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MIT Multidisciplinary Simulation Estimation
and Assimilation System (MSEAS)
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Applications

Stochastic Ocean Modeling Systems Error Subspace Statistical Estimation

Free-surface PE, Generalized Biological Uncertainty forecasts, Ensemble-
models, Coupled to acoustic models, based, Multivariate DA, Adaptive
XML schemes to check configuration, sampling, Adaptive modeling,

unstructured grid models Towards multi-model estimates



ESSE Surf. Temp. Error Standard Deviation Forecasts for AOSN-II

Leonard and Ramp, Lead Pls
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*Real-time consistent error forecasting, data assimilation and adaptive sampling (1 month)
*ESSE results described in details and posted on the Web daily



Mean Lagrangian Coherent Structures Url
overlaid on DLE error std estimate for
3 dynamical events

« Two upwellings and one relaxation (about 1 week
apart each)

» Uncertainty estimates allow to identify most
robust LCS (more intense DLE ridges are usually
relatively more certain)

» Different oceanic regimes have different LCS
uncertainty fields and properties

[ Lermusiaux and Lekien,
2005. and In Prep, 2009

Lermusiaux, JCP-2006

Lermusiaux, Ocean.-2006]

rroc- vlT



Research Goal and Objectives

Goal:

Research and develop new formalisms and methodologies for optimal
marine sensing using collaborative swarms of autonomous platforms
(AUVSs, gliders, ships, moorings, remote sensing) that are smairt, i.e.
knowledgeable about the predicted environment, acoustic performance
and uncertainties, and about the predicted effects of their sensing

Specific objectives:
= Research autonomous sensing swarms and formations that exploit the multi-scale,
multivariate, 4D environmental-acoustic marine dynamics and predictabilities

= Utilize swarming schemes based on control theory, dynamical system theory,
artificial intelligence and bio-inspired behaviors, and update them so that in the
high-level global optimization, data to be collected affect predictions and thus
feedback to the optimal autonomy

= Combine the swarming schemes with our nonlinear adaptive schemes which
forecast the impact of future data to define the optimal autonomy

= Develop new schemes and compare them in idealized and realistic simulations

» Motivate our fundamental research based efficiency and robustness for optimal
naval operations, undersea surveillance, homeland security and coastal protection




Our General Autonomy Problem Statement

Consider the spatially-discretized dynamical stochastic prediction
(SPDESs) of the ocean state x and the data y, collected by a spatially-
discretized sampling H of a swarm of underwater vehicles:

dx = M(x,t) +dny (1)
Y. = H(x,t,) + & (2)
Consider optimum estimate of x knowing y, that is a function of the

conditional probability p(x, t | y,) which is itself governed between
observations by a Fokker—Planck equation (Lermusiaux, JCP-2006).

General problem statement: Predict and evolve H such that an
objective function J, that is a function of the optimal estimate of x and

of the evolving sensing plan H(t), is maximum.

J represents properties to be optimized by evolving swarming plans H:
(uncertainties, hot-spots, coverage)

New aspects: swarms, multi-scale, nonlinear, knowledgeable of ocean




Remarks on General Problem Statement

» Our autonomy problem is more than learning from data only
(based on eqn. (2) only), which is often referred to as onboard
routing with or without communications among vehicles

¢ Also more than classic robotics problems such as obstacle
avoidance by swarms of vehicles or path planning that minimize
energy utilization using the flow field. In these cases, the optimum
estimation of the ocean state (based on fluid SDES) is not used

¢+ Also more than using dynamical system theory to steer groups of
agents (also not coupled with ocean estimation itself)

+»» Our Plan: combine schemes so that ocean prediction, learning
and swarming are all part of single problem, with all feedbacks

¢ Theoretical work generic and applicable to varied domains where
the fields to be sensed are dynamic and of large-dimensions.
However, applications focus on marine operations



Ocean Autonomy and Adaptive Sampling: Multiple Facets

- Optimal science & applications (Physics, Acoustics and Biology)

Focl - Demonstration of adaptive sampling value, etc.
I. Maintain synoptic accuracy (e.g. regional coverage)
Objective |1 Minimize uncertainties (e.g. uncertain ocean estimates), or
Functions lil. Maximize sampling of expected events (meander, eddy, filament)
Multidisciplinary or not - Local, regional or global, etc.

Time and I. Tactical scales (e.g. minutes-to-hours adaptation by each vehicle)

Space ii. Strategic scales (e.g. hours-to-days adaptation for cluster/swarm)

Scales lil. Experiment scales

- Fixed or variable environment (w.r.t. asset speeds)
Assumptions |- Objective function depends on the predicted data values or not
- With/without constraints (operational, time and cost).

