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Abstract—With the increasing availability of high-resolution
comprehensive spatio-temporal ocean models and observation
systems, ocean data visualization has become ubiquitous. This
is due to the major impact of ocean products on disaster
management, shipping, fisheries, autonomy, coastal operations,
and scientific studies. Yet, there are several challenges for
effective communication of data through visualization techniques.
Specifically, ocean data is multivariate (e.g. temperature, salinity,
velocity, etc.), is available for multiple depths and multiple time
instants, and contains uncertainties, all of which leads to large,
multi-dimensional datasets. Thus, it is necessary to have an
interactive multiscale multivariate visualization tool that can
assist scientists, engineers, policy makers, and the public in
making insights from big data produced by ocean predictions
and observations. In this work, we present a 3D (spatial) + 1
(temporal) multi-resolution multivariate visualization tool that
produces interactive, dynamic, fast and portable ocean maps.

Index Terms—QOcean modeling, ocean visualization, data sci-
ence, interactive visualization

I. INTRODUCTION

In the field of ocean modeling or computational fluid
dynamics more generally, it is nearly always the case that the
terminal use of a simulation is interpretation by a scientist or
an engineer as part of a larger effort to understand, predict,
design for, or otherwise make use of physical phenomena
[10, 11, 12, 19, 21]. Moreover, the output of an ocean simu-
lation may be of interest to other end users (e.g., fishermen,
meteorologists, robot operators, policy makers) who seek to
make decisions based upon the simulation without a scientist’s
understanding of the simulation details. In all cases, the raw
data of a simulation is virtually useless unless interpretable by
the end user; visualization constitutes the link between the raw
data and the conclusions in the mind of the decision maker.

It is therefore crucial to ensure that the richness of the
solution is not lost in the visualization of the solution data;
otherwise, the effort and computational expense of running the
solution is wasted. However, effective multi-resolution multi-
dimensional multivariate visualization poses a unique set of
challenges [29], and it is often the case that as the simulation
becomes more sophisticated (e.g., high-order or discontinuous
output), its visualization becomes more challenging as well
[17]. Poor visualization not only adds a so-called “visualiza-
tion error” to the total error of the solution, but also burdens
researcher with the task of determining which features of the
solution output are physical or simply visualization artifacts
[25].
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A brief survey of the existing literature on visualization of
ocean data emphatically demonstrates no shortage of research
challenges. Problems in visualization for oceanographic data
are laid out in [60], where the authors assert the need for
visualization tools capable of handling multivariate datasets
(e.g., temperature, salinity, oxygen content, etc.). The chaotic,
complex, and patchy nature of coastal and estuarine flows is
described in [74]; therefore oceanographers may not know a
priori zones in which interesting physics occurs—hence, an
ocean visualization toolkit has the potential to emphasize these
dynamic flows rather than give a static snapshot of the fields.
Due to the limited observations and other sources of errors
[31, 34], care is needed for the visualization uncertainties
[11, 12]. The visualization of ocean data should also adapt to
multiple purposes, from scientific inquiries to the optimal con-
trol of autonomous vehicles [41]. Further, using appropriate
perception neutral color maps is instrumental in conveying the
information without any added bias [3, 72]. A modern, open-
source framework for computing quantities of interest from
large ocean datasets is described in [2]; however, the emphasis
of this software is an application programming interface (API)
for interfacing with ocean datasets and computing quantities
of interest rather than raw visualization. Our approach aims to
provide a complementary framework which renders a dynamic,
interactive visualization of pre-simulated data as an analysis
tool.

The MSEAS software [19, 21, 53] consists of a proba-
bilistic, data-assimilative, primitive-equation (PE) ocean mod-
eling system that is used for fundamental research and for
realistic simulations of fields and uncertainties around the
world’s oceans. Practical applications of MSEAS include
ocean monitoring [36], acoustic predictions and data assimila-
tion [43], biogeochemical-ecosystem predictions and environ-
mental management [5], 3D Lagrangian transport and coherent
structures [8, 26], and path planning for autonomous vehicles
[47, 48, 49].

