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 MIT-HU AWACS Research Goals and Objectives

*» Selected Research Progress so far

1. Assimilation of all data sets from AWACS-SWO06-NMFS, with real-time
web-based dissemination

2. Tides/internal tides and their interactions with mesoscales: processes,
modeling and predictions

3. Nested Ocean Modeling

4. Adaptive sampling with ESSE and MILP or genetic algorithms
5. Future Plans



MIT AWACS Five-year Research Objectives [ i

Goal: Improve modeling of ocean dynamics, and develop and evaluate new
adaptive sampling and search methodologies, for the environments in
which the main AWACS-06, -07 and -09 experiments will occur, using the
re-configurable REMUS cluster and coupled data assimilation

Specific objectives are to:

I.  Provide near real-time fields and uncertaintreaAWACS-06, -07 and -09 experiments
and, in the final 2 years, develop algorithms ftolyfcoupled physical-acoustical DA
among relocatable nested 3D physical and 2D acailistbimains (with NPS)

i. Develop new adaptive ocean model parameteriaatior specific AWACS-06, -07 and -
09 processes, and compare these regional dynamtosWHOI)

lii. Evaluate current methods and develop new allgors for adaptive environmental-acous
sampling, search and coupled DA technigues (Stadsm$ed on a re-configurable
REMUS cluster and on idealized and realistic simafei(with NPS/OASIS/Duke)

Iv. Research optimal REMUS configurations for thenphing of interactions of the oceanic
mesoscale with inertial oscillations, internal tide®l boundary layers (with
WHOI/NPS/OASIS)

v. Provide adaptive sampling guidance for arraygrarnce and surveillance (Stage 2), al
link HU research with vehicle models and command @ntrol




Autonomous Wide Aperture Cluster for Surveillance (AWACS):
Adaptive Sampling and Search Using Predictive Models with Coupled Data Assimilation and Feedback - Harvard Page

P F.J. Lermusiaux, P.J. Haley, Jr.,
W.G. Leslie, O. Logoutov, A .R. Robinson

HARVARD UNIVERSITY
Division of Engineering and Applied Sciences
Department of Earth and Planetary Sciences
Cambridge, Massachusetts

AWACS PlIs:
P. Abbot, B. Carey, C.-S. Chiu, G. Gawarkiewicz, J. Krolik, P.F.J.

Lermusiaux, J. Lynch, S. Smith.
Collaborators: T. Duda, K.ID. Heaney

« Real-time Exercises Pages (Data, Analvses, Forecasts)
» AWACS Harvard Descriptive Pages
« Some References and Presentations
« Additional AWACS Links
« Data Sites
« Links to other Projects
« Asset Deplovment

http://oceans.deas.harvard.edu/AWACS
AWACS Real-time New Jersey Shelf/Hudson-Canyon 06 Exercise

Estimate of Present Conditions: Horizontal Maps in AWACS06/SW06 Domains
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Estimate of Present Conditions: Vertical Sections
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R/V Albatross: 1-14 June 2006
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Two-way Nested Modeling and Data Assimilation,
with Free-Surface and Tidally Driven PE model

Tidal Velocities [cm/s]. Lat=39 N, Lon =73 W
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Fig 2. Barotropic Tidal velocities (u

and v) at 39N and 73W, from August
overlaid on bathymetry (m) and 31 to September 11 2006, as estima
SWO06 mooring positions. by a new MIT-OTIS inversion (Matla

Bathymetry based on NOAA coastal code). This variability impacts intern:
soundings combined with Smith&Sandwell tides/waves.

sy

=10+

76 75 74 13 72 71 -0 —69
Longitude (°E)

Fig 1. Two-way nested modeling
domains (1km and 3km res.),
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Fig. 3. Horizontal temperature maps in the nesked SWO06 (top) and 1km AWACS (bottom)
modeling domains, on Aug 24, 2006 (left), priothie Tropical Storm Ernesto, and on Sep 3,
2006 (right), after Tropical Storm Ernesto. The penature fields shown are at different depths:
surface (Om) estimates are shown in the large Si@@ain, while thermocline (30m) estimates
are shown in the AWACS domain (bottor
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Model coastal
surface velocities
compared and tune
to Rutgers’ CODAR
velocities in real-
time. Show
relatively good
agreement.
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Figure 4. Cross-sections across the 80m isobathgdahe main SW06 mooring line.
Shown are temperature (top) and salinity (bottostj@ates on Aug 24, 2006 (prior to the
Tropical Storm Ernesto) and on Sep 3 (after Trd@tarm Ernesto).
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Figure 5. Cross-sections along the 80m isobatharAWACS domain. Shown are
temperature (top) and salinity (bottom) estimate®\ag 24, 2006 (prior to the Tropical
Storm Ernesto) and on Sep 3 (after Tropical Stornegto).



