science & applications (Physics, Acoustics and Biology)

Ocean Autonomy and Adaptive Sampling: Multiple Facets 

Foci - Demonstration of adaptive sampling value, etc.

i. Maintain synoptic accuracy (e.g. regional coverage)
Objective 
Functions

ii. Minimize uncertainties (e.g. uncertain ocean estimates), or 
iii. Maximize sampling of expected events (meander, eddy, filament) 

Multidisciplinary or not   - Local, regional or global, etc.p y , g g ,

Time and 
Space

i. Tactical scales (e.g. minutes-to-hours adaptation by each vehicle)
ii. Strategic scales (e.g. hours-to-days adaptation for cluster/swarm)Space 

Scales
g ( g y p )

iii. Experiment scales

Assumptions
- Fixed or variable environment (w.r.t. asset speeds)

Objective function depends on the predicted data values or notAssumptions - Objective function depends on the predicted data values or not
- With/without constraints (operational, time and cost).

Methods
Control, Bayesian-based, Nonlinear programming, (Mixed)-integer 
programming Simulated Annealing Genetic algorithms Neural

PFJL- MIT

Methods programming, Simulated Annealing, Genetic algorithms, Neural 
networks, Fuzzy logics, Artificial intelligence, etc

Choices set the type of Autonomy research 



a) Adaptive sampling via ESSE

• Objective: Minimize predicted trace of error covariance (T S U V error std Dev)

[ Lermusiaux, DAO-1999;
Lermusiaux, Physica D-2007;
Lermusiaux and Majumdar, In prep. ]

• Objective: Minimize predicted trace of error covariance (T,S,U,V error std Dev). 
• Scales: Strategic/Experiment. Day to week.
• Assumptions: Small number of pre-selected tracks/regions (based on quick look on 

error forecast and constrained by operation)error forecast and constrained by operation)
• Example of Problem solved: e.g. Compute today, the tracks/regions to sample 

tomorrow, that will most reduce uncertainties the day after tomorrow.
- Objective field changes during computation and is affected by data to-be-collected

Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)

Objective field changes during computation and is affected by data to be collected
- Model errors Q can account for coverage term

Measurement: y = H(x) + ε ε ~ N(0, R)

Non-lin. Err. Cov.:
QTMMTMMddP )ˆ)(ˆ()(())ˆ()()(ˆ(/

Metric or Cost function: e.g. Find future Hi and Ri such that 
t

QTxxxMxMTxMxMxxdtdP +>−−<+>−−=< )ˆ)(ˆ()(())ˆ()()(ˆ(/

PFJL- MIT

dt
t

t
tPtrMinortPtrMin

f

RiHi
f

RiHi ∫
0

,,
))(())((



Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

Best predicted relative error reduction: track 1

• Based on nonlinear error covariance 
evolution 

• For every choice of adaptive strategy, an 
ensemble is computed

ESSE fcts after DA 
of each track

Aug 24 Aug 26 Aug 27

IC(nowcast) DA

Best predicted relative error reduction: track 1e se b e s co puted

2-day ESSE fct
ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

PFJL- MIT

ESSE for Track 4

DA 3

DA 4



Challenges for Stochastic Challenges for Stochastic Ocean FlowsOcean Flows

Computational Challenges for the deterministic problem
• Large dimensionality of the problem, un-stationary statistics
• Wide range of temporal and spatial scales (turbulent to climate)Wide range of temporal and spatial scales (turbulent to climate)
• Very limited observations

Need for stochastic modeling …
• Approximations inherent in the deterministic models
• Parametric uncertainties

Boundary conditions uncertainties• Boundary conditions uncertainties
• Measurement models
• Uncertainties on initial conditions

Need to combine computational model with …
• Available data
• Measurement models



Overview Overview of of Uncertainty Predictions SchemesUncertainty Predictions Schemes
s
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Uncertainty propagation via POD method

00
8]

According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced
independently by numerous people at different times, including Kosambi (1943),
Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ).[C
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Polynomial-Chaos Method
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Uncertainty propagation via Monte Carlo method
restricted to an “evolving uncertainty subspace”

(Error Subspace Statistical Estimation - ESSE)
Lermusiaux & Robinson, MWR-1999, Deep Sea Research-2001si
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Evolving the full representationEvolving the full representation
Major Challenge : RedundancyRedundancyMajor Challenge : RedundancyRedundancy