The present SeaVizKit is a novel browser-based tool used
for visualizing the MSEAS ocean products. It makes use of
Leaflet [9] and D3.js [77] JavaScript libraries and provides
a unique and novel solution for visualizing the multivariate,
multidimensional fields obtained from the MSEAS software.
This is done via a highly interactive web and mobile interface
that offers the user control over the selected fields, times,
and depths, while ensuring a seamless transition between the



forecast products, making SeaVizKit both portable and usable
for real-time applications and decision making. Sicne the tool
reads common ocean data types, it is also applicable to other
ocean modeling systems.

The present paper is organized as follows: in section II, we
discuss the underlying data model and visualization method-
ology employed by SeaVizKit; in section III, we provide use
cases of SeaVizKit for real-time sea exercises and multiscale
ocean modeling; and in section IV we offer possible extensions
and uses of the software including fisheries management,
shipping, and path planning. In section V, we provide con-
clusions attained from the development, deployment, and use
of SeaVizKit.

II. METHODOLOGY

This section first outlines the underlying model used to ob-
tain the ocean fields’ predictions, the data-assimilative MSEAS
ocean model. We then highlight the main features and basic
components of SeaVizKit and provide some details on the
implementation.

A. MSEAS Ocean Model

The ocean fields visualized are obtained using our MSEAS
software [19, 53]. At the core of MSEAS is a nonlinear free-
surface hydrostatic primitive-equation (PE) model, based on
second-order structured finite volumes and configured with
generalized-level vertical-coordinates and implicit two-way
nesting [21]. The software has been used for fundamental
research and for forecasting the ocean fields and uncertainties
in many regions [1, 7, 18, 20, 24, 35, 39, 41, 42, 44, 62, 63]. Its
capabilities include: fast-marching coastal objective analysis
[1], initialization of fields and ensembles [40], nested data-
assimilative tidal prediction and inversion [45], implicit two-
way nesting [21], stochastic subgrid-scale forcing [31], ensem-
ble forecasting and data assimilation using the Error Subspace
Statistical Estimation (ESSE) methodology [32], adaptive data
assimilation, sampling and learning [32, 67], real-time acoustic
predictions [13, 28, 43, 76], biogeochemical modeling and
environmental management [5, 8, 26], Lagrangian Coherent
Structures (LCSs) [27, 37], and planning for underwater
vehicles [38, 47, 49, 67].

B. SeaVizKit Implementation and Features

The ocean physics (temperature, salinity, currents, etc.)
and prognostic quantities (sound speed, LCSs, optimal paths,
etc.) obtained using the MSEAS software are the inputs to
SeaVizKit, the new interactive multiscale visualization tool
presently developed. SeaVizKit is a browser-based application
which leverages the JavaScript libraries Leaflet [9] and D3.js
[77]. In our implementation, we render the interactive map
using Leaflet; ocean data obtained using the MSEAS software
is rendered using the D3.js library and overlaid on the map.
In order to account for the multivariate characteristics of the
ocean data, a control panel allows the user to view different
ocean variables. The user can view ocean data at different

depths and timestamp with sliders; this interface allows re-
searcher to investigate quantities of interest in time and space.
In order to provide interactive frame rates, SeaVizKit employs
a caching functionality, whereby recently displayed image data
are stored for later redisplay. For the visualization of vector-
valued quantities, such as surface and barotropic velocities,
SeaVizKit uses animated pathlines allowing the user to easily
interpret the velocity fields.

Due to its lightweight interactive modular design, SeaVizKit
efficiently produces 3D (spatial) + 1 (temporal) multivariate
ocean maps that are dynamic, fast and portable. Furthermore,
the zoom and pan animations allow the user to examine rapidly
both large and small-scale features, hence drawing deeper
scientific insights from the displayed data. Local field values
at specific locations can also be read and recorded by the user.

