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ABSTRACT:
The stochastic dynamically orthogonal (DO) narrow-angle parabolic equations (NAPEs) are exemplified and their

properties and capabilities are described using three new two-dimensional stochastic range-independent and range-

dependent test cases with uncertain sound speed field, bathymetry, and source location. We validate results against

ground-truth deterministic analytical solutions and direct Monte Carlo (MC) predictions of acoustic pressure and

transmission loss fields. We verify the stochastic convergence and computational advantages of the DO-NAPEs and

discuss the differences with normal mode approaches. Results show that a single DO-NAPE simulation can accu-

rately predict stochastic range-dependent acoustic fields and their non-Gaussian probability distributions, with com-

putational savings of several orders of magnitude when compared to direct MC methods. With their coupling

properties and their adaptation in range to the dominant uncertainties, the DO-NAPEs are shown to predict accurate

statistics, from mean and variance to multiple modes and full probability distributions, and to provide excellent

reconstructed realizations, from amplitudes and phases to other specific properties of complex realization fields.
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I. INTRODUCTION

In Part I of this two-part paper (Ali and Lermusiaux,

2024), we derived, discretized, and implemented stochastic

differential equations that (i) capture the dominant input

uncertainties in the environment (e.g., ocean, bathymetry,

and seabed) and in the acoustic parameters (e.g., source

location, frequency, and bandwidth), and (ii) predict the

acoustic pressure fields and their probability distributions,

respecting the nonlinear governing equations and non-

Gaussian statistics. Starting from the acoustic Parabolic

Equation (PE), we derived Dynamically Orthogonal (DO)

differential equations for range-optimal acoustic uncertainty

quantification. Using DO expansions for the input uncertain-

ties, we developed the reduced-order DO-PEs theory and

applied it to derive the Dynamically Orthogonal Narrow-

Angle Parabolic Equation (DO-NAPE) stochastic partial dif-

ferential equations (PDEs).

In the present study, we illustrate and analyze the prop-

erties and capabilities of the DO-NAPEs in a wide range of

test cases with varying sources of uncertainty and increasing

complexity. We focus on stochastic acoustic propagation in

two-dimensional (2D) space (depth z, range g; stochastic

parameter n), within ocean environments with uncertain

sound speed, bathymetry, and source depth. The goal is to

predict the DO decomposition wDO and TLDO of the

stochastic complex envelope pressure field wðz; g; nÞ and

transmission loss TLðz; g; nÞ, respectively. The sources of

uncertainties are the stochastic squared effective index of

refraction n2
eff ðz; g; nÞ, stochastic bathymetry bðg; nÞ, and

stochastic source depth ZsðnÞ. The boundary conditions are

assumed deterministic, as well as the source frequency and

range. The relevant notation and the DO-NAPEs are pro-

vided in the Appendix for convenience.

The three new stochastic test cases are defined by

extending existing deterministic test cases: (1) an uncertain

range-independent Pekeris Waveguide (PW) with stochastic

sound speed, (2) an uncertain range-independent Horizontal

Interface (HI) problem with stochastic source depth, and (3)

an uncertain range-dependent Up-sloping Wedge (UW)

problem with stochastic bathymetry. All three test cases use

a penetrable fluid bottom.

For each test case, a different source of uncertainty is

considered. The results will showcase the advantages of the

DO-NAPE over the state-of-the-art techniques in stochastic

underwater sound propagation with non-Gaussian inputs. In

particular, the stochastic PW case (Sec. II) features an

uncertain water sound speed and is used to highlight DO-

NAPE properties and complete convergence studies validat-

ing our results. The stochastic HI case (Sec. III) is based on

an uncertain source depth and employs the DO-NAPE to

predict the probability of TL fields. Last, the stochastic UW

case (Sec. IV) has an uncertain bathymetry and is used to

verify the accuracy of DO-NAPE in capturing the dominanta)Email: pierrel@mit.edu
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uncertainties efficiently in a range-dependent medium with

large uncertainties.

The DO-NAPE solutions are validated against analytical

solutions (PW case) and standard Monte Carlo (MC) techni-

ques (HI and UW cases). For all the validation results where

an MC ensemble is used, the approach of Ueckermann et al.
(2013) is followed: each ensemble member is run using initial

conditions (ICs), boundary conditions (BCs), and uncertainty

sampling consistent with what is done for the DO-NAPE

solution. The DO-NAPE properties are highlighted and their

advantages are discussed with respect to other approaches

such as Polynomial Chaos (PC) and random media methods

(Ali and Lermusiaux, 2024).

The main simulation parameters for the three stochastic

test cases are listed in Table I.

II. UNCERTAIN PEKERIS WAVEGUIDE (PW)

The first test case extends the deterministic PW with a

penetrable fluid bottom (Jensen et al., 2011; Pekeris, 1948) to

a stochastic PW with a probabilistic water sound speed. In

this 2D shallow water test case, a point sound source located

at depth Zs ¼ 25 m and range g¼ 0 is emitting at a harmonic

frequency f ¼ 250 Hz. The waveguide is an isospeed sound

channel with density qw ¼ 1000 kg=m3 and no attenuation.

The bottom consists of a fluid half-space with sound speed

cb¼ 1590 m/s, density qb ¼ 1200 kg=m3, and attenuation

ab ¼ 0:5 dB=k. In its new stochastic extension, the wave-

guide environment is uncertain with a stochastic water sound

speed cw of uniform Probability Density Function (PDF), i.e.,

cw � U½1470; 1520� m/s. The reference sound speed is c0 ¼
1500 m/s. A schematic of the test case is given in Fig. 1.