Summary of MIT work carried out so far in 2007

“* Model - Data comparisons and skill evaluations
« SST
 Rutgers CODAR
e« SWO06 Moorings (Tim Duda)

** Large number of model parameter sensitivity studies

* Re-analyses runs: data-assimilative model simulations with different model
parameters (bottom friction, mixing, nesting/stand-alone, etc)

« Compare all runs to each other and to ocean data

“* Numerical Modeling studies

« Complete review of all tidal modeling, from barotropic tides to free-surface
primitive-equations model (bottom friction, enforcement of B-grid continuity in
barotropic tidal forcing)

« Evaluation/Improvements of Nested Modeling in idealized setting (special
Issue of Ocean Dynamics)

“ Adaptive Sampling OSSEs for Kevin Heaney and Tim Duda
« Ran simulations and prepared fields, see:



Improvements to barotropic tidal estimates/codes

Sensitivities to bottom topographies. High Resolution Topo is now
employed
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Work in progress close to completion

aOptimal corrections to open boundary
conditions based on tide gauge SSH data

nAssimilation of velocity data
aBottom friction parameters through adjoint method
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at 1 min resolution
(black dots show ADCP locations)



‘ Internal Tides / Internal Waves

= Significant baroclinic structure is observed, including

tidal velocities ADCP su0
o
ADCP (sw32) Data Example
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An Example of Observed Upper Observed Upper, Deep and Baro
and Deep layer velocities: tidal velocity ellipses: note
ADCP sw32 baroclinic structure

= Internal tide/ internal wave generation/evolution must
be captured




Towards Modeling and Scientific studies of
Tides/internal tides and their interactions with mesoscales

* Most of the MIT-AWACS 2007 work so far (with model-data comparisons)

*» Approach: Model estimates sampled at %2 hr intervals at selected mooring
locations and compared to mooring data by Tim Duda (WHOI)

* Even though results are encouraging, fine scale needs improvement
o 1 km resolution insufficient (internal tides)
o We are researching new adaptive sub-mesoscale parameterizations
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v [cm/s]

Towards Modeling and Scientific studies of
Tides/internal tides and their interactions with mesoscales

v at 8 [m] at ADCP sw30

v at 68 [m] at ADCP sw30
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Hourly meridional velocities (v) at 8m depth (left) and 68m depth
(right) at the location of mooring SW30, as measured by the moored
ADCP (red curve) and as estimated by a 3-km grid resolution HOPS
re-analysis (blue curve) with atmospheric and barotropic tidal forcing.
No mooring data are assimilated in HOPS.

Parameter sensitivity study shows importance of bottom friction.
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Fig. 3. Horizontal temperature maps in the nesked SWO06 (top) and 1km AWACS (bottom)
modeling domains, on Aug 24, 2006 (left), priothie Tropical Storm Ernesto, and on Sep 3,
2006 (right), after Tropical Storm Ernesto. The penature fields shown are at different depths:
surface (Om) estimates are shown in the large Si@@ain, while thermocline (30m) estimates
are shown in the AWACS domain (bottor
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to Rutgers’ CODAR
velocities in real-
time. Show
relatively good
agreement.
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HOPS 2-way Nested Modeling Domains and Grid Computing

New Free-Surface Primitive-Equation Ocean Model of HOPS
« Tidal and atmospheric forcing
 Twice-daily data assimilation

Nested Modeling with Grid-computing in Two Domains
« SWO06 Domain: 3 km resolution
« AWACS Domain: 1 km resolution

Adaptive sampling recommendations, aiming to integrate
coverage, dynamics and uncertainty (with K. Heaney and T. Duda).
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Numerical Testing of 2-way Nesting: Idealized Studies

Issue: barotropic velocities in 2-way nested
domains show discrepancy that slowly grows in

time under the free-surface formulation
Goal: Test and improve nesting in simplified set-up.

« Large domain: 1000km x 1000km, periodic
(East-West) channel, flat bottom (5000m)

o Small domain: 333km x 333km open domain
centered in channel, flat bottom (5000m)

 |ICs: sinusoidal jet, smoothed Gulf Stream mass
field, quiescent outside of jet.

47,18 N 42,80 N
3@ .80 W 3080 W
i i 1 i

- \—_. % 53 46 30N :
22

@ m [

27
21 46N
19
17

1006

16 45 36N
15

14
-
12

1
19

e 44 307N

2000

45N

3000

4008

44N

SPAA

GO gl O ol

Dokm 100 201 el Ayl

~ 0 = W =0 = WU -0 = T ] O — W

D = L) 0 O = W ] D — W Ul e O — W



Model Output Files from Control Forecast Runs (for OSSE)
In collaborations with Kevin Heaney and Tim Duda

Here we provide the output netCDF files from a series of forecast runs for two
different time periods:
(24-27 Aug 2007)

(4-7 Sep 2007)

Outputs are hourly. Each file contains temperature (), salinity (PSU) and
horizontal velocity (cm/s, aligned East-West and North-South) fields, every hour,
on the following constant depth levels (in m):

0-5-10-15-20-25-30 -40 -50 -60 -80 -100 -125 -150 -200 -250 -300 -400 -500
-600 -800 -1000 -1250 -1500 -2000 -2500 -3000



Optimal Paths Generation for a “fixed” objective field
(Namik K. Yilmaz, P. Lermusiaux, C. Evangelinos and N Patrikalakis)

- ODbjective: Minimize ESSE error standard deviatbtemperature field
- Scales: Strategic/Tactical

- Assumptions
- Speed of platforms >> time-rate of change of emnent
- Obijective field fixed during the computation oétpath and is not affected by new data

- Problem solvedassuming the error is like that now and will remsanfor the next few
hours, where do | send my gliders/AUVs?

- Method: Combinatorial optimization (Mixed-Integer Programming, using Xpress-MP code)
- Obijective field (error stand. dev.) represented pgecewise-linear: solvastactly by MIP
- Possible paths defined on discrete grid: set efide path is thus finite (but large)
- Constraints imposed on vehicle displacements yixdz for meaningful path

Example:
Two and Three
Vehicles,
2D objective field (3D "= & . i i
examples also done) " 1

Grey dots: starting points | ‘ aanaeee W
White dots: MIP optimal end poir