In the following sections, we discuss applications of SeaV-
izKit in real-time sea exercises and examples of its use in
fisheries and hazards management. A diagram illustrating the
work flow to obtain the interactive maps starting from the
MSEAS predictive software is shown in figure 1.

III. USE CASES
A. POSYDON Sea Experiment 2018

SeaVizKit was used to visualize the ocean fields obtained
during a real-time sea experiment that occurred in the Middle
Atlantic-New York Bight Region in August 2018 as part of the
DARPA-POINT project [54]. This was done using a two-step
procedure:

1) MSEAS Modeling: The probabilistic MSEAS PE model-
ing system was utilized in real-time to provide ocean field and
uncertainty forecasts at a 3 km grid resolution and using a 100-
member ensemble tuned for region specific uncertainty model-
ing using the ESSE methodology [32]. The ocean forecasts are
initialized from HYCOM [6], down-scaled to higher resolution
and updated with ocean data from varied open sources of
opportunity (CTDs, ARGO floats [4], gliders [61, 66], SST
[52], etc.) and with the MSEAS feature models for additional
corrections. These ocean simulations are forced by atmo-
spheric flux fields forecast by the GFS 0.25° model from the
National Centers for Environmental Prediction (NCEP) [57]
and tidal forcing from TPXOS [14, 15], but updated for the
high-resolution bathymetry and coastlines.

2) Interactive Mapping: The SeaVizKit tool was used to
produce interactive maps for the ocean physics in the area
of interest, at many different resolutions, times, and depths.
Figure 2 shows example visualizations of the surface velocity
fields over a 12-hour period which highlights the transition
capabilities between different time frames using the horizontal
time slider in the bottom left, and between different variables
using the control panel on the right. In addition, the animated
pathlines allow deeper insight into the motion of the current
on and off the shelfbreak front over the period of interest.

For the purpose of studying the operations of the acoustic-
based underwater Global Positioning System (GPS) of rel-
evance to the DARPA-POINT project, ensemble predictions
of the sound speed field were also obtained. Figure 3 shows
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Fig. 1: Diagram illustrating SeaVizKit workflow to obtain
the interactive ocean maps. The MSEAS software consists
of a probabilistic data-assimilative primitive equation ocean
model in addition to other acoustic, biogeochemical, fish,
coherent structures, path planning, and adaptive sampling
predictive models that output ocean forecasts with mean and
associated uncertainty. The data obtained serves as input to
SeaVizKit which uses the Leaflet and D3.js JavaScript libraries
to produce the browser-based interactive visualization. The
produced maps can be used in a web interface, or integrated in
a mobile app and may display ocean physics fields, acoustic
fields, fish fields, in addition to other fields used for hazards
management (e.g. flowmaps, LCSs)

examples of the standard deviation and mean sound speed
fields with mean pathlines at 100 m depth demonstrating the
cursor-value feature of the user interface.

B. NSF-ALPHA Sea Experiment 2018

SeaVizKit was also used during a real-time sea experiment
that occurred in the Nantucket and Martha’s Vineyard coastal
region in August 2018 as part of the NSF-ALPHA project
[55]. The workflow involved two steps:

1) MSEAS Modeling: The MSEAS PE modeling system
was utilized in real-time to provide ocean physics forecasts,
both for Eulerian and Lagrangian fields. The modeling system
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Fig. 2: Visualization examples of the surface velocity field
obtained using the SeaVizKit tool during the BBN POSYDON
Sea Experiment in August 2018. (a) shows the velocity field
nowcast at 0 Z for Aug. 23, 2018. (b) and (c) show forecasts
of the velocity field for 6 Z and 12 Z on Aug. 23, 2018, re-
spectively. SeaVizKit allows transition between the simulation
time frames using the horizontal time slider on the bottom
left. Additionally, animated pathlines describing the velocity
field make the currents on and off the shelfbreak front visually
apparent.

