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Abstract—The rising popularity of aquaculture has led to
increased research in offshore algae farming. Central to the
efficient operation of such farms is the need for (i) accurate
models of the dynamic ocean environment including macroalgae
ecosystem dynamics and (ii) intelligent path planning algorithms
for autonomous vessels that optimally manage and harvest the
algae fields. In this work, we address both these challenges. We
first integrate our modeling system of the ocean environment
with a model for forecasting the growth and decay of algae
fields. These fields are then input into our exact optimal path
planning, augmented with the optimal harvesting goals and
solved using level set methods. The resulting path is a provable
time-optimal route for the vehicle to follow under the constraint
of having to monitor or harvest a specified amount of the field
to collect. To demonstrate the theory, we simulate algal growth
in both idealized and realistic data-assimilative dynamic ocean
environments and compute the optimal paths for an autonomous
collection vehicle. We demonstrate that our theory and schemes
can be used to compute the optimal path in a variety of scenarios
– harvesting in the case of discrete farms, a large kelp farm field,
or large scale dynamic algal bloom fields.

Index Terms—algae models, path planning, optimal harvesting,
offshore farming, aquaculture, ocean dynamics

I. INTRODUCTION

Offshore farming has, in the past few decades, started
to gain increasing popularity. Falling under the broad field
of aquaculture, these farms have typically included various
different species including fish, crustaceans and aquatic plants
[54]. Recently, algae has started to receive more attention as an
option for aquatic farming, as research from scientists show the
many possible applications of this organism in food, fodder,
medicine, bio fuel and even environmental purification [29].

A key determinant, however, for the future success of algae
farming as an industry is the ability to substitute traditional
low-tech and labor-intensive tools and methods with automa-
tion and technology-driven solutions. Autonomous underwater
and surface vehicles, which have been gaining prevalence in
numerous marine applications such as naval security, scien-
tific exploration and ocean mapping, have started to also be
considered in the aquafarming industry. The use of unmanned
vessels, or autonomous ocean tractors, can provide high towing
efficiency while simultaneously significantly lowering the cost
of operation [7].

Central to the optimal control of these autonomous vessels
for efficient offshore macroalgae farming are two key compo-
nents: ocean forecasting and route planning. Specifically, there
is a need for accurate prediction of the (i) dynamic ocean
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environment including physical transports and macroalgae
ecosystem dynamics, and (ii) paths of the autonomous vessels
that optimally manage and harvest the algae. The dynamic
effects of the ocean environment on both the algae and the
relatively slow vessels are major differences with respect to
classic farming on land. In this work, we address these two
components and develop theory and schemes for exact optimal
harvesting of algae fields using autonomous tow vessels. Our
applications showcase the collection of free-flowing algae as
well as of fixed or enclosed algae fields.

Path planning, in the general sense, corresponds to a set
of rules to be provided to an autonomous robot for navi-
gation from one configuration to another in some optimal
fashion [48]. The metric for optimality, moreover, is problem
dependent and varies with the user specified objectives and
can include minimizing travel time, minimizing energy use,
or maximizing vehicle safety. Numerous approaches have
been studied to tackle such problems including graph search
schemes such as the A∗ algorithm [8], [19], [57], rapidly-
exploring random trees (RRTs) [34], [37], artificial potential
field methods [3], [70] and fast marching schemes [63].
Increasingly, as autonomous vehicles can be used to collect
and harvest external fields from the environment – such as in
offshore farming or cleaning operations – new questions must
be answered. They include what governs and how to compute
time-optimal paths under the constraint of collecting a certain
amount of a given field prior to reaching the destination.
Solving such problems requires augmenting the tried and
tested, or developing completely new, path planning theory.

Successful harvesting of algae requires knowledge of how
algae grows in response to various environmental parameters
in order to efficiently inform the path planning collection
vehicles. Algae characterization efforts have resulted in a wide
variety of models that account for various strains, conditions,
and biological pathways for algae growth. The bulk of these
models include a handful of key algal growth parameters
including light, temperature, and nutrients [12]. Many models
describe algae growth in very specific farm conditions, and
thus assume replete nutrients or other dissolved compounds
[27], [55], [66], while others deal with more generalized cases
[58]. Certain models describe growth as a combination of
various scaling factors derived from each input parameter [27],
while others venture more deeply into the internal biological
processes of the algae as it grows [55], [58], [66]. Many
equations have been used to describe these scaling factors
and biological processes [12], with constants and parameters
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taken either from existing relations and research [55], [66], or
fitted to experimental data [22], [27], [49]. These models have
largely delivered successful results for the conditions that they
were designed for. However, selection of a model for alternate
use requires it to be general and broad enough to include all
parameters relevant to the given study in a meaningful way
while not carrying too many irrelevant or unusable parameters.