( ) ( ) ( ) ( )
1

, ; , ; ,
s

i i
i

t t Y t tω ω
=

= +∑u x u x u x

First Step (easy): Separate deterministic from stochastic subspace

Commonly used approach:  Assume that ( ); 0iY t ω =

Second step (tricky): Evolving the finite dimensional subspace SV

A separation of roles: What can                tell us ?  ( );idY t
dt
ω

Only how the stochasticity evolves inside SV source ofy y

A separation of roles: What can               tell us ?  ( ),i t
t

∂
∂

u x

How the stochasticity evolves both inside and normal to SV

source of
redundancy

Restrict evolution of       to be normal to       i.e. 
( )∂

How the stochasticity evolves both inside and normal to SV

Natural constraint to overcome redundancy

SV SV

( ) ( ),
, 0      for all   1,...,    and   1,...,i

j

t
t d i s j s

t
∂

= = =
∂∫

u x
u x x



Dynamically Orthogonal Evolution EquationsDynamically Orthogonal Evolution Equations
Theorem: For a stochastic field described by the evolution equationy q
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we obtain the following reduced-order evolution equations 

assuming a response of the form
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Family of PDEs

SV
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Family of PDEs
describing evolution of
stochastic subspace SV
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Sapsis and Lermusiaux, Physica D, Submitted



Application II: NavierApplication II: Navier--Stokes behind a cylinderStokes behind a cylinder

von – Kármán vortex street
behind a cylinder

Re = 100



Application II: NavierApplication II: Navier--Stokes behind a cylinderStokes behind a cylinder



b) Optimal Paths Generation for a “fixed” objective field
[Yilmaz et al., IEEE-Oceans-2006;  Yilmaz et al, IEEE Trans.-JOE-2008]

- Objective: Compute exact optimal path that maximizes function (e.g. error 
standard deviation of temperature field)

- Scales: Strategic/Tactical
- Main Assumption: Speed of platforms >> time-rate of change of environment. The objective 

field is fixed during the computation of the path and is not affected by new data

- Problem solved: assuming the objective is like that now and will remain so for the 
next few hours, where do I send my gliders/AUVs?

- Method: Combinatorial optimization (Mixed-Integer Programming, using Xpress-MP)
- Objective field (error stand. dev.) represented as a piecewise-linear: solved exactly by MILP
- Possible paths defined on discrete grid: set of possible path is thus finite (but large)
- Constraints imposed on vehicle displacements dx, dy, dz for meaningful path

Example:p
Two and Three Vehicles, 
2D objective field (3D 
examples also done)

PFJL- MIT

Grey dots: starting points 
White dots: MIP optimal end points



b) Optimal Path Generation for a “Variable” Objective Field
[Yilmaz and Lermusiaux,  Ocean Modeling, To be submitted]

Combines MILP optimization with ESSE assimilation in forecast mode: 
MILP computes optimal paths for n days using ESSE forecast uncertainties
ESSE assimilates forecast data for day 1, updates forecast errors for days 2 to n
MILP re-computes paths for days 2 to n based on updated ESSE forecast
ESSE assimilates forecast data for day 2, updates errors for days 3 to n, …, etc

Result: Optimal AUV paths, on top of Prior ESSE error forecast for 3 days
MILP computes paths 
that samples largest 
ESSE forecast errors 
for the next 3 days 
ESSE assimilates the 
unknown forecast 
data for day 1, new 

Posterior ESSE error forecast for 3 days (after DA of forecast optimal AUVs): 
difference with previous line is the forecast of the data impacts

ESSE errors are 
predicted for days 2 
and 3, and a new MILP 
search is done for the 
last 2 days

difference with previous line is the forecast of the data impacts
ESSE assimilates the 
forecast data for day 
2, predicts a new error 
for day 3 and a final 
MILP search is done 
f thi fi l d 3

PFJL- MIT09/16/08

for this final day 3 
Result: predicted 
optimal paths for 3 
days



c)   Nonlinear Path Optimization using Genetic Algorithms: 
VS07 (Pacific) and AWACS (NE shelfbreak)

[Heaney, Lermusiaux and Duda, JFR-2007 and OM-2009][Heaney, Lermusiaux and Duda, JFR 2007 and OM 2009]

Main advantages: Easy to combine multiple cost functions, Nonlinear ”Optimization”

+
++

Cost functions for [UL] forecast temporal standard 5 ibl 48 h t k f lid d AXBTCost functions for [UL] forecast temporal standard 
deviation of T in upper layer (looking for ocean 
variability), [UR] spatial mean of T (looking for fronts 
and eddies) with mean currents, [LL] acoustic 
coverage variability (RED most variable), and [LR] 

5 possible 48-hour tracks for gliders and AXBT 
sampling array. Tracks to optimize 
environmental observations and improve model 
(RED ranked best). These are overlaid on the 
overall morphology from LR panel to left.