Control, Bayesian-based, Nonlinear programming, (Mixed)-integer
Methods programming, Simulated Annealing, Genetic algorithms, Neural
networks, Fuzzy logics, Artificial intelligence, etc

Choices set the type of Autonomy research
PFJL- MIT



' ' i [ Lermusiaux, DAO-1999;
a) Adaptlve Samp“ng via ESSE Lermusiaux, Physica D-2007;

Lermusiaux and Majumdar, In prep. ]
Objective: Minimize predicted trace of error covariance (T,S,U,V error std Dev).

Scales: Strategic/Experiment. Day to week.

Assumptions: Small number of pre-selected tracks/regions (based on quick look on
error forecast and constrained by operation)

Example of Problem solved: e.g. Compute today, the tracks/regions to sample
tomorrow, that will most reduce uncertainties the day after tomorrow.

- Objective field changes during computation and is affected by data to-be-collected
- Model errors Q can account for coverage term

Dynamics: dx =M(x)dt+ dn n ~ N(0, Q)
Measurement: y=H(X) +¢ e ~N(0, R)

Non-lin. Err. Cov.:
dP/ dt =< (x = HM(X) = MR)" > + < (M) = ME)X - )T > +Q

Metric or Cost function: e.g. Find future H;and R; such that
tr
Min  tr(P(t)) or Min ‘[) tr(P(t)) dt

PFJL- MIT



Which sampling on Aug 26 optimally reduces uncertainties on Aug 277

Temperature Error Std. Dev. Fct for Aug27
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Challenges for Stochastic Ocean Flows

Computational Challenges for the deterministic problem
« Large dimensionality of the problem, un-stationary statistics

« \Wide range of temporal and spatial scales (turbulent to climate)
 \Very limited observations

Need for stochastic modeling ...

 Approximations inherent in the deterministic models
e Parametric uncertainties

 Boundary conditions uncertainties
 Measurement models

e Uncertainties on initial conditions

Need to combine computational model with ...
 Available data
e Measurement models



i

v Overview of Uncertainty Predictions Schemes

S

u(x, )= a(xt)+ > N (to)u (x,t)

i=1

) Uncertainty propagation via POD method
%‘ 2 | ‘ According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced
S q‘__;‘ _ %} independently by numerous people at different times, including Kosambi (1943),
O, % L Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ).
o]
o -
Uncertainty propagation via generalized 8 %
Polynomial-Chaos Method A : ¢
Xiu & Karniadakis, J. Comp. Physics, 2002 'ﬁ £ %
Knio & Le Maitre, Fluid Dyn. Research, 2006 é S
Meecham & Siegel, Phys. Fluids, 1964 i §
= -
2 = =i Uncertainty propagation via Monte Carlo method
S5 . patl ) fi = restricted to an “evolving uncertainty subspace”
2 ¢ PRSI (Error Subspace Statistical Estimation - ESSE)
-g § N | ' | ig Lermusiaux & Robinson, MWR-1999, Deep Sea Research-2001
ilé) g Fo 3 Lermusiaux, J. Comp. Phys., 2006
=0

B. Ganapathysubramanian & N. Zabaras, J. Comp. Phys., (under review)



Evolving the full representation

Major Challenge : Redundancy
u(x,tw)=u(x,t)+> Y (tw)u(x,t)
i=1

First Step (easy): Separate deterministic from stochastic subspace

Commonly used approach: Assume that Y;(t;®)=0

Second step (tricky): Evolving the finite dimensional subspace 75

A separation of roles: What can w tell us ?
t
. | |
Only how the stochasticity evolves|inside [Vs e o
; ou. ( X,t
A separation of roles: What can M tell us ? L liCEle

ot |

How the stochasticity evolves both|inside jand normal to 7

Natural constraint to overcome redundancy
Restrict evolution of ¥; to be normal to 75 i.e.