To illustrate the effect of the uncertain cw, deterministic

solutions for two sample sound speed values, cw ¼ ð1470;
1510Þ m/s, are provided. As the deterministic Pekeris wave-

guide admits an analytical solution using wavenumber inte-

gration (Jensen et al., 2011; Pekeris, 1948; Schmidt and

Jensen, 1985), the analytical solutions for the two sample

sound speed values are shown in Fig. 2. The differences in

the interference patterns between the two solutions are read-

ily apparent by comparing the phase fields [Figs. 2(a) and

2(b)]. Both solutions retain common features of acoustic

propagation in a lossy bottom Pekeris waveguide, in particu-

lar, the shadow zone around the range of 7 km as highlighted

by the transmission loss field, TL ¼ �20 log10 jwj=
ffiffiffi
g
p� �

,

shown in Figs. 2(c) and 2(d).

A. DO-NAPE solutions

The DO-NAPEs [Eq. (A4)] are forced by the DO

decompositions of the effective squared index of refraction.

Figure 3(a) shows the uncertain sound speed profiles cðz; nÞ,
obtained by sampling uniformly nr¼ 5000 realizations of

cw � U½1470; 1520�, as well as the corresponding realiza-

tions of ðc0=cðz; nÞÞ2, and those of the effective squared

index of refraction n2
eff ðz; nÞ given by Eq. (A1). Using these

realizations, the DO decomposition of n2
eff ðz; nÞ is computed

by singular value decomposition (SVD) and used as input to

the DO-NAPEs. With this idealized test case (range-inde-

pendent isospeed waveguide with a scalar uncertainty), only

one DO mode is needed for n2
eff . The mean profile n2ðzÞ, DO

mode profile en2
1ðzÞ, and PDF of the DO coefficient b1 are

shown in Fig. 3(b). Due to the uniform distribution of the

water sound speed, the marginal PDF of b1 is also nearly

uniform as expected (the slight discrepancy is due to sam-

pling error and, only for the plot, to the normal kernel den-

sity fit that smoothes the edges.). They force the DO-NAPEs

[Eq. (A4)].

Using the DO-NAPEs [Eq. (A4)] and the initialization

procedure for deterministic source frequency and location

described in case 2 of Sec. III E 3 of Part I (Ali and

Lermusiaux, 2024), the DO decomposition of the stochastic

acoustic pressure field is then predicted, with a subspace

size ns;w ¼ 10 (see Table I for other DO-NAPE parameters).

The range evolution of the magnitude of the complex-

TABLE I. Simulation parameters for the three test cases: uncertain Pekeris Waveguide (PW) with a stochastic water sound speed cwðnÞ, uncertain Horizontal

Interface (HI) with a stochastic source depth ZsðnÞ, and uncertain Up-sloping Wedge (UW) with a stochastic depth intersect ZwðnÞ at the final range. The symbol f
denotes the source frequency, Zmax the medium depth (including the fluid bottom), dz the vertical finite volume cell size, R the total range, and dg the range step size.

Finally, ns;n2 and ns;w, introduced in Eq. (A3), are the sizes of the stochastic subspaces for the environment and acoustics, respectively, and nr is the number of sam-

ples used to evolve the stochastic DO coefficients governed by the ODEs [Eq. (A4c)] as was described in Sec. III E 2 in the Part I paper (Ali and Lermusiaux, 2024).

Test case Uncertainty type f (Hz) Zmax (m) dz (m) R (m) dg (m) ns;n2 ns;w nr

PW cw � U½1470; 1520� m/s 250 300 1 10000 0.5 1 10 5000

HI Zs � U½20; 180� m 100 900 1 10000 1 0 20 1000

UW Zw � U½0; 200� m 25 1500 1 4000 1 6 9 2000

FIG. 1. (Color online) Uncertain PW: Schematic. A point sound source

located at depth Zs ¼ 25 m and range g¼ 0 emits at a harmonic frequency

f ¼ 250 Hz. The water sound speed cw is uncertain with a uniform PDF,

i.e., cw � U½1470; 1520� m/s. Other parameters are deterministic as given in

the schematic and described in the text.
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valued mean envelope function j�wðz; gÞj is shown in Fig. 4.

Profiles of the mean solution at sample ranges g ¼ 0:5;
2:5; 5; 7:5; 10 km are shown in Figs. 4(a) and 4(b), and the

full depth-range field in Fig. 4(c). Comparing the DO mean

prediction to the deterministic solutions shown in Fig. 2, it

is clear that the DO mean solution retains the common fea-

tures, e.g., the shadow zone around 7 km in range and the

significant attenuation in the bottom.

In addition to the mean field, the DO-NAPEs predict

the DO modes and stochastic DO coefficients of the pressure

solution. A convergence study (discussed in Sec. II B) was

performed to determine the size ns;w of the stochastic sub-

space which resulted in choosing ns;w ¼ 10. Figure 5 shows

the real parts of the dominant four (out of ten) modes and

(range-dependent) coefficients. We highlight the highly

non-Gaussian marginal PDFs at sample ranges g ¼ 0:5; 2:5;
5; 7:5; 10 km. The bimodality of the PDFs corresponds to

the distinct acoustic physics when cw is smaller or larger

than the reference sound speed c0.

Figure 6 shows the evolution of the principal variances

r2
i ðgÞ; i ¼ 1;…; ns;w, which provide a measure of the sto-

chastic energy and its changes with range. The red curve

FIG. 2. (Color online) Uncertain PW: Analytical pressure solutions for two sample sound speed realizations, cw ¼ ð1470; 1510Þ m/s, obtained using wave-

number integration. (a) and (b) Phase fields (in radians) of the pressure envelope, and (c) and (d) transmission loss fields (in dB), for each sound speed value.

