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Basic Formulation

The basic formulation comes from Dukowicz & Smith (1994). The primitive equation
momentum equations and conservation of mass, in Cartesian form, are
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where (u,v,w) are the three components of velocity, p is the total pressure, py is a mean
density of seawater, p is the variable density of seawater, g is the acceleration due to gravity
and F' contains the sub-gridscale turbulent terms. D&S then decompose the total pressure
into a surface pressure, p,, evaluated at z = 0 and a hydrostatic pressure, py, evaluated
from equation (3)
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The internal components are evaluated as in the Bryan-Cox model. To solve the external

components, including the surface pressure, average equations (1) & (2) and integrate (4)
all in the vertical:

U — fV = —0,ms + G° (7)
OV + fU = —0ymy + G¥ | (8)
0, HU + 8,HV + 8 =0 , (9)

where (U, V) are the components of the vertically averaged velocity, 75 is the kinematic
surface pressure, 7 is the surface elevation and G' now contains the advection and hydro-
static pressure terms in addition to the sub-gridscale representation. Using hydrostatics,
the surface pressures can be related to the surface elevation as
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Next, D&S introduce a particular time discretization, which is simplified here following
their stability conclusions
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where equation (10) has been used to replace n by 7, and the superscript a refers to the
semi-implicit time discretization

U* = U™ + (1 —-22)U™ +aU™ ! . (14)

The momentum equations (11) & (12) are recast in vector form, and rewritten to group
all the advanced-time terms on one side of the resulting equation:
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where I is the identity matrix, B is the coriolis matrix
_ |0 —F

and F™m=1 collects all the explicitly known quantities. To decouple the solution for 77*!
from the solution for U™+, D&S split the operator in (15) by introducing the augmented

~

velocity, U,

—
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where we’ve introduced the notation
omg = it — =l (18)

Substituting (17) & (18) into (15) and regrouping yields

(I+20AtB) U + 20AtVat~! = Frm=l 4 4a?(At)*BVén, + O ((At)?)
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where the term on the right still containing 77! has been neglected for being of the same

order as the discretization error, assuming that dms is O(At) (a necessary assumption for
bounded first derivatives).



To generate an equation for d7, first average (13) with itself evaluated one time step
earlier:
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Substituting for U™*! from equation (17) and isolating the &7, terms:
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The general solution procedure is then to

(1) solve (19) for U

(2) solve (21) for o7
(3) solve (18) for 77 +!
(4) solve (17) for U1,

Provided Boundary Conditions

Note: These next sections don’t exactly tie-in with the first section, until I trace back
the particulars of the implementation (which terms are evaluated where).

The first step in coming up with good Provided-Orlanski Boundary conditions is
to create good provided BCs. For tracers, internal velocity and surface pressure these
are trivial. For the vertically averaged forcing to the momentum!, R, this required the
observation that, in discrete form,

Ry =0T — U™ — 20 f AtV H (22)

with a similar equation for the meridional component. In the course of experimenting with
these BCs a couple of points were found to improve stability:
(1) Only the quantities at time ¢, 1 should be obtained from boundary data?. The
terms at time ¢,,_1 are available in PE balance and should be taken from memory.
(2) For the free surface case, equation (22) should be evaluated in “transport space”,
i.e.

Ry = [(HO)"™' = (MO)" ™ = 20f At (HV)" | /0 (23)

where H = H + 7 includes the free surface elevation.

1 Actually the first step was recognizing that the boundary conditions belonged here
rather than on one of the other intermediate variables.

2 In the tidal, free surface case, boundary data is taken to mean the superposition of
the geostrophic data values and the instantaneous linear tidal values.
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Provided-Orlanski Corrections

Following the algorithm of Perkins et al. (1997), corrections to the provided values
are obtained by applying the Orlanski algorithm3to the difference between the PE model
values and the provided values.

For the barotropic velocity (transport), this is only done for the tangential component
to the boundary. The correction to the normal component is derived from the correction
to the surface pressure, dp; = gdén, and the barotropic continuity equation

%Jrv-(?u}):o . (24)

Nested Boundary Conditions

For nesting in the free surface, the transport in the large domain is interpolated to the
boundary of the small domain, and substituted into equation (23).
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