The paper is organized as follows. In Sect. 2, we outline
the methodology for exact optimal harvesting of algae fields
in dynamic environments using autonomous tow vessels. The
theory and schemes build upon the framework presented in
[48] through state augmentation. We also present the numerical
ocean modeling systems as well as the numerical model for
the evolution of algae fields that we built upon the model
by Ren et al. [58]. Sect. 3 demonstrates our methodology on
several cases of increasing complexity. First, we consider the
case of algae farms in fixed locations in space but under the
influence of the dynamic ocean environment. This problem of
visiting fixed farm locations using favorable dynamic currents
and avoiding unfavorable ones can be solved with a method
similar to that shown in [17]. Second, we consider the related
case of an algae field that is spatially variable but anchored and
not advected by currents. In our third case, the algae are no
longer fixed in space. The dynamic ocean environment with
strong currents can now advects the algae while biological
mechanisms continue to influence its growth and decay. Our
optimal harvesting then computes optimal collection paths
for reactive algae fields that are advected by ocean currents.
Finally, conclusions are presented in Sect. 4.

II. METHODOLOGY: THEORY AND SCHEMES

We now develop our formulation and outline numerical
solvers for optimal harvesting path planning. Specifics of our
ocean modeling systems that provide the dynamic fields inputs
to the optimal harvesting are then presented. For the realistic
simulations, we consider Nantucket Sound and Massachusetts
Bay off the northeast US coast, and for the idealized simula-
tions, a two-dimensional quasi-geostrophic double-gyre flow.
Finally, we give an overview of our algae dynamic model.

A. Optimal Harvesting Path Planning

Our approach for collection-constrained path planning
builds upon the traditional problem of time-optimal path
planning. We first summarize the basic theory for exact
time-optimal path planning [47], [48]. We then outline our
augmentation of this theory to include field collection as a
constraint to the optimization problem.

In traditional time-optimal path planning, a vehicle navi-
gates in a domain Rd from a starting point xs to a target xf in
fastest time. The vehicle moves at a speed F in an environment
of dynamic flow field V (x, t). As outlined in [44], [48], the
globally optimal solution to such path planning problem is
governed by Hamilton-Jacobi equations for the reachability
front and can be solved efficiently using the level set method.
At a high level, this approach computes the optimal path by
first propagating a reachability front (defined as the set of all

states that can be reached by the vehicle at a given time)
forward in time. This reachability front is represented as the
zero level set of a function φ(x, t) and is a viscosity solution
of an Hamilton-Jacobi equation. Following this forward solve,
a backward trajectory solve is completed where the level sets
of the computed function φ(x, t) are used to give the optimal
headings of the vehicle and, in turn, the optimal path.

The forward solve for φ(x, t) is governed by the initial value
Hamilton-Jacobi PDE given as follows

∂φ(x, t)

∂t
+ F |∇φ(x, t)|+ V (x, t) · ∇φ(x, t) = 0,

φ(x, t = 0) = φ0 (1)

where the initial condition is a signed distance function
from the start point: φ(x, t = 0) = φ0 = ‖x− xs‖. The
level-set Eq. (1) may be discretized and solved numerically.
Furthermore, the PDE is solved until the time tf such that
φ(xf , tf ) = 0 (until the zero level set of φ(x, t) reaches
the destination). Once the forward solve is completed, the
optimal trajectory for the vehicle is obtained backward in time,
by showing that at an arbitrary point in space and time, the
optimal heading is normal to the level-set [48], i.e. it is given
as h(t) = ∇φ(x,t)

|∇φ(x,t)| . The optimal trajectory, xp(t), can be then
shown to be governed by the ODE given as:

dxp(t)

dt
= −V (xp, t)− F

∇φ(xp, t)

|∇φ(xp, t)|
xp(t = tf ) = xf . (2)

The backtracking equation (2) is solved backward in time
starting from x = xf and t = tf . For further details, we
refer to [36], [44], [46]–[48].