FIG. 3. (Color online) Uncertain PW: Input realizations and decomposition. (a) Sound speed profile realizations with the corresponding realizations of

ðc0=cðz; nÞÞ2 and n2
eff ðz; nÞ. (b) Mean profile n2 ðzÞ, first DO mode profile en2

1ðzÞ, and PDF of first DO coefficient b1. The gray shading in all profile plots rep-

resents the fluid bottom medium.
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corresponds to the deterministic energy of the mean pres-

sure, h�wð�; gÞ; �wð�; gÞi. We observe that the stochastic

energy is comparable to the mean energy, highlighting the

strong and complex uncertainties in this idealized uncertain

PW case.

Finally, using the cost ratio Eq. (A5), the computational

cost of direct MC can be compared to that of DO-NAPE.

Inserting the present parameters j¼ 1, nr¼ 5000, ns;n2 ¼ 1, and

ns;w ¼ 10, we obtain a saving factor of CostMC=CostDO � 250.

B. Stochastic convergence analysis

To demonstrate the stochastic convergence of our DO-

NAPE equations and schemes as ns;w and nr are increased,

an MC ensemble of analytical solutions obtained by uni-

formly sampling nr¼ 5000 realizations of the water sound

speed was computed and used as a reference solution. We

note that this allows us to evaluate both the dynamic DO

truncation errors and the DO numerical scheme errors.

Convergence with the stochastic subspace dimension.
Figure 7 shows the MC mean field and compares it to the

DO-NAPE mean field solutions as the size of stochastic sub-

space ns;w is increased. The relative differences jj�wDOj
�j�wMCjj=j�wMCj are shown for ns;w ¼ 2; 6; 8; 10 [the DO-

NAPE mean field with ns;w ¼ 10 was shown in Fig. 4(c)].

From the figure, it is found that the relative difference

decreases significantly in the water medium when ns;w is

augmented from 2 to 6 after which the DO solution in the

bottom medium further approaches the MC solution as ns;w

is increased to 10. The larger relative difference in the bot-

tom towards the final ranges is due to the solution itself

being very small (bottom attenuation and long ranges).

Overall, comparing the mean solution from the MC ensem-

ble of analytical solutions [Fig. 7(a)] and the DO-NAPE

mean solution [Fig. 4(c)], it can be seen that the solutions

are indistinguishable.

Convergence with the DO coefficient realizations sam-
ple size. The convergence of the DO-NAPE solution as the

number of samples nr increases is also examined. The

results of this analysis are shown in Fig. 8, which displays

the decay of the error for the mean solution compared to the

MC solution [Fig. 8(a)] and the convergence in the marginal

FIG. 4. (Color online) Uncertain PW:

DO-NAPE mean pressure solution j�wj
(in Pa). (a) and (b) Solution profiles

shown at sample ranges g ¼
0:5; 2:5; 5; 7:5; 10 km. (c) Full solution

field.
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distribution of the four dominant stochastic coefficients (real

parts of ai, i ¼ 1;…; 4), at three sample ranges g ¼ 0:5, 5,

and 10 km [Fig. 8(b)]. As nr is increased from 500 to 5000

(curves shown as decreased transparency in the color of the

distributions for the three sample ranges), the bimodal

range-dependendent PDFs of the coefficients converge.

C. DO-NAPE validation

To illustrate the validation of the DO solution, the ana-

lytical solutions shown in Fig. 2 are compared to the corre-

sponding DO-NAPE solutions for the two sample sound

speed realizations, cw¼ 1470 and cw¼ 1510 m/s. The latter

DO pressure solutions are reconstructed once the full DO-

NAPE solution is computed using the samples of the sto-

chastic coefficients that correspond to the chosen sound

speed realizations. In other words, denoting the two sample

stochastic parameters corresponding to the chosen sound

speed realizations by n1 and n2, the DO pressure solutions

are reconstructed as

wDO z; g; n1;2

� �
¼ �w z; gð Þ þ

Xns;w

i¼1

ewi z; gð Þai g; n1;2

� �
;

from which the DO phase and DO TL are computed.

These comparison results are shown in Fig. 9. The

top two rows show the phase and TL realizations as a

function of range at a receiver located at Zreceiver¼ 50 m

for the two sound speed realizations, cw¼ 1470 and

cw¼ 1510 m/s. The DO-NAPE solutions are shown for

increasing dimensions of the stochastic subspace,

ns;w ¼ 2; 4; 6; 8; 10. The subspace dimension ns;w ¼ 10

yields phase and TL results (shown in maroon red) that

are in excellent agreement with the true analytical solu-

tions (shown in red). The bottom two rows in Fig. 9 show

the error in the phase (/wanalytical �/wDO) and TL

(TLanalytical � TLDO) solutions computed using DO-NAPE

with ns;w ¼ 10. We find that the DO-NAPE TL and phase

solutions show excellent agreement, especially in the

water medium. We note that many more comparisons

were made than just these two realizations and the DO-

NAPE accuracy remained excellent. The relatively larger

discrepancies between the DO-NAPE and true solutions

in the bottom medium can be mitigated by increasing the

size of the stochastic subspace (results not shown). In this

work, the focus is on the acoustic propagation in the water

medium, and as a result, the agreement obtained using

ns;w ¼ 10 is sufficient.