I—auiétx’t)uj(X,t)dx=0 forall i=1...,s and j=1..,5



Dynamically Orthogonal Evolution Equations

Theorem: For a stochastic field described by the evolution equation

N
assuming a response of the form  U(X,t;@)=0(x,t)+ > Y (tw)u (xt)
i=1

we obtain the following reduced-order evolution equations

Family of PDEs [,|:u(y,'[;a))ldy}CY';i u (%,t)
describing evolution of
stochastic subspace fVS ]:I cl

i i\t YiY;

Sapsis and Lermusiaux, Physica D, Submitted



Application Il: Navier-Stokes behind a cylinder

von — Karman vortex street
behind a cylinder

Re =100




Application Il: Navier-Stokes behind a cylinder
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b) Optimal Paths Generation for a “fixed” objective field

[Yilmaz et al., IEEE-Oceans-2006; Yilmaz et al, IEEE Trans.-JOE-2008]

- Objective: Compute exact optimal path that maximizes function (e.g. error
standard deviation of temperature field)

- Scales: Strategic/Tactical

- Main Assumption: Speed of platforms >> time-rate of change of environment. The objective

field is fixed during the computation of the path and is not affected by new data

- Problem solved: assuming the objective is like that now and will remain so for the

next few hours, where do | send my gliders/AUVs?

- Method: Combinatorial optimization (Mixed-Integer Programming, using Xpress-MP)
- Objective field (error stand. dev.) represented as a piecewise-linear: solved exactly by MILP

- Possible paths defined on discrete grid: set of possible path is thus finite (but large)
- Constraints imposed on vehicle displacements dx, dy, dz for meaningful path

Example: f--
Two and Three Vehicles, ~
2D objective field (3D
examples also done)

251

Grey dots: starting points

White dots: MIP optimal end pomts 4 " i

11
0
£ = w0 i E

PFJL- MIT



b) Optimal Path Generation for a “Variable” Objective Field

[Yilmaz and Lermusiaux, Ocean Modeling, To be submitted]

Combines MILP optimization with ESSE assimilation in forecast mode:
= MILP computes optimal paths for n days using ESSE forecast uncertainties

» ESSE assimilates forecast data for day 1, updates forecast errors for days 2to n

= MILP re-computes paths for days 2 to n based on updated ESSE forecast

» ESSE assimilates forecast data for day 2, updates errors for days 3ton, ..., etc

= MILP computes paths
that samples largest
ESSE forecast errors
for the next 3 days

= ESSE assimilates the
unknown forecast
data for day 1, new
ESSE errors are
predicted for days 2
and 3, and a new MILP
search is done for the
last 2 days

» ESSE assimilates the
forecast data for day
2, predicts a new error
for day 3 and a final
MILP search is done
for this final day 3

» Result: predicted
optimal paths for 3
days

Result: Optimal AUV paths, on top of Prior E

l"
s

Day 1

= = = = w

Day 2

SSE error forecast for 3 days

I“
ST

l.:l:I
a4

Day 3

Posterior ESSE error forecast for 3 days (after DA of forecast optimal AUVS):

difference with previous line is the forecast of the data impacts

LTl




c) Nonlinear Path Optimization using Genetic Algorithms:

VS07 (Pacific) and AWACS (NE shelfbreak)
[Heaney, Lermusiaux and Duda, JFR-2007 and OM-2009]

Main advantages: Easy to combine multiple cost functions, Nonlinear "Optimization”

R 30 UEEELASSIHED r Vs Au{g 10 |n$: Morpljology a:\nd Sa:lnpllng .
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Cost functions for [UL] forecast temporal standard 5 possible 48-hour tracks for gliders and AXBT
deviation of T in upper layer (looking for ocean sampling array. Tracks to optimize

variability), [UR] spatial mean of T (looking for fronts environmental observations and improve model
and eddies) with mean currents, [LL] acoustic (RED ranked best). These are overlaid on the
coverage variability (RED most variable), and [LR] overall morphology from LR panel to left.
weighted average of all 3. Best tracks (lowest cost

functions-RED in LL) are laid on top . Glider tracks Cost function includes convergence for eventual

consider vertical mean of upper 1000m ocean currents  Pick up near the two magenta crosses (+).

(UR) as they vary over forecast period. PEIL. MIT



c) GA Scheme Evaluation: Comparing Strategies using Data-Assimilation
Ocean Dynamics Set-up

Aug 24-27 <T0> Aug 24-27 std('T o)
Befqre e e
Tropical = <
L L
Storm 3 £
Ernesto & g=
— —
-74 -72 -70 -74 -72 -70
Longitude (deg) Longitude (deg)
Sep 4-7 <T 5 Sep 4-7 std(T
41 H 5 5
Aft_er o 40} T 40
Tropical 3 <)
Storm ,;g 30 ,;g 39
Ernesto = 3= R
'3 38 3 38
37 37
-74 -72 =70 -74 -72 -70
Longitude (deg) Longitude (deg)
Time-Averaged Temperature Temperature Uncertainty

