OSSE09

Preliminary Test Plan for AUV operations v.1

Participants

- 1. MIT On-board autonomy (Back-seat driver) and Ocean Model
- 2. NUWC IVER AUV (Hammerhead)
- 3. Cal.Poly IVER2 AUV
- 4. JPL Mission planning, EO-1 and Ocean Model
- 5. Rutgers REMUS AUV, SLOCUM gliders, MODIS, AVHRR and Ocean Model, R/V Arabella
- 6. UMass Ocean Model
- 7. Stevens Ocean Model
- 8. UNC Ocean Model

Introduction

This trial is scheduled for the period of Nov. 4 - 6, 2009 in the mid-Atlantic bite region to demonstrate the planning and prosecution sub-system under the OOI-CI.

Objectives

- 1. Deployment of mobile assets to capture an Ocean feature. Identification of the Ocean feature based on Ocean models and plan missions to deploy a fleet of mobile assets.
- 2. Feed data from the field nodes back to the models
- 3. Demonstrate the on-board autonomy of the mobile assets for adaptive ocean sampling
- 4. Demonstrate the cluster autonomy capabilities of the mobile assets in an acoustic communication network for adaptive ocean sampling.

Field Operations

Datum: Latitude **39° 25′ 06.82″N**, Longitude **74° 11′ 55.08″W**Gateway Buoy: Latitude **39° 27′ 46.17″N**, Longitude **74° 08′ 23.20″W**

Fig. 1: AUV operation area 10km x 10km box

Communication Infrastructure

All the AUVs are equipped with a WHOI micro-modem. R/V Arabella will have a modem on a side connected to the top-side command and control station. Top-side command and control station consist of a display tracking all the mobile assets in operations and this view can be shared through the Google Earth. It also has a control panel to re-direct all the assets including commands for adaptive ocean sampling. In addition to the modem on the side, Arabella will have a RF link to the gateway buoy for wider acoustic communication coverage.

Day by day operations

Date	Operations
11/04/09	Operations near the field station. Setup the lab and command and control
	station on Arabella. Check the vehicle status and run couple of front seat
	missions around the field station to check the low-level controllers and
	sensors. Check on acoustic communication links. Run back-seat
	missions. On recovery upload data to MIT server.
11/05/09	Go out to sea deploy the gateway buoy and run missions in the box in
	Fig. 1. Deploy the assets to the loiter points determined by
	ASPEN/CASPER. Check track-trail behaviors on IVERs for
	collaborative missions with REMUS. Run a collaborative sampling
	mission with REMUS running a grid box and IVERS trailing it. REMUS
	will do a race-track out of the box and back and IVERS will re-acquire
	REMUS. Run thermo-cline missions using IVERS to demonstrate the
	adaptive ocean sampling capabilities. There will be few virtual vehicles
	simulated on board the ship collaborating with the real AUVs to test
	cluster autonomy behaviors. On recovery transfer data for analysis.
11/06/09	Half day ops at sea running similar missions as on 11/05/09. After lunch
	recover the gateway buoy and get back to shore for unloading.