PFJL- MIT

weighted average of all 3. Best tracks (lowest cost 
functions-RED in LL) are laid on top . Glider tracks 
consider vertical mean of upper 1000m ocean currents 
(UR) as they vary over forecast period.

p gy p

Cost function includes convergence for eventual 
pick up near the two magenta crosses (+).



σ σ

c) GA Scheme Evaluation: Comparing Strategies using Data-Assimilation
Ocean Dynamics Set-up

σ σ

Before
Tropical
StStorm

Ernesto

σσ

After
Tropical
Storm

Ernesto

PFJL- MIT

Time-Averaged Temperature
(Tσ = T along the 24.7 g/cm3 isopycnal)

Temperature Uncertainty
(Ensemble standard deviation)



c) GA Scheme Evaluation: Comparing Strategies using Data-Assimilation
Three Types of Strategies [Heaney, Lermusiaux, Haley and Duda, 2009]

σ σ

Two dynamicTwo dynamic 
situations: 
before (Aug) 
and after (Sep) 
ErnestoErnesto

Five gliders to be optimized over 48 hours of sampling within large domain

Three Types of Sampling Paths 
Grid (red): the “smart” oceanographer 
Random (white) 
Genetic Algorithm (blue): GA paths computed to minimize chosen cost function

PFJL- MIT

Paths overlaid on Tσ surface for August 24-27 (left) and September 4-7 (right)



PFJL- MIT
[Heaney, Lermusiaux, Haley and Duda, To be submitted-2009]



PFJL- MIT
[Heaney, Lermusiaux, Haley and Duda, To be submitted-2009]



f) Acoustically Focused Adaptive Sampling
Uses simple Dynamic-
Programming with ESSE 

[Wang, Lermusiaux, Schmidt 
et al, IEEE-Oceans-2006; 

J.Mar.Sys.-2009]

assimilation to guide 
subsequent Onboard 
Routing

Afternoon

Morning

Forecast of onboard 
adaptive Yoyo control 
of AUV to capture 
``afternoon effects’’

Legend:Legend:
• Blue line: forward AUV path
• Green line: backward path. 
• AUV avoids surface/bottom 

PFJL- MIT

by turning 5 m before 
surface/bottom



Our Interdisciplinary Applications with Potential for 
Autonomous Marine Intelligent Swarming Systems

Adaptive Ocean‐Acoustic sampling of water column to invert for the seabed 

• Covariance fields computed using ESSE 
and ocean‐acoustic models

• For a 400Hz source at 300m depth, they 
show where to measure TL and to take 
an ocean profile to best estimate the 
mean bottom attenuation coefficient

Web‐based command and control of asset directly from models
• e.g. Kayaks during PN07, see our paper [Xu et al, 

Adaptive Sampling for optimum "Underwater Acoustic Sparse Aperture 
System Performance": see our paper [Burton et al, IEEE‐Oceans‐2009]

Other acoustic efforts in our ONR projects: Optimize sensor depths, rangesOther acoustic efforts in our ONR projects: Optimize sensor depths, ranges 
and frequencies for the “Acoustic Climate”

Biological Adaptive Sampling and Swarming



Novel Science and Methodologies for Autonomous 
Marine Intelligent Swarming

Research formalisms and principled methods for optimal marine 
sensing using collaborative swarms of platforms that are smart

Intelligence: ability to adapt swarm sensing based on
i. Predicted ocean and acoustic performance and their uncertainties

ii. Predicted effects of environmental and acoustic sensing

Develop new global dynamic swarm and high-level optimization schemesDevelop new global dynamic swarm and high-level optimization schemes 
i. Optimal control and dynamical systems 

ii. Artificial intelligence and Game Theoretic schemes

iii. Bio-inspired and agile sensing with predictive adaptive sampling

Combine swarming schemes with our MSEAS adaptive schemesCombine swarming schemes with our MSEAS adaptive schemes

Research motivated by naval applications



i) Optimal control and dynamical systems for 
Autonomous Marine Intelligent Swarming

Review: Optimal control and dynamical systems methods:
Artificial potential functions [Gazi and Passino, IEEE-2004], [Kim et al, JIRS-2006]
combined with sliding- mode control [Gazi, IEEE-2005]
Hybrid of genetic algorithm and particle swarm optimization (HGAPSO) [Juang, IEEE-
2004]: Introduces the concept of “maturing phenomenon” in nature into the evolution of 
individuals originally modeled by GA
Decentralized algorithm for adaptive flocking of robot swarms [Lee and Chong, IEEE-2008].g p g [ g, ]
Contraction theory [Lohmiller and Slotine, IJC-2005]: Dynamic analysis and non-linear 
control system design tool based on exact differential analysis of convergence.