III. UNCERTAIN HORIZONTAL INTERFACE (HI)

The second test case extends the deterministic

Horizontal Interface (HI) case, also known as the Bucker

waveguide (Lee and McDaniel, 1988), to a stochastic HI

case with a probabilistic source depth. A point sound source

emits at a harmonic frequency f ¼ 100 Hz in a shallow

water domain. The uncertain depth of the sound source is

FIG. 5. (Color online) Uncertain PW: DO-NAPE stochastic modes (non-dimensional) and coefficients (in Pa) solutions. The real parts of the dominant four

(out of ten) DO modes and coefficients are shown. The evolution of the DO modes with range is clear and the marginal PDFs of the DO coefficients, shown

at sample ranges g ¼ 0:5; 2:5; 5; 7:5; 10 km, highlight the non-Gaussian PDFs.

FIG. 6. (Color online) Uncertain PW: Evolution in range of the principal

variances r2
i ðgÞ; i ¼ 1;…; 10, and of the mean pressure energy, h�wð�; gÞ;

�wð�; gÞi, shown in red (all in Pa2).
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assumed to be a uniform random variable with Zs

� U½20; 180� m. The deterministic waveguide is a piecewise

linear sound speed profile that has a minimum value of

1498 m/s at 120 m depth, qw ¼ 1000 kg=m3, and aw ¼ 0.

The seabed is a sediment layer with cs¼ 1550 m/s,

qs ¼ 2100 kg=m3, and as ¼ 0 dB=k. The bottom below the

seabed is modeled as a fluid half-space with cb¼ 1600 m/s,

qb ¼ 2200 kg=m3, and ab ¼ 1 dB=k. The reference sound

speed is c0 ¼ 1500 m/s. A schematic of the test case is given

in Fig. 10.

A. DO-NAPE initialization

Due to the uncertainties in the source depth, case 1 of

the initialization procedure described in Sec. III E 3 of Part I

(Ali and Lermusiaux, 2024) is used. By uniformly sampling

nr¼ 1000 realizations of the source depth Zs � U½20; 180�
m, the stochastic Gaussian starter defined in Eq. (15) of Ali

and Lermusiaux (2024) is used to generate realizations of

the initial pressure field w0ðz; nÞ. These realizations are

shown in Fig. 11(a) along with their covariance heatmap.

FIG. 7. (Color online) Uncertain PW: Convergence analysis of the DO-NAPE mean solution as the size of the stochastic subspace ns;w increases. (a) Mean

solution (in Pa) obtained from an MC ensemble of analytical solutions of size 5000. (b) Relative differences between the DO-NAPE means for

ns;w ¼ 2; 6; 8; 10, and the MC mean.
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The source depth realizations are sampled independently

resulting in a diagonal covariance matrix in the range

z 2 ½20; 180�m. The subspace size ns;w of the truncated SVD

is chosen to be 20 in order to capture 99% of the variance in

the starter realizations as shown in Fig. 11(b). From the trun-

cated SVD, the ICs at g¼ 0 of the DO-NAPE mean �wðz; gÞ,
modes ewi¼1;…;20ðz; gÞ, and coefficients ai¼1;…;20ðg; nÞ are

computed. Figure 11(c) shows the profiles of the starter

mean, modes i ¼ 1; 5; 10; 15; 20, and the PDFs of their cor-

responding coefficients. Note that all profiles extend over

the entire depth of the sediment and the bottom halfspace,

down to z ¼ Zmax þ D ¼ 1200 m, where D¼ 300 m is the

thickness of the artificial absorption layer. However, the

source depth uncertainties in this case only lead to non-zero

mean and mode profiles for z 2 ½20; 180� m. As the sound

moves further in range, these uncertainties propagate to

other depths as shown in the results next.

B. DO-NAPE w solutions

As the sound speed, density, and attenuation are assumed

exactly known (deterministic), the stochastic NAPE [Eq. (A2)]

for this case only contains uncertain initial conditions (source

depth) and no stochastic forcing. The versatility of our DO-

NAPE approach allows us to still use Eq. (A4) with all the

uncertain n2
eff terms null. A convergence study (as shown in

Fig. 11) was also used to choose the size of the stochastic pres-

sure subspace, ns;w ¼ 20, and it will be illustrated in Fig. 14.

The DO-NAPE mean solution as well as the two most

dominant and the least dominant stochastic DO modes and

coefficients are shown in Fig. 12. Comparing the most and

least dominant stochastic modes, larger scale uncertainty

features (especially in the water medium) are captured by

the dominant modes 1 and 2, while the least dominant mode

20 captures smaller scale uncertainties. The DO-NAPE solu-

tion predicts the variance explained at each sample range:

e.g., for modes 1, 2, and 20, at g ¼ 0:5 km: Varða1Þ
¼ 0:0949;Varða2Þ ¼ 0:0931;Varða20Þ ¼ 0:0097; at g¼5km:

Varða1Þ ¼ 0:137;Varða2Þ ¼ 0:121;Varða20Þ ¼ 1:05� 10�4;

and at g¼10km: Varða1Þ ¼ 0:0847;Varða2Þ ¼ 0:0834;
Varða20Þ ¼ 3:81� 10�7 (Pa2). The highly non-Gaussian and

range-dependent distributions of these stochastic coeffi-

cients showcase some of the advantages of DO-NAPE com-

pared to other PC-based schemes. Such range dependence

makes PC-based schemes more computationally expensive

or less accurate due to their fixed polynomial basis

(Branicki and Majda, 2013). For similar accuracy, much

more terms in the PC expansion would need to be used, at

all ranges. In comparison to MC, for this test case, using

j¼1, nr¼1000, and ns;w ¼ 20 in the cost ratio Eq. (A5), one

obtains CostMC=CostDO � 50, which highlights the computa-

tional advantage of the DO-NAPE framework.