was set-up using an implicit 2-way nesting configuration (200
m resolution Martha’s Vineyard domain and 600 m resolution
Shelf domain). The ocean forecasts were initialized using
historical and synoptic ocean CTD data from the National
Marine Fisheries Service (NMFS) [59] and the Martha’s Vine-
yard Coastal Observatory (MVCO) [75], SST images from
the Johns Hopkins University’s Applied Physics Lab (JHU
APL) [22], and other data from varied sources of opportunity.
These ocean simulations were forced by atmospheric flux
fields forecast by NCEP [58] and tidal forcing from TPXO8
[14, 15], but adapted to the high-resolution bathymetry and
coastlines [45].



Std Sound Speed is 1.01 m/s

Fig. 3: Visualization examples of the ensemble standard de-
viation (left) and mean (right) sound speed fields at 100 m
depth obtained using SeaVizKit during the BBN POSYDON
Sea Experiment. The cursor-value feature in SeaVizKit allows
reading off the value of the standard deviation/mean sound
speed at the selected locations.

Furthermore, the MSEAS-LCS software was used to pro-
vide forecasts for the Lagrangian transport and coherent struc-
ture analyses in the region. Specifically, the software was
used to forecast fields of the finite time Lyapunov exponents
(FTLEs) which are commonly used to identify repelling and
attracting Lagrangian coherent structures (LCSs), as well as
the associatated three-dimensional forward and backward flow
maps.

2) Interactive Mapping: The SeaVizKit tool was used to
produce interactive maps for the ocean physics. Figure 4 shows
example visualizations of the temperature field at surface,
10 m, and 20 m levels for the 600 m resolution Shelf domain.
Transition between these levels is rather fast using the vertical
depth slider on the bottom left. In addition, figure 5 shows
example visualizations of the surface velocity field in the
600 m and 200 m two-way nested domains.

SeaVizKit was also used to produce maps for visualizing
FTLEs. Figure 6 shows forward FTLE fields with attracting
coherent structures around Martha’s Vineyard, highlighted in
the zoomed snippets around Nantucket sound and Vineyard
sound. Such visualizations of the LCSs through SeaVizKit
can be efficiently used for operations such as search and
rescue, hazards management and pollution mitigation. Passive
materials that flow with the fluid (such as oil, plastics, plankton
etc.) are either attracted to or repelled by the Lagrangian
coherent structures as mentioned before—by efficiently visu-
alizing the coherent structures and overlaying them on other
ocean physics fields, we can easily understand the skeleton of
material flow in the ocean thereby making informed decisions
regarding the management of hazardous material flow (such
as oil) or protection of marine life.

C. DRI CALYPSO Sea Experiment 2019

SeaVizKit was most recently used during a real-time sea
experiment in the Alboran Sea in March-April 2019 as part of
the DRI-CALYPSO project [56].

1) MSEAS Modeling: The MSEAS modeling system was
set-up in an implicit 2-way nesting configuration (1,/200°
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Fig. 4: Visualization examples of the temperature field ob-
tained using SeaVizKit during the NSF-ALPHA Sea Ex-
periment in August 2018. (a) shows a forecast the surface
temperature field. (b) and (c) show forecasts of the temperature
field at 10 and 20 m depth, respectively.

resolution Alboran Sea domain and 1/600° resolution process
domains). The ocean forecasts were initialized from either
HYCOM [6] or WMOP [23] or CMEMS [16], downscaled
to higher resolution and updated with ocean data from varied
open sources of opportunity (CTDs, ARGO floats [4], gliders,
SST [52], etc.). Ensemble forecasts were initialized using
ESSE procedures [30, 33], extended to multi-region uncer-
tainty initializations. These ocean simulations were forced by
atmospheric flux fields forecast by the Global Forecast System
(GFS) 0.25° model from NCEP [57] and by tidal forcing from
TPXO8 [14, 15], but adapted to the high-resolution bathymetry
and coastlines.