Our specific objective: Augment the above methods with Bayesian estimates for the 
ti l f t li l d th i t f th li th loptimal future sampling plans and the impacts of the sampling on these plans. 

Example: Swarm aggregationsExample: Swarm aggregations 
using artificial potentials and 
sliding-mode control [Gazi, 
IEEE-2005]:IEEE 2005]:



ii) Artificial Intelligence for our A-MISSION
Review: Artificial intelligence [Russell and Norvig, Prentice Hall-2003] and agents g [ g, ] g
[Kohn and Nerode, IEEE-1992, Symp.- 1993] :

Optimizing asset management handled using evolutionary algorithms [Ashlock, Springer-
2006], examples of which are: 

Genetic algorithm [Mitchell, MIT Press-1996]: New candidates generated by 
combinations of pairs of existing candidates.

Harmony search algorithm [Mahdavi, AMC-2007]: New candidates generated from a 
random selection of elements of existing solutions combined with random valuesrandom selection of elements of existing solutions combined with random values.

Hybrid algorithms combining evolutionary algorithms with gradient based algorithms 
[Engelbrech, Wiley-2006]: Improves convergence to local solutions.

Reinforcement learning algorithms [Sutton and Barto MIT Press 1998] such as dynamicReinforcement learning algorithms [Sutton and Barto, MIT Press-1998], such as dynamic 
programming [Bertsekas, Athena-2000], temporal difference learning [Tesouro, ML-1992].

Lorenz-2003 weather forecast model combined with backward selection algorithm [Roy et 
al. LNCS-2007]

Our specific objectives:
Apply/modify these methods to full nonlinear ocean SPDEs

Utilize our recent theoretical results on Dynamically Orthogonal equations for efficientUtilize our recent theoretical results on Dynamically Orthogonal equations for efficient 
uncertainty predictions [Sapsis and Lermusiaux, Physica D-2009 (submitted)].

Utilize Adaptive Modeling [Lermusiaux, Phys.D-2007]  to improve the forecast model. 



iii) Bio-Inspired and Agile Sensing for our A-MISSION
Review: Existing control algorithms based on bio-inspired behavior.

Effective leadership and decision making in biological systems [Couzin et al., Nature-2005].

Control algorithms that stably coordinate sensors on structured tracks optimized over a 
minimal set of parameters [Leonard et al., IEEE-2007] 

Multi-agent system motivated by decision making in animal groups [Nabet et al., Proc. 
ISMTNS-2006].

Our research objectives: 
Combine bio-inspired schemes with Bayesian estimation of optimal future sampling

Augment bio-inspired sensing with smart prediction capability: 

Account for impacts of swarm sensing of future field estimatesp g

N li d

Ex: Leadership and decision-making in animal groups on the move [Couzin et al., Nature-2005]

Normalized 
probability of 
group direction

Collective 
selection of 
group direction

Preferred direction of informed subset 2 (degrees)



Example: Continuous Motion Planning 
for Information Forecast  [Choi and How, IEEE-2008]

Planning of continuous paths for mobile sensors to improve long term forecast performancePlanning of continuous paths for mobile-sensors to improve long-term forecast performance.
Quantify information gain for linear-time varying system in: a. filter form, b. smoother form.
Path planning techniques used to provide optimal solutions 

Numerical Example: 2-D weather forecast problem (Lorenz-2003 model).p p ( )

Sensor trajectories for different strategies

Optimal trajectory snapshots every hour 
overlaid on the information potential fieldAccumulated information for different strategies

Our research objectives: extend to full nonlinear SPDEs and utilize our recent DO 
stochastic decompositions    [Sapsis and Lermusiaux, Physica D-2009 (submitted)].

overlaid on the information potential field.Accumulated information for different strategies



A – MISSION:
Autonomous Marine Intelligent Swarming Systems

f I t di i li Ob i N t kfor Interdisciplinary Observing Networks

Some Items for Discussions

Posing the problem: finding simpler problems that can be solved and 

lead to the complex problem solution likely keylead to the complex problem solution likely key

Combine “Noisy Game Theoretic” and “Bio-inspired” schemes with 

our ocean SPDEs estimation and swarming?S g

Is hierarchical approach required for multiscale schemes? Wavelets?

Proof convergence in nonlinear multiscale systems (use our DO 

expansion?)

Transfer our intelligent swarming with real/robust Navy Systems?

Thanks to ONR
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