As discussed in Sec. IV of Part I (Ali and Lermusiaux,

2024), the DO-PEs exhibit fundamental differences from

normal mode schemes, especially from their simplifications

such as the adiabatic approximation. The fully coupled

property of DO modes, missing from the adiabatic normal

mode approximation, can be illustrated using the HI case

discussed herein. Although the DO mean and modes had no

signature in the bottom halfspace at the initial range

(Fig. 11), the DO subspace at later ranges allows for both

FIG. 8. (Color online) Uncertain PW: Convergence analysis of the DO-NAPE solution as the number of samples nr is increased from 500 to 5000. (a) Mean

field relative error as a function of nr. (b) Real parts of the four dominant DO-NAPE coefficients (ai, i ¼ 1;…; 4, in Pa) at the ranges g ¼ 0:5, 5, and 10 km.
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the mean and modes to be nonzero there (Fig. 12): the sto-

chastic acoustic field is indeed transmitted to the bottom

when the solution is marched in range.

C. DO-NAPE TL solutions

Starting from the DO-NAPE w solution, the global

SVD of TL described in Sec. III G of Part I (Ali and

Lermusiaux, 2024) and summarized in the Appendix is used

to compute the statistics and reconstruct sample realizations

of TL. The DO-NAPE TL results are validated using the

ensemble of 1000 MC runs. Comparisons between the DO

and MC solutions for the mean and standard deviation of TL

are shown in Fig. 13. The DO-NAPE TL solutions show

excellent agreement. In particular, comparing the mean

fields, the maximum relative error in the water is found to

be �2% and that in the bottom was �5%. For the standard

deviations, the maximum relative errors are found to be

�3% in the water and �6:5% in the bottom.

In addition to matching the first- and second-order sta-

tistics of TL, the DO-NAPE TL solutions are validated by

performing realization-based comparisons for 3 sample

FIG. 9. (Color online) Uncertain PW: Comparisons of the phase (in radians) and TL (in dB) computed by DO-NAPE to the corresponding analytical solu-

tions, for two sample realizations of water sound speed: cw¼ 1470 m/s (first column), and cw¼ 1510 m/s (second column).
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source depths: Zs ¼ 20; 100; 180 m. The TL comparisons at

two receiver locations, Zreceiver ¼ 30; 190 m, are shown in

Fig. 14. As the size of the stochastic subspace ns;w increases,

the DO-NAPE TL solutions, computed at a much lower

computational cost than a brute force MC method, tend to

the MC solution (shown in red). As expected, the error

increases slightly for longer ranges due to the fixed dimen-

sion of each stochastic subspace and the accumulation of the

corresponding truncation errors. To address this, one can

adapt the stochastic subspace dimension for longer ranges,

FIG. 10. (Color online) Uncertain HI:

Schematic. A point sound source emits

at a harmonic frequency f ¼ 100 Hz in

a shallow water domain. The depth of

the source is uncertain with a uniform

PDF, i.e., the random variable Zs

� U½20; 180�m. Other parameters are

deterministic as given in the schematic

and described in the text.

FIG. 11. (Color online) Uncertain HI: DO-NAPE Initialization. (a) Realizations (in Pa) and covariance (in Pa2) of the starter realizations w0ðz; nÞ. (b) Percentage of

variance in the stochastic Gaussian starter realizations explained by the truncated SVD, along with the choice of subspace size ns;w ¼ 20 to capture 99% of the vari-

ance. (c) DO-NAPE initial conditions for the mean �w
0ðzÞ (in Pa), 5 (out of the 20) modes ew0ðzÞ, and PDF of the corresponding DO coefficients a0ðnÞ. The gray

shading in all profile plots represents the fluid sediment medium. The bottom halfspace is omitted as the starter field vanishes there by construction.
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as described in several studies (Charous and Lermusiaux,

2023; Feppon and Lermusiaux, 2018b; Lermusiaux, 2007;

Lin, 2020; Sapsis and Lermusiaux, 2012).

IV. UNCERTAIN UP-SLOPING WEDGE (UW)

The third test case extends the deterministic range-

dependent 2D up-sloping wedge (UW) benchmark with pen-

etrable fluid bottom (Jensen and Ferla, 1990) to a stochastic

UW with a probabilistic bathymetric slope of large uncer-

tainty. A point sound source is located at depth Zs¼ 100 m

and range g¼ 0 and emits at a harmonic frequency

f ¼ 25 Hz. The deterministic waveguide is an isospeed sound

channel with cw¼ 1500 m/s, qw ¼ 1000 kg=m3, and aw ¼ 0.

The uncertain seafloor slope is a random variable characterized

by its depth intersect Zw at the final range of R¼ 4 km, with

Zw � U½0; 200� m. The bottom medium beneath the stochastic

slope is a penetrable fluid half-space with cb¼ 1700 m/s,

qb ¼ 1000 kg=m3, and ab ¼ 1 dB=k. The reference sound

speed is c0 ¼ 1500 m/s. A schematic of the test case is pro-

vided in Fig. 15 where some sample realizations of the seafloor

slope are also illustrated in white.

A. DO-NAPE input n2
eff decomposition

The uncertainty in the seafloor slope renders the sound

speed and attenuation fields both stochastic and range-

dependent, which in turn leads to a stochastic range-

FIG. 12. (Color online) Uncertain HI: DO-NAPE mean (in Pa), modes (non-dimensional), and coefficients (in Pa) solutions. The magnitude of the mean

solution is shown in the top panel. The real and imaginary parts of the two most dominant modes 1 and 2 and of the least dominant mode 20 are shown, as

well as the marginal PDFs of the corresponding coefficients at the ranges g ¼ 0:5; 5; 10 km.
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dependent squared effective index of refraction n2
eff ðz; g; nÞ.