The aforementioned theory governs time-optimal paths in
dynamic flow fields. To now account for harvesting of an
external field, these equations can be extended using state
augmentation [6]. Consider a possibly dynamic field H(x, t)
which must be harvested by the vehicle. Furthermore, if
xA = [x, c]T is defined as an augmented state (where c is the
amount of field collected by the vehicle and x is its position),
the corresponding Hamilton-Jacobi level set equation for the
function φ(xA, t) is given as:

∂φ(xA, t)

∂t
+ F |∇φ(xA, t)|+ V (x, t) · ∇xφ(xA, t)

+H(x, t) · ∂φ
∂c

= 0,

φ(xA, t = 0) = φ0

(3)

where ∇x is the gradient components in the physical domain.
Moreover, the initial condition for the PDE is defined as
φ(xA, t) = φ0 =

∥∥xA − [xs, cs]
T
∥∥, where cs is the initial

amount of the harvesting field that the vehicle begins with at
the start point. The backtracking equation is then given as:

dxp(t)

dt
= −V (xp, t)− F

∇xφ(xp, t)

|∇xφ(xp, t)|
dcp(t)

dt
= −H(xp, t)

xp(t = tf ) = xf , cp(t = tf ) = cf

(4)
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The corresponding path gives the time-optimal solution to the
optimal collection problem. Specifically, if the vehicle starts at
xs with an initial amount cs of the harvesting field, this path
gives the quickest route such that the vehicle arrives at the
target xf with amount cf of the field. In other words, it gives
the path where the amount cf − cs of the field is harvested
from the environment as fast as possible.

An assumption made in the above equations is that the
vehicle has a negligible influence on the field it is collecting.
This must be assumed as the dynamics of the vehicle path
cannot be incorporated into the external field during the
solve. Therefore, the effect of the reduction in algae from
the surrounding field cannot be imposed until the final path
is computed. Fortunately, the length scales of the algal fields
are typically orders of magnitude larger than the widths of the
paths traced by the autonomous vessels, and so this assumption
is then not too restrictive. Similarly, it is also common for
the duration of the vehicle’s mission to be limited (e.g. power
constraints) such that the time required by the vehicle to
complete its harvesting is typically short compared to the
time-scales of the field to be harvested. In such cases, once a
mission is completed, the harvested quantities can be removed
from the field to be harvested at the right times along the
vehicle path. The next path planning mission can then use
this reduced field to be harvested.

B. Dynamic Ocean Environment Modeling

For this work, we utilized and developed our MIT-MSEAS
modeling system [23], [25], [41], [50], including our hydro-
static PE code with a nonlinear free surface, based on second-
order structured finite volumes, and a generalized biogeochem-
ical model for lower trophic levels [40]. This MSEAS software
is used for fundamental research and for realistic simulations
and predictions in varied regions of the world’s ocean [9],
[18], [21], [26], [35], [39], [42], [45], [52], [56], [65], includ-
ing monitoring [43], ecosystem prediction and environmental
management [4], [10], and multi-disciplinary predictions and
data assimilation [24], [38], [60]. Our modeling system can
also simulate non-hydrostatic dynamics using a finite-volume
framework [68] or finite-element codes [69].

Realistic Data-Assimilative Ocean Simulations. For the re-
alistic simulations of Mass. Bay and Nantucket Sound off the
northeast US coast that are inputs to the optimal harvesting,
we employ our MSEAS-PE system.

The Mass. Bay set-up [24] has a 333 m horizontal resolution
and 100 vertical levels with optimized level depths (e.g.,
in deeper water, higher resolution near the surface or large
vertical derivatives, while at coasts, evenly spaced to minimize
vertical CFL restrictions). The bathymetry was obtained from
the 3 arc second USGS Gulf of Maine digital elevation
model [67]. The sub-tidal initial and boundary conditions
were downscaled from 1/12-degree Hybrid Coordinate Ocean
Model (HYCOM) analyses [11], using our optimization for our
higher resolution coastlines and bathymetry [23]. Local cor-
rections were made using feature models and synoptic CTDs
of opportunity. Tidal forcing was computed from the high

resolution TPXO8-Atlas from OSU [14], [15], by reprocessing
for our higher resolution bathymetry/coastline and quadratic
bottom drag. The atmospheric forcing consisted of hourly
analyses/forecasts of wind stresses, net heat flux, and surface
freshwater flux from the 3 km North American Mesoscale
Forecast System (NAM) [51].