(T,=T along the 24.7 g/cm?3 isopycnal) (Ensemble standard deviation) ., ¢



c) GA Scheme Evaluation: Comparing Strategies using Data-Assimilation
Three Types of Strategies [Heaney, Lermusiaux, Haley and Duda, 2009]

August To September To

*y

Two dynamic
situations:
before (Aug)
and after (Sep)
Ernesto

Latitude (deg)
Latitude (deg)

-74 -72 -70 -74 -72 -70
Longitude (deg) Longitude (deg)

Five gliders to be optimized over 48 hours of sampling within large domain

Three Types of Sampling Paths

s Grid (red): the “smart” oceanographer

* Random (white)

¢ Genetic Algorithm (blue): GA paths computed to minimize chosen cost function

Paths overlaid on T, surface for August 24-27 (left) and September 4-7 (right)

PFJL- MIT



Srms/SrmsGr,ld: August data (€ < 0,95) Srms/SrmsGr,ld: September data (€ < 0.95)

Y| ——GA
—&—Rand

g | GA
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= | ——(A
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.1 |—=—GA
——Rand

——GA
——Rand

4 | ——(GA
—&—Rand

mean
mean

0 2 4 6 & 10 12 14 16 6c 2 4 6 & 10 12 W I

[Heaney, Lermusiaux, Haley and Duda, To be submitted-2009] EIL. MIT



Spcc/SpccGﬁd: August data (€ < 0.95) Spcc/SpccGﬁd: September data (€ < 0.95)

j 0 Lot (969
| |——GA '1 | |——GA
|~ Rand ——Rand
| |—=—ca | |—=—ca
¢~ Rand ——Rand
| |—=—ca | |—=—ca
——Rand =3 |~ Rand
|| ——GA || ——GA
——Rand ——Rand

[Heaney, Lermusiaux, Haley and Duda, To be submitted-2009] EIL. MIT



f) Acoustically Focused Adaptive Sampling

Uses simple Dynamic-
Programming with ESSE

H'Iomlng gsound_faf0d_jul20 02 dayl_ 1% secq

assimilation to guide 1540
subsequent Onboard R 1530
ROUtlng E 1520
— E- 40 / ‘l ' 1510

Morning e
Afternoon ® Range (km) e

Afterncon_sound_faf0s_ jul20 02 dayl_ 15 seel
O

Forecast of onboard
adaptive Yoyo control
of AUV to capture
“afternoon effects”

4] O.ER 1 . 1.5 2

Legend: et

* Blue line: forward AUV path

» Green line: backward path.

* AUV avoids surface/bottom
by turning 5 m before

surface/bottom

Error from OA

[Wang, Lermusiaux, Schmidt
et al, IEEE-Oceans-2006;
J.Mar.Sys.-2009]
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Our Interdisciplinary Applications with Potential for
Autonomous Marine Intelligent Swarming Systems

+»» Adaptive Ocean-Acoustic sampling of water column to invert for the seabed

Covariance between TL and bot. att. coef.

3

2

1

0
) 30 40

** Web-based command and control of asset directly from models

e Covariance fields computed using ESSE
and ocean-acoustic models 50

e For a 400Hz source at 300m depth, they -
show where to measure TL and to take
an ocean profile to best estimate the
mean bottom attenuation coefficient

150

200

250

300

10 20
Range (km

e e.g. Kayaks during PNO7, see our paper [Xu et al,

s Adaptive Sampling for optimum "Underwater Acoustic Sparse Aperture
System Performance": see our paper [Burton et al, IEEE-Oceans-2009]

s Other acoustic efforts in our ONR projects: Optimize sensor depths, ranges
and frequencies for the “Acoustic Climate”

¢ Biological Adaptive Sampling and Swarming



Novel Science and Methodologies for Autonomous
Marine Intelligent Swarming

Research formalisms and principled methods for optimal marine
sensing using collaborative swarms of platforms that are smart

Intelligence: ability to adapt swarm sensing based on

I. Predicted ocean and acoustic performance and their uncertainties

ii. Predicted effects of environmental and acoustic sensing

Develop new global dynamic swarm and high-level optimization schemes
I. Optimal control and dynamical systems
ii. Artificial intelligence and Game Theoretic schemes

lii. Bio-inspired and agile sensing with predictive adaptive sampling
Combine swarming schemes with our MSEAS adaptive schemes

Research motivated by naval applications



1) Optimal control and dynamical systems for
Autonomous Marine Intelligent Swarming

“ Review: Optimal control and dynamical systems methods:

» Atrtificial potential functions [Gazi and Passino, IEEE-2004], [Kim et al, JIRS-2006]
combined with sliding- mode control [Gazi, IEEE-2005]

» Hybrid of genetic algorithm and particle swarm optimization (HGAPSO) [Juang, |IEEE-
2004]: Introduces the concept of “maturing phenomenon” in nature into the evolution of
individuals originally modeled by GA

» Decentralized algorithm for adaptive flocking of robot swarms [Lee and Chong, IEEE-2008].