The input DO decomposition of n2
eff is therefore range-

dependent. Thresholding the singular values obtained when

taking the SVD of the n2
eff realizations field led to choosing

ns;n2 ¼ 6. Figure 16 shows the mean and dominant four (out

of six) modes and stochastic coefficients of n2
eff .

B. DO-NAPE solutions

The DO-NAPEs were initialized using the deterministic

source procedure of case 2, Sec. III E 3 of Part I (Ali and

Lermusiaux, 2024). They were solved for the pressure

envelope w using ns;w ¼ 9 stochastic modes and nr¼ 2000

coefficient realizations. In other words, a single DO-NAPE

simulation is analogous to running 2000 MC realizations:

results including mean, statistics, and realization fields are

very close (shown later). Inserting the values j¼ 1, nr¼ 2000,

ns;n2 ¼ 6, and ns;w ¼ 9 in the cost ratio Eq. (A5), we obtain

the computational saving of CostMC=CostDO � 31:7. We note

that this saving ratio of the DO-NAPE framework increases

further if the number of realizations is increased.

From the DO-NAPE prediction of the stochastic w field,

the global SVD approach described in Sec. III G in Part I

(Ali and Lermusiaux, 2024) and summarized in the

FIG. 13. (Color online) Uncertain HI: Comparisons of the MC (left) and DO-NAPE (middle) solutions for the mean (top row, in dB) and standard deviation

(bottom row, in dB2) fields of TL.

FIG. 14. (Color online) Uncertain HI: Comparisons of the MC TL (in dB) solution to DO-NAPE TL solutions (ns;w ¼ 1; 5; 10; 15; 20) for the sample source

depth realizations Zs ¼ 20; 100; 180 m, at two receiver locations: (a) TL at Zreceiver¼ 30 m and (b) TL at Zreceiver¼ 190 m.
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Appendix was used to obtain a global DO decomposition for

TL. In order to illustrate the nonlinear effects in this UW

case, Fig. 17 compares the mean of the TL computed from

the DO-NAPE solution to a deterministic run where the

slope intersects the final range at the mean depth Z ¼ Zw

¼ 100 m. The mean TL solution is found to be significantly

different from the deterministic solution for the mean

bathymetric slope, highlighting the need for a probabilistic

nonlinear simulation.

In addition to the mean solution, the four dominant DO-

NAPE modes and stochastic coefficients of TL are shown in

Fig. 18. The non-Gaussian statistics in this case can be

observed in the multimodal PDFs of the coefficients. In

addition, the DO-NAPE modal energies are found to be

FIG. 15. (Color online) Uncertain UW:

Schematic. A point sound source is located

at depth Zs¼ 100 m and range g¼ 0 and

emits at a harmonic frequency f ¼ 25 Hz.

The uncertain seafloor slope is a random

variable characterized by its depth intersect

Zw at the final range of R¼ 4 km, with uni-

form PDF, i.e., Zw � U½0; 200� m. Some

sample realizations of the seafloor slope are

illustrated in white. Other parameters are

deterministic as given in the schematic and

described in the text.

FIG. 16. (Color online) Uncertain UW: Input DO decomposition of n2
eff . (a) Mean and (b) Dominant four modes along with the marginal PDFs of their

coefficients.
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lower at short ranges where the sound waves had fewer

bounces off the uncertain slope.

C. DO-NAPE validation

To validate the DO solution, the corresponding MC sol-

utions were computed by solving the range-dependent deter-

ministic NAPE for each of the nr realizations of the slope

intersect. The comparison results are first illustrated in Fig.

19 here the TL solutions are compared for three sample

slope realizations, Zw¼ 0, 100, and 200 m. The first row

shows the diagram of the 3 sample cases with a dashed line

corresponding to the receiver location Zr¼ 100 m.

Comparisons of TL at this receiver are shown in the second

row for increasing dimensions of the stochastic subspace

ns;w ¼ 1; 3; 5; 7; 8; 9, along with the MC solution in red. The

TL computed by the DO-NAPE solution with ns;w ¼ 9 are

nearly identical to the TL computed by the MC method. The

third row shows heatmaps of the TL MC solutions with the

white line indicating the seafloor slope. Comparing these

solutions to the TL realizations computed from DO-NAPE

in the fourth row, the errors shown in the fifth row are found

to be negligible highlighting the accuracy of the DO frame-

work. The range dependencies, the amplitudes, and the

phases including the nulls are all captured, even though the

DO-NAPEs compute all the 2000 realizations at once, at a

much-reduced cost.

Matching MC realizations is a strong and often difficult

validation test for any stochastic modeling method. A com-

plementary test requires matching the corresponding PDFs,

in this case, the PDF of TL. Figure 20 illustrates the results

of these two realization and PDF tests for TL at two receiver

locations, Zreceiver ¼ 50; 100 m. The first column in Fig.

20(a) shows the mean (solid line) and min-max band

(shaded area around the mean that highlights realizations

the furthest from the mean) of TL at Zreceiver¼ 50 m, i.e., the

band formed by computing all the minimum and maximum

realizations of TL due to the seafloor slope uncertainty,

computed from the MC (red) and DO-NAPE (blue) solu-

tions. The remaining panels show the PDFs of the TL real-

izations at the receiver location for ranges g ¼ 1; 2; 3; 4 km.