The Nantucket Sound region set-up is similar, with the
following differences. We employed implicit 2-way nested
domains [25] with 600 m and 200 m horizontal resolutions and
20 terrain following levels in the vertical. In order to represent
flow details not captured by the 1/12◦ HYCOM analyses, the
subtidal initial and boundary conditions were created from a
combination of objective analyses of synoptic data, SST and
feature models for the coastal currents and the shelfbreak front.

Idealized Simulations. For idealized cases, we solve the 2D
wind-driven barotropic single-layer model PDEs, the so-called
double-gyre flow [48]. Our modular finite volume framework
[68] is used to solve these PDEs as well as the PDE for
the algae field dynamics, including advection-diffusion and a
reaction term from our algae growth model, as discussed next.

C. Algae Dynamics Modeling

The algae growth model we use to simulate the fields for
optimal collection is a modified version of the macroalgae
growth model of Ren et al. [58]. The general applicability of
this model and its inclusion of a wide array of environmental
parameters and internal algae biological mechanisms allows us
to explore different environmental growth conditions and sim-
ulation regimes. The Ren model provides algae concentrations
as a function of the three state variables: Carbon, Nitrogen,
and Phosphorous. Algae growth is linearly correlated to carbon
growth, which can only occur under certain temperature, light,
fluid flow, and internal state conditions, as modeled by:

UC = Gmax ∗C ∗f(T )∗f(L)∗f(QN )∗f(QP )∗f(V ) . (5)

In eq. (5), UC is the carbon uptake rate, or scaled algae mass
uptake rate; Gmax the maximum carbon uptake rate; C the
carbon concentration; and f(T ), f(L), f(QN ), f(QP ), and
f(V ) the effects on growth rate from temperature, light, Nitro-
gen quota, Phosphorous quota, and fluid velocity, respectively.
The temperature and light functions f(T ) and f(I) are defined
respectively as an Arrhenius relationship comparing actual
temperature to a set of biological references and a Lambert-
Beer law to describe the behavior of light-attenuating materials
in the water. The Nitrogen and Phosphorous quota functions
f(QN ) and f(QP ) model the effect of internal nutrient ratios
on the growth rate of the algae. The velocity function f(V ) is
a Monond-type equation that models the dependence of algae
growth on the flow field surrounding it. Formulations for these
intermediate functions are in [58].

Nitrogen and phosphorous uptake rates, which dictate algae
growth through f(QN ) and f(QP ) in eq. (5), are:

UN =
f(T ) ∗ C ∗ (UNH + UNO)

1 + exp[(QN −QNmax)/QNoff ]
(6)
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UP =
f(T ) ∗ C ∗ UPO

1 + exp[(QP −QPmax)/QPoff ]
(7)

where UN and UP are the uptake rates of nitrogen and
phosphorous, respectively; UNH , UNO, and UPO the am-
monium, nitrate, and phosphorus uptake rates defined by a
type-II function response to concentrations in the surrounding
water; and QN , QP , QNmax, QPmax, QNoff , and QPoff
the nitrogen and phosphorous current quota values N/C and
P/C, where N and P are the stored nitrogen and phospho-
rus values; nitrogen and phosphorus maximum quota values;
and nitrogen and phosphorus storage switch transition width
values, respectively.

These three uptake rate functions are used in a system of
ODEs to calculate the algae growth over time:

dC

dt
= UC − ΦC (8)

dN

dt
= UN − ΦN (9)

dP

dt
= UP − ΦP (10)

Here, ΦC,N,P represent the death rate of each state variable:

ΦC = (kr ∗ f(T ) + ωi + ωs) ∗ C (11)

ΦN = QN ∗ ΦC − εup ∗ (UNO + UNH) (12)

ΦP = QP ∗ ΦC − εup ∗ (UP ) (13)

where kr is the carbon respiration coefficient; ωi the algae
intrinsic morality (an exponential function of the difference
between the environmental temperature and a trigger temper-
ature for intrinsic morality); ωs the oxygen stress morality
(a Monond-type equation of the oxygen concentration below
a threshold level); and εup the nutrient uptake associated
excretion coefficient.