» Contraction theory [Lohmiller and Slotine, 1JC-2005]: Dynamic analysis and non-linear
control system design tool based on exact differential analysis of convergence.

% Our specific objective: Augment the above methods with Bayesian estimates for the
optimal future sampling plans and the impacts of the sampling on these plans.

0 ! T ! ! ! T T T T 0

251

Example: Swarm aggregations """""""""""""""""""""""""""""""""""""""

using artificial potentials and |
sliding-mode control [Gazi, |
IEEE-2005]: ot




1) Artificial Intelligence for our A-MISSION

+ Review: Artificial intelligence [Russell and Norvig, Prentice Hall-2003] and agents
[Kohn and Nerode, IEEE-1992, Symp.- 1993] :

» Optimizing asset management handled using evolutionary algorithms [Ashlock, Springer-
2006], examples of which are:

= Genetic algorithm [Mitchell, MIT Press-1996]: New candidates generated by
combinations of pairs of existing candidates.

= Harmony search algorithm [Mahdavi, AMC-2007]. New candidates generated from a
random selection of elements of existing solutions combined with random values.

» Hybrid algorithms combining evolutionary algorithms with gradient based algorithms
[Engelbrech, Wiley-2006]: Improves convergence to local solutions.

» Reinforcement learning algorithms [Sutton and Barto, MIT Press-1998], such as dynamic
programming [Bertsekas, Athena-2000], temporal difference learning [Tesouro, ML-1992].

» Lorenz-2003 weather forecast model combined with backward selection algorithm [Roy et
al. LNCS-2007]

o/

+»»  Qur specific objectives:

» Apply/modify these methods to full nonlinear ocean SPDEs

» Utilize our recent theoretical results on Dynamically Orthogonal equations for efficient
uncertainty predictions [Sapsis and Lermusiaux, Physica D-2009 (submitted)].

» Utilize Adaptive Modeling [Lermusiaux, Phys.D-2007] to improve the forecast model.



I11) Bio-Inspired and Agile Sensing for our A-MISSION

% Review: Existing control algorithms based on bio-inspired behavior.
» Effective leadership and decision making in biological systems [Couzin et al., Nature-2005].

» Control algorithms that stably coordinate sensors on structured tracks optimized over a
minimal set of parameters [Leonard et al., IEEE-2007]

» Multi-agent system motivated by decision making in animal groups [Nabet et al., Proc.
ISMTNS-2006].

«» Qur research objectives:

» Combine bio-inspired schemes with Bayesian estimation of optimal future sampling
» Augment bio-inspired sensing with smart prediction capability:

= Account for impacts of swarm sensing of future field estimates

Ex: Leadership and decision-making in animal groups on the move [Couzin et al., Nature-2005]
1

Normalized
probability of
group direction

Collective
selection of
group direction

0
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Accumulated Information

0.

0

o
o

[=1 =] =1
no w B
T T T

o
.
T

7

6

0
0

Accumulated information for different strategies

Example: Continuous Motion Planning
for Information Forecast [Choi and How, IEEE-2008]

= Planning of continuous paths for mobile-sensors to improve long-term forecast performance.
»Quantify information gain for linear-time varying system in: a. filter form, b. smoother form.
»Path planning techniques used to provide optimal solutions

= Numerical Example 2-D Weather forecast problem (Lorenz- 2003 model).
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Optimal trajectory snapshots every hour
overlaid on the information potential field.

= Qur research objectives: extend to full nonlinear SPDEs and utilize our recent DO

stochastic decompositions

[Sapsis and Lermusiaux, Physica D-2009 (submitted)].
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Some ltems for Discussions

% Posing the problem: finding simpler problems that can be solved and
lead to the complex problem solution likely key

% Combine “Noisy Game Theoretic” and “Bio-inspired” schemes with
our ocean SPDEs estimation and swarming?

% Is hierarchical approach required for multiscale schemes? Wavelets?

% Proof convergence in nonlinear multiscale systems (use our DO

expansion?)

% Transfer our intelligent swarming with real/robust Navy Systems?

Thanks to ONR
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