

Focused Acoustic Forecasting-05 (FAF05): Real-Time Physical-Acoustical Modeling, Predictions and Adaptive Sampling

Pierre F.J. Lermusiaux, Ding Wang (MIT) P.J. Haley, Jr., W.G. Leslie, H. Schmidt et al.

NURC: E. Coelho, E. Nacini and A. Cavanna

<u>Thanks to:</u> Cro. Met. Service: M. Tudor

HU: A. Robinson

http://www.deas.harvard.edu/~leslie/FAF05/

- 1. Collaborative Goals and Objectives
- 2. Results and Accomplishments
- 3. Methodology and Conclusions

MIT, FAF-05 Hot-Wash-up, Sept 12, 2005

FAF-05: Collaborative Goals and Objectives

Emphasis on methodology development and engineering tests

- Develop new algorithms and software for initiating the coupling of Harvard and MIT methodologies/software
 - HU real-time ocean environmental modeling, uncertainty prediction and adaptive sampling methodologies
 - MIT adaptive rapid environmental assessment and acoustic predictions
- Test and improve these algorithms and software in real-time
- Issue physical-acoustical adaptive sampling recommendations every day, aiming to
 - Capture the vertical variability of the thermocline (due to fronts, eddies, internal waves, etc)
 - Minimize the corresponding uncertainties.

Adaptive sampling plans are computed based on 1-to-2 days environmental forecasts of fields and uncertainties.

Adaptive Sampling in Vertical Cross-Sections

AUV-Track Base Lines - For - Specific Sound-speed Features

FAF-05: Major Harvard-MIT Accomplishments

• Initiated coupling of Harvard and MIT methodologies/software

- Ocean environmental fields and uncertainties predicted daily by HOPS' ocean model and ESSE approach
- Ensemble (various scenarios) of 0.5-2 days predictions of sound-speed sections computed and transferred to Ding Wang
- Corresponding ensemble of acoustic TLs computed using RAM
- Sound-speed sections and TL curves were input to Ding's optimization algorithm, to estimate ideal parameters for the AUV's yoyo sampling of the next 1-2 day(s)

Issued physical-acoustical adaptive sampling recommendations every day, aiming to

- Capture the vertical variability of the thermocline, due to: daily cycle, atmospheric-driven vertical mixing and mesoscale features (eddies, etc)
- Minimize the corresponding uncertainties.

Historical and Synoptic Ocean Data, Atmospheric Forcing

Historical Data

• MREA03/BP03: Real-Time Mini-HOPS modeling in the Ligurian Sea/Elba. May-June 2003

Synoptic Data (FAF05)

- R/V Leonardo-AUVs: Sound-speed profiles east of Pianosa
- R/V Alliance: CTD profiles, Meteo Data
- NURC: Satellite Sea surface Temperature (SST)

Atmospheric Forcing (Ocean-Atmos. Fluxes)

- Cro. Met. Service: Aladin forecasts and analyses (~ 8 km resolution)
- FNMOC: Coarse resolution forecasts and analyses
- NURC: COAMPS forecasts and analyses

Satellite Sea Surface Temperature (SST):

24 July - 0443

25 July - 0418

25 July - 2108

Day-by-day variability

Day-light warming & skin effects

http://people.deas.harvard.edu/~leslie/FAF05/AVHRR/index.html

HOPS' Ocean Dynamics Model: Primitive-Equations

Fundamental equations are Navier-Stokes in rotating frame of reference

- Additional practical assumptions limit the range of modeled scales in time and space:
 - 1. Boussinesq fluid (small variations of density about a state of reference)
 - 2. Turbulent flow reduced to scale window of interest, here:
 - Sub-mesoscale, mesoscale to large-scale ocean processes
 - Processes outside this window are averaged and their effects parameterized (turbulent closures)
 - 3. Thinness approximation $(H/L \ll 1)$

Result: the so-called **Primitive-Equations of Ocean Dynamics**

High-Resolution Nested Ocean Modeling Domains

		Mini-HOPS	Elba
Resolution		100m	300m
Size	$nx \times ny \times nz$	89×114×21	106×126×21
	Extent	8.8×11.3 km	31.5×37.5 km
Domain center		42.59°N, 10.14°E	42.63°N, 10.24°E
Domain rotation		0°	0°
Speed	dt=50s	90 minutes/(model day)	120 minutes/(model day)
	dt=300s	15 minutes/(model day)	20 minutes/(model day)

Characteristic Acoustic Sections

Small Ensemble of Acoustic Sections, Created based on Different scenarios

Here, different atmospheric forcing and SST assimilation

Scenario 1

Realizations of section 1 (10.105,42.59; 10.122,42.6)

Scenario 2

Realizations of section 1 (10.105,42.59; 10.122,42.6)

Day-to-day Variability Significant in Sound-speed Sections

Here: due to the predicted stronger winds in 23-24 July, sound speeds reduced in the surface and the thermocline deepened.

Result Example: Horizontal Maps of Fcst T and Currents (25 Jul)

Pianosa Domain (100 m res.)

Realizations of section 1 (10.105,42.59; 10.122,42.6)

HARVARD UNIVERSITY: FAF05

PEMODEL

Physical fields

1.00 Day Forecast : 26 Jul 2005

Total Valocity (cm/s) at Level 1

Total Velocity (cm/s) at 20 m

Corresponding FAF05 Sections

http://people.deas.harvard.edu/~leslie/HOPS/HOPS.html

Result Example: Horizontal Maps of Fcst T and Currents (25 Jul)

Elba Domain (300 m res.)

SST: 25 July - 0418

Corresponding satellite SST

HARVARD UNIVERSITY: FAF05

PEMODEL

Physical fields

1.00 Day Forecast : 25 Jul 2005

Total Velocity (cm/s) at Level 1

Total Velocity (cm/s) at 20 m.
Made: - All S. 200 - Tele

FAF-05: Methodology and Daily Protocols

- Ocean physics nested model (Mini-HOPS) used for 4d predictions, initialization and data assimilation via Optimal Interpolation
 - Assimilated satellite SST snapshots. Utilized synoptic sound speed profiles for tuning/evaluation.
 - Ocean model forced by high resolution atmospheric fluxes.
- Environmental uncertainties estimated based on various scenarios
 - Computed daily as a function of different initial condition estimates, assimilation procedures, modeling domains, numerical/physical model parameters, and time of day.
- Ensemble of acoustic predictions (RAM) computed for ensemble of sound speed predictions (in interpolated sections)
- Optimized AUV yoyo parameters to capture the vertical variability of the thermocline (due to fronts, eddies, internal waves, etc) and minimize the corresponding uncertainties
- Optimal sampling parameter estimates and corresponding environmental and acoustical predictions emailed daily to the FAF05-MIT team at-sea aboard the R/V Leonardo