The DO-NAPE min-max band and PDFs show good

FIG. 17. (Color online) Uncertain UW: Comparison of the mean TL (in dB) solution obtained using DO-NAPE to the deterministic TL solution for the

mean slope, i.e., for the bathymetry intersecting the final range at the mean depth Zw ¼ 100 m.

FIG. 18. (Color online) Uncertain UW: Four dominant stochastic DO-NAPE TL modes (non-dimensional) and coefficients (in dB).
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agreement with the corresponding MC solutions. The same

conclusions hold for the results at Zreceiver¼ 100 m shown

in Fig. 20(b), where the DO-NAPE min-max band and

PDFs of TL match the multimodal distributions of the

MC solutions relatively well, at both short and long

ranges. Note that both the MC and DO-NAPE are approx-

imations. In some cases, as the range increases, if the MC

does not sample the probability space adequately anymore,

the DO-NAPE solution can be more accurate than MC for

the same number of realizations or even converge faster

than MC toward the true stochastic solution. This is in

part because the DO-NAPE adapts in range toward the

regions of the state space where dominant uncertainties

occur.

FIG. 19. (Color online) Uncertain UW: Comparisons of TL (in dB) computed by DO-NAPE and by MC, for three sample realizations of the slope intersect:

Zw¼ 0 m (first column), Zw¼ 100 m (second column), and Zw ¼ 200 m (third column).
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V. SUMMARY AND CONCLUSIONS

In Part II of this two-part paper, the DO-NAPEs are

applied and their properties are analyzed for three new 2D

stochastic canonical test cases: (1) an uncertain range-

independent PW with stochastic sound speed, (2) an uncer-

tain range-independent HI problem with stochastic source

depth, and (3) an uncertain range-dependent UW problem

with stochastic bathymetry. Results showed that the DO-

NAPEs can predict accurate stochastic responses to complex

input probability distributions (uniform, multi-modal, large

deviations, etc.) in sound speed, bathymetry, and source

location. The first test case was utilized to illustrate the

DO-NAPE methodology and to show and verify that the

DO-NAPE solutions match an ensemble of ground-truth

deterministic analytical solutions. The DO-NAPE pressure,

phase, TL fields, and their amplitudes, nulls, and other fea-

tures, were found to be accurate and to converge as the

dimension of the stochastic subspace and the number of

samples increased. In the second case, the stochastic source

depth in a range-independent environment was shown to

lead to non-Gaussian and strongly range-dependent statistics

captured by the DO-NAPE coefficients. The DO-NAPE sto-

chastic TL solutions were indeed confirmed to converge sta-

tistically, for the first (mean) and second-order (standard

deviation) terms but also the full PDFs, as well as determin-

istically at the realization level shown by comparison of

reconstructed DO-NAPE realizations with direct determinis-

tic MC solutions. The third test case included more complex

sound speed and bathymetry range dependencies. The range-

dynamic properties of the DO-NAPEs were illustrated and

the DO-NAPE solution matched the TL fields and non-

Gaussian PDFs obtained from an ensemble of deterministic

MC runs with 2000 realizations. These results highlight the

capabilities of the DO-PEs in contrast to other methods.

Importantly, in all three test cases, none of the mean, DO

modes, and DO coefficients, are predefined. Instead, they are

governed by the stochastic DO-NAPEs [Eq. (A4)] derived

directly from the stochastic NAPE and adapt in range to the

dominant uncertainties, as highlighted by Figs. 4, 5, 12, 17,

and 18. The DO-NAPEs are the instantaneously optimal low-

rank approximation of the range-dynamics of the matrix of all

the realizations of w (Feppon and Lermusiaux, 2018a,b). A

consequence of this property is demonstrated by the excellent

matching of individual realizations, statistics, and PDFs of the

phase and TL (Figs. 9, 13, 14, 19, and 20), even after the sto-

chastic numerical errors (spatial discretization, sampling, and

retraction errors) of the discrete DO-NAPEs are compounded

over range. Finally, the significant computational savings of

the DO-NAPEs over direct MC methods were also highlighted,

both in numerical cost estimates and in actual simulations,

which in the three test cases shown in this Part II paper reach

factors of about 30 to 250 in computational speedup.
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APPENDIX: DO-NAPE NOTATION AND EQUATIONS

We summarize the notation, main equations, computa-

tional costs, and DO TL post-processing developed in Part I

(Ali and Lermusiaux, 2024) and utilized in this Part II.

1. Notation and equations

In the test cases of Part II, we consider stochastic acous-

tic propagation along 2D slices in uncertain multilayered

ocean environments. We denote the spatial position by

x ¼ ðz; gÞ where z is the depth measured from the surface

and g 2 ð0;R� the position in the range direction with R
referring to the total propagation range. The uncertain multi-

layered media are characterized by stochastic space-varying

medium density qðz; g; nÞ, sound speed cðz; g; nÞ, and attenu-

ation aðz; g; nÞ. These space-varying fields are stochastic

and indexed by the stochastic parameter n, which represents

an event in the stochastic event space N. Altogether, they

define the stochastic squared effective index of refraction,

n2
eff z; g; nð Þ ¼ c0

c

� �2

1þ i
a

27:29

� �

þ 1

2k2
0

1

q
@2q
@z2
� 3

2q2

@q
@z

� �2
 !

; (A1)

where k0 ¼ x=c0 is a reference wavenumber, x ¼ 2pf is the

source angular frequency, and c0 is a reference sound speed.