Environmental input fields to this point ODE system is
taken from our MSEAS high resolution coupled physical-
biogeochemical simulations (Sect. II-B). The fields called for
in the system not available from these simulations include
dissolved oxygen levels and environmental phosphorous avail-
ability. Both of these terms are assumed here to be uniformly
replete throughout the domain. This assumption eliminates the
dissolved oxygen growth death term ωs in the carbon death
rate term and sets UPO to be uniformly equal to its maximum
value UPOmax. Certain algae parameters are slightly modified
to better fit algae growth to the northeast climates, such as
the Arrhenius temperature constants used in f(T ). Detritus
and zooplankton fields are used as particulate inorganic and
particulate organic light-attenuating materials for the Lambert-
Beer light function f(I). For increased accuracy, the Ren
model was also modified to use our instantaneous local flux of
solar intensity accounting for cloud cover, as opposed to only
seasonal fluctuations. Finally, a Monond-type scaling factor
[5] modifies the carbon intrinsic morality term ωi for more
accurate results in our simulations.

III. RESULTS

In this section, we illustrate our theory and schemes for
algae dynamic modeling and optimal harvesting through three
sets of examples. The first set (Sect. III-A) considers no
algae dynamics and models the problem of having to time-
optimally visit/monitor a set of farms (parametrized as points)
in Nantucket Sound and return to the destination. In the second
set (Sect. III-B), we introduce algae dynamics and consider
the idealized case of collecting from kelp farms chained to the
seafloor in Mass. Bay. In the final set (Sect. III-C), we consider
dynamic algae fields that are advected by the external flow.
This is also representative of cases where the goal is to collect
harmful algae blooms or reactive pollutants. Two sub-cases
are presented: (i) collection of algae in an idealized double-
gyre flow and (ii) collection of fields biologically modeled in
Mass. Bay. These cases are summarized in Table I.

Case
Number

Case
Description

Optimal
Path Planning

Algae
Dynamics

External Flow
Algae Advection

1 Nantucket Sound
Fixed Farms x

2 Mass. Bay
Fixed Farm Fields x x

3
Idealized Double
Gyre Dynamics x x x

Mass. Bay Full
Dynamic Fields x x x

TABLE I: Summary of cases (crosses indicate what is active).

A. Case 1: Nantucket Sound – Multiple Farms Visits

In this application, we consider the problem of visiting,
monitoring, or collecting from, distinct algae farms distributed
in a dynamic ocean region. For each farm, some local operator
(human or machine) could first amass the algae into a local
stockpile. The task of the autonomous tow vessel is then to
travel from a start to a target point while visiting farms along
the way, e.g. to collect the assembled algae, all in fastest time.
Due to the dynamic ocean currents, the autonomous vessel
must optimally plan its path so as to reach the target in
minimum time by using the currents to its advantage and by
additionally selecting the order in which to visit the farms.

Fig. 1: Dynamic flow field in the Nantucket Sound region simulated
using the MSEAS-PE model and plotted between 15 Aug. 2019 12Z
and 16 Aug. 2019 06Z at 6 hour intervals.

We illustrate results for the case of algae farms distributed
in Nantucket Sound (Fig. 1). The autonomous vessel, with a
nominal speed of 1 m/sec, is tasked with leaving a harbour
near the coast and visiting two farms before returning. This
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scenario corresponds to multiple points-to-points time-optimal
path planning in dynamic flows, of governing eqs. (1– 2). It
is exactly solved by the algorithm outlined in [16]. Results
for the time-optimal path are shown in Fig. 2, in which the
harbour is shown as point A and the two algae farms as points
B and C. Fig. 2a corresponds to the case of visiting first farm
B and then farm C before returning to A, whereas Fig. 2b
depicts the result for visiting farm C and then farm B before
returning. Drawn additionally on each plot are the level sets of
the function φ(x, t). Three different forward solves are needed
for each start-target combination, and a sample of the zero
level set function are shown at a few times for each solve.
The final optimal paths between the way-points are shown in
red. The route ABCA takes 13 hours 54 min, saving 40 min
compared to the route ACBA that takes 14 hours 34 min.

(a) A −→ B −→ C −→ A (b) A −→ C −→ B −→ A

Fig. 2: The time optimal paths (red) to travel from the start point
(A) to the algae farms (B and C) and back. (a) The optimal route to
go from A to B to C and return. (b) The optimal route to go from
A to C to B and return. The route in (a) saves 40 minutes compared
to the route in (b).

In presence of a higher number of farms, the number of
possible routes is n! . An optimal way to cheaply check all of
these routes by reusing certain legs between two points and
by parallelizing various computations is discussed in [17].

B. Case 2: Mass. Bay – Harvesting of Kelp Farm Fields
Unlike many other forms of algae that float freely in water,

kelp are anchored to the seafloor by holdfasts and do not
advect with ocean currents. Recent work with Saccharina
latissima, or sugar kelp, has seen the development of novel
cultivation [31] and new investigation into kelp use not only
as a traditional crop but also as a waste nutrient extractor
and a vehicle for carbon sequestration [33]. Recently, farming
applications with sugar kelp have also been carried out in
Southern New England [71].

While kelp are anchored to the sea floor, their growth
is affected by dynamic spatially dependent environmental
variables such as temperature, light, and nutrients. In our case,
we simulate the spatially dependent growth of a stationary kelp
farm field in Mass. Bay. The dynamic inputs involve: i) nitrate,
ammonium, chlorophyll, zooplankton and detritus fields from
our high-resolution coupled physical-biogeochemical simula-
tions (Sect. II-B), and ii) our modified algae growth model
(Sect. II-C). We then apply our augmented path planning the-
ory and schemes (Sect. II-A) to optimally plan for harvesting
from these farm fields.

Fig. 3: Start point (Boston Harbor at 11 Aug 2019 12 Z - full circle)
and end point (Dennis, Cape Cod - star, optimally reached at 12
Aug 2019 08:51 Z) of the vehicle and evolution of the augmented
forward level set. The 2D level-set contours pictured represent the 3D
reachability front at various collection levels. The colorbar represents
how much algae is collected for each of the reachability contour,
i.e. the color of a reachability contour corresponds to the maximum
amount of algae a vehicle inside that front could have collected.

Fig. 3 illustrates the forward results, the dynamic evolution
of the augmented forward reachability front. The autonomous
vehicle starts in Boston Harbor at 12Z, 11 Aug. 2019, with a
desired end point near Dennis. The rectangle just off Stellwa-
gen Bank is the farm field. The field has been colored based
on the kelp collection rate (in units of [units of kelp] / [time])
– high values correspond to regions in the farm where the
kelp concentration is higher which results in the corresponding
higher collection rate. Overlaid on the different panels are
2D contours of the 3D reachability front at the times shown.
Recall that this reachability front is indeed in a 3D augmented
space – the 2D physical space with an additional dimension
for the collected algae/kelp amount. The color of the contour
represents the maximum amount of kelp that a vehicle could
have collected by that time at that location of the front. The
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reachability front approaches the kelp farm with the contour
values unchanged (see the 15:08 Z and 18:36 Z snapshots).
This is because no algae field was encountered and so no
collection was performed. At 22:05 GMT, the front reaches the
kelp farm, resulting in the contour values increasing, indicative
of algae being collected. Having increased in the kelp farm
region, the front then expands until the destination. Fig. 4
shows the final optimal path as obtained by solving eq. (4).
The vehicle reaches the end point with the desired kelp amount
of 1.5 units at 8:51 Z on the next day (12 Aug 2019).

Fig. 4: The globally-optimal path from start (full circle) to finish
(star) while collecting the required amount of algae from the boxed
farm region. A snapshot is shown at an intermediate time on the way
to the destination via the farm (circle). Shown in the background is
the kelp collection rate field (in units of [units of kelp]

[time] ) – high values
correspond to regions in the farm where the kelp concentration is
higher, which results in the higher collection rate.

C. Case 3: Dynamic Algae Fields with Flow Advection

An example of dynamic algae fields are harmful algae
blooms (HABs) that occur due to a range of reasons including
rising temperatures and nutrient-rich wastewater runoff [61],
leading to large colonies of micro or macro algae growing
at rapid rates. HABs have been observed in all 50 states in
the U.S., in large freshwater lakes, small inland lakes, rivers,
reservoirs, and marine coastal areas and estuaries. These HABs
can create low-oxygen dead zones [20], [28], release toxins
that are harmful to humans and animals, displace indigenous
species, alter habitats and ecosystems [1], and lead to millions
of dollars of economic losses each year through public health
effects, commercial fishery impacts, medical expenses, and
lost work days [64]. Our optimal path planning proposed here
can help both monitor and control HABs.

The dynamics of HAB growth is not fully understood. To
enhance incomplete models, common forecasts utilize satellite
and in-situ data [64]. Traditional in-situ sampling methods
are reactive, slow to respond, and operate with fixed time
and spatial sampling grids, leading to calls to use AUVs for

improved data collection [13], [59], [62]. These AUVs would
greatly benefit from our optimal theory.

In addition to modeling and monitoring, many control strate-
gies for HABs have been proposed. These include flocculation,
sediment resuspension, burial, harvesting, water column mix-
ing, biological control, and genetic engineering as well as the
targeted release of allelochemicals, biosurfactants, hydrogen
peroxide, copper sulfate, and silica [1], [32], [53]. Once areas
where HABs are likely or have begun growing are known,
our optimal path planning would deliver control strategies in
an efficient and cost-effective manner to at-risk areas and so
reduce ecological and economic damage.

In the following results, we showcase our optimal harvesting
as a control strategy to tackle HABs, using autonomous
vehicles to collect such dynamic algae fields time-optimally.
In all cases, the algae growth and decay is modeled along with
its advection due to the environmental flow field.

1) Double-Gyre Flow Advecting a Dynamic Algae Field: In
this first sub-case, we consider optimal algae collection in an
idealized double-gyre flow field (Fig. 5). This flow simulates
near-surface ocean circulation at mid-latitude regions, where
easterlies and trade winds in the northern hemisphere drive a
cyclonic and an anticyclonic gyre with the zonal jet in between
(e.g. an idealized version of the Gulf Stream) [48].

The fluid flow is governed by the non-dimensional PDEs:

∂u

∂t
=
∂p

∂x
+

1

Re
∆u− ∂(u2)

∂x
− ∂(uv)

∂y
+ fv + aτx

∂v

∂t
=
∂p

∂y
+

1

Re
∆v − ∂(uv)

∂x
− ∂(v2)

∂y
− fu+ aτy

0 =
∂u

∂x
+
∂v

∂y
(14)

which are solved numerically (Sect. II-B). For the case shown,
a flow Reynolds number of 150 was used with f = f̃ + βy,
the non-dimensional Coriolis coefficient, and a = 103, the
strength of the wind stress. In non-dimensional terms, we use
f̃ = 0, β = 103. The flow in the basin is forced by an idealized
steady zonal wind stress, τx = − 1

2π cos 2πy and τy = 0.

Fig. 5: Snapshots of the environment at non-dimensional times 0 and
0.14 with the unsteady velocity fields overlaid on an algae collection
rate field (in units of [units of algae]

[time] ) – high values correspond to regions
where the algae concentration is higher resulting in a higher collection
rate. Start (full circle) and end (star) points of the vehicle are shown.

We employ our modified algae growth model (Sect. II-C).
All relevant environmental parameters are assumed constant
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except for the three nutrient fields (nitrate, ammonium, phos-
phorus) and the light field. The spatially varying light field
is lower intensity toward the left hand side of the domain
(x < 0.5) and higher intensity toward the right hand side of
the domain (x > 0.5) to simulate cloud coverage impairing
the growth of the initial high-concentration area (see upper
left of the two snapshots in Fig. 5). In addition, the initial
values for the three nutrient fields are assigned high and low
concentration areas throughout the domain to simulate spatial
variability in the algae growth rate. To solve the advection-
diffusion-reaction algae field dynamics, we use a QUICK
scheme in our finite-volume framework (Sect. II-B).

Fig. 6: Snapshots of the level set at various points in time. Since the
level set is a surface in an augmented space (2D physical space and
an additional dimension for the collected algae amount), the constant
algae collection amount contours of this surface are shown. The level
set evolves until it attains a value of 0.7 units at the target.

In this sub-case, we demonstrate an optimal collection with

the constraint of having to collect at least 0.7 units of algae
before reaching the destination. Fig. 5 shows the dynamic
environment at two times, with two gyres, the jet, and the
algae field dynamically evolving and transported by the flow.

Fig. 6 shows the evolution of the 3D reachability front. As
required, these 2D contours (slices of the 3D front) evolve
until the level set value of 0.7 units is reached at the target.

The final computed optimal path is in Fig. 7. The path
clearly evolves to remain in the areas of high concentration,
while simultaneously using the external currents to its advan-
tage and reach the target as fast as possible. It