For the purpose of studying three-dimensional transport
of water masses and subduction dynamics, the MSEAS-LCS
software was also used to compute flowmaps and FTLE
fields. The forward/backward flowmap across depth, referred
to hereafter as the z-flowmap, was of particular interest as it
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Fig. 5: Visualization examples of the velocity field for the
two nested domains obtained using SeaVizKit during the NSF-
ALPHA Sea Experiment. (a) and (b) shows a forecast the
surface velocity field for the 600 m resolution Shelf domain
and 200 m resolution Martha’s Vineyard domain, respectively.

Fig. 6: Visualization example of the finite-time Lyapunov ex-
ponent (FTLE) field in the Martha’s Vineyard domain obtained
using SeaVizKit during the NSF-ALPHA Sea Experiment. The
zoom feature in SeaVizKit over the Nantucket and Vineyard
sounds shows attracting coherent structures.

helped identify the subduction regions in the domain.

2) Interactive Mapping: Figure 7 shows an example visu-
alization of the surface salinity field in the region of interest
along with pathlines of the surface velocity field as produced
by SeaVizKit.

In addition, figure 8 shows example visualizations of the
96-hour integrated forward z-flowmap at different depths.
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Fig. 7: Visualization example of the surface salinity field
obtained using SeaVizKit during the DRI CALYPSO Sea
Experiment in March-April 2019.

Startat Sun, 07.Apr 201912 Zat 16 m
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Fig. 8: Visualization examples of the 96-hour integrated z-
flowmaps at different depths obtained using SeaVizKit during
the DRI CALYPSO Sea Experiment. (a), (b), and (c) show
forecasts of the z-flowmaps at 16, 32 and 48 m depth,
respectively.

IV. FUTURE EXTENSIONS

Due to the modular design of SeaVizKit, it can be flexibly
integrated as a visualization tool for a broad range of appli-



cations. Extension of the SeaVizKit to applications such as
fisheries management and shipping and path planning is the
subject of ongoing research.

A. Fisheries

Fisheries are a major component of coastal livelihoods,
especially in developing countries such as India. However,
increased demand for fish, coupled with unsustainable fishing
practices, can lead to over-exploitation and fast depletion of
fish stocks. Coastal fisheries and aquaculture stocks often
thrive on very specific water conditions. Building capabili-
ties for coastal ecosystem forecasting and for optimal data
collection will help ensure the survival and reproduction of
healthy stock. Without sustainable fisheries management and
conservation practices in place, disastrous consequences could
arise for communities which are dependent on the ocean for
food.

Although there is a lot of focus on developing coastal
ecosystem-fisheries forecasting systems [5, 64, 65, 70], there
is another important component: the often-overlooked prob-
lem of efficient dissemination of these forecasts to local
fishermen. For example, INCOIS in India issues Potential
Fishing Zone (PFZ) advisories uses Sea Surface Temperature
data from NOAA-AVHRR satellite and Chlorophyll data from
Oceansat-2 and MODIS satellites. PFZ identified from SST
and Chlorophyll maps is communicated to fishermen using
SMS, Radio, TV, email, phone, and web services [71, 73]. This
system nonetheless lacks elements of modern UI/UX (User
Interface/User Experience), ability to collect data, interactivity,
portability, flexibility, and so on. These deficiencies could
be overcome by an amalgamation of forecasting products
delivered to fisherman via SeaVizKit, and further curating the
mobile/web app centric to the needs of both local fishermen
and ocean-modelers.

We present a potential wire-frame mock-up of a fisheries
specific mobile app (front-end) in Fig. 9(a); the front-end could
interface with oceanographic instruments on board the fishing
vessel, sending real-time data to a back-end computational
engine such as MSEAS. The user interface might also feature
an option for fishermen to provide data on presence or absence
of fish catch, which in-turn could be assimilated by the back-
end to update predictions of probable fish maps. The app could
also feature other information which might be of interest to
the fishermen, such as weather, live market price, government
defined fishing zones, etc., in order to provide value to the
primary user base. In Fig. 9(b), we present the mobile web
interface of SeaVizKit with sample forecasts done for the
Lakshadweep islands in India, around November 3rd 2017.

Overall, our modular visualization technology could easily
be integrated with existing apps, or used to develop new
ones. It would greatly enhance the user experience, could
be integrated with data collection systems, and eventually
improve the reach of the forecasts. This could also prove to
be useful to the fisheries department for analysis, monitoring,
and decision-making purposes.
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Fig. 9: (a) Mock-up of a potential fisheries app, with the ability
to disseminate forecasts, market price, weather information,
and collect data. (b) SeaVizKit mobile web interface showing
sample forecasts for the Lakshadweep islands in India, issued
on real-time on 3rd November, 2017.



B. Shipping and Path Planning

The shipping industry is one of the largest global indus-
tries, with massive revenues and mounting operating costs.
Some studies suggest that the ports and shipping industry
is responsible for up to 26% of the US GDP [51]. Further,
the operational costs of large ships is typically thousands of
dollars per hour, which implies that even minor decrease in the
travel times would account to sizable monetary savings, along
with reduced greenhouse gas emissions. Further, in addition to
optimality in time, energy, or any such objective function, it is
imperative to design risk-free and safe paths for these vessels
with regards to ocean conditions [50].

Another area where path planning is of high importance is
autonomous underwater vehicles (AUVs) [35, 38, 41]. These
vehicles are designed to operate autonomously without any
intervention for days or months at a time, for purposes ranging
from data collection to national security. Optimal planning is
imperative for these vehicles for longer endurance [68] and
higher quality of collected data [46]. Further, while respecting
the uncertain ocean conditions, these vehicles may be required
to choose a path according to the considered risk profile of the
operation, e.g. risk averse, risk seeking etc. [69].

Typically, these paths are chosen on a heuristic basis by
the vessel or vehicle operators. However, these systems often
lack modern capabilities that would allow for more informed
decision making on the operators’ part. By providing the
operators with a lightweight and device-agnostic application
with the requisite interactivity and flexibility, one can make
this procedure more informed and efficient. We achieve this
by incorporating a path planning module in SeaVizKit. The
lightweight nature of the tool implies that it can be used
by operators even in regions with patchy or weak network
connection.

Fig. 10 shows a sample screenshot from a path planning
mission. The aim of this mission is to plan a safe path with
respect to large ocean waves caused by the tropical storm for
an oil tanker traveling from Boston to Houston. We provide
an optimal path for a risk averse user, predict for the tanker
by going around the large waves caused by the storm. The
platform might also feature an option to report observations by
vessel operators to be assimilated, generating a better forecast.
Further, once the modified forecasts are generated, one could
also adaptively re-plan the path while accounting for the
updated forecasts. Overall, the SeaVizKit technology can be
easily incorporated in the shipping and path planning sectors
to present the operators with an intuitive and informative
interface to make informed decisions to achieve the desired
objectives in an efficient way.

V. CONCLUSION

In this paper, we presented SeaVizKit, a novel tool for
interactive visualization of multi-dimensional ocean simulation
data built on top of the popular Leaflet and D3.js libraries. We
outlined the data model for SeaVizKit and highlighted several
desirable features of the user interface designed to facilitate
interpretation of multi-dimensional probabilistic ocean fields,

Fig. 10: Optimal path for an oil tanker traveling from Boston
to Houston while avoiding rough sea conditions, demonstrated
using the SeaVizKit path planning module

including interactivity of the tool and browser-based use. We
provided several real-world use cases of the tool, including
real-time visualization of sea exercise forecast data. Lastly,
we discussed possible extensions of the visualization toolkit to
applications involving fisheries management and ship routing
which constitutes ongoing research.
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