Under the NAPE approximation, the stochastic PDE

describing the range-evolution of the outgoing envelope

function w for the stochastic acoustic pressure reduces to

@w z;g;nð Þ
@g

¼ i

2k0

@2

@z2
þ ik0

2
n2

eff z;g;nð Þ�1
� �	 


w z;g;nð Þ;

z2 0;ZmaxþD½ �; g2ð0;R�; n2N; (A2)

where Zmax is the total depth of the environment including

both the water depth and the depths of the sediment layers,

D is the thickness of the artificial absorption layer, and R is

the total propagation range.

The stochastic fields in Eq. (A2), the input index of

refraction field n2
eff ðz; g; nÞ and unknown output complex

envelope pressure field wðz; g; nÞ, are decomposed in terms

of their range-dynamic Karhunen-Loève (DO) expansions,

n2
eff z; g; nð Þ � n2

eff

� �
DO
¼ n2 z; gð Þ þ

Xns;n2

l¼1

en2
l z; gð Þbl g; nð Þ;

(A3a)

w z; g; nð Þ � wDO ¼ �w z; gð Þ þ
Xns;w

i¼1

ewi z; gð Þai g; nð Þ : (A3b)

In Eq. (A3), n2ðz; gÞ and �wðz; gÞ are statistical mean

fields for the index of refraction and complex pressure,

respectively. The fields en2
lðz; gÞ; 8l ¼ 1;…; ns;n2 , andewiðz; gÞ; 8i ¼ 1;…; ns;w, are DO modes, each set defining a

range-dynamic basis, orthonormal in the transverse spatial

space (z) by construction. The DO stochastic coefficients

blðg; nÞ; 8l ¼ 1;…; ns;n2 , and aiðg; nÞ; 8i ¼ 1;…; ns;w, are

each zero-mean stochastic processes that can represent com-

plex range-dependent uncertainties in the squared effective

index of refraction and acoustic fields, respectively. In our

applications, the right-hand-side of Eq. (A3a) is defined by

each test case but, in general, would come from a stochastic

ocean modeling system (Lermusiaux, 1999, 2007;

Lermusiaux et al., 2020; Lermusiaux and Robinson, 1999;

Robinson et al., 2002). Most importantly in this work, none

of the acoustic pressure mean �wðz; gÞ, DO modes ewiðz; gÞ,
and DO coefficients aiðg; nÞ, are predefined. Instead, they

are governed by the following stochastic DO-NAPEs (Ali

and Lermusiaux, 2024):

@ �w z;gð Þ
@g

¼ i

2k0

@2

@z2
�wþ ik0

2
�w n2 �1ð Þþ
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2
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l
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(A4a)
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i
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where C denotes a range-varying covariance matrix between

two stochastic processes. For instance, Caibl
ðgÞ ¼ En½aiðg; nÞ

�blðg; nÞ�. The DO-NAPEs [Eq. (A4)] are directly derived

from the stochastic NAPE [Eq. (A2)] by applying expectation

and projection operators onto the DO modes and coefficients.

Their solutions provide predictions of the stochastic acoustic

field wðz; g; nÞ, where z 2 ½0; Zmax þ D� and g 2 ð0;R�, for all

realizations n 2 N.

The DO-NAPEs [Eq. (A4)] are subject to the DO sto-

chastic ICs (Sec. III B 1 of Part I) and BCs (Sec. III B 2 of

Part I). They are solved numerically using schemes

described in Sec. III E of Part I.

2. Computational costs

As developed in Sec. III F of Part I (Ali and

Lermusiaux, 2024), significant computational savings are

achieved using DO-PEs. With the present DO-NAPEs for

2D stochastic propagation, the ratio of the number of opera-

tions needed for direct MC simulations of nr deterministic

realizations to that needed for DO-NAPEs is of the order,

CostMC

CostDO
�

nrN
j�1
x?

ns;wNj�1
x?
þ ns;n2 ns;w

¼j¼1 nr

ns;w þ ns;n2 ns;w
; (A5)

where j¼ 1 corresponds to the case of one-dimensional

(1D) transverse physical space (D � z) with a 2nd order cen-

tral differencing scheme considered in the applications in

this Part II.

In addition to the previously noted computational

speedup ratio, memory savings at each range step can also

be achieved by the DO-NAPEs. These memory savings can

be on the order of

MemoryMC

MemoryDO

� nrNz

ns;w nr þ Nzð Þ ; (A6)

where Nz is the number of finite volume grid points used in

the depth (z) dimension.

3. DO TL post-processing

As discussed in Sec. III G of Part I, once the DO-

NAPEs [Eq. (A4)] are solved for the complex-valued mean

field �wðz; gÞ, modes ewi¼1;…;ns;w
ðz; gÞ, and stochastic coeffi-

cients ai¼1;…;ns;w
ðg; nÞ, the TL DO solution can be recon-

structed as a postprocessing step using

TL z; g; nð Þ ¼ �20 log10





w z; g; nð Þffiffiffi
g
p






¼ �20 log10






�w þ

Xns;w

i¼1

ewiaiffiffiffi
g
p





; (A7)

where the 1=
ffiffiffi
g
p

term is added to account for cylindrical

spreading (Jensen et al., 2011).

Out of the two approaches (range-dependent SVD vs

global SVD) presented in Part I, the DO TL results shown

here in Part II rely on the global SVD approach. The DO

decomposition of the stochastic 2D TL field is then com-

puted in one shot by taking the SVD of the 2D realization

field TLðz; g; nÞ. This approach yields the mean field

TLðz; gÞ (units: dB), modes fTLk¼1;…;ns;TL
ðz; gÞ (non-dimen-

sional), and stochastic coefficients ck¼1;…;ns;TL
ðnÞ (range-

independent, units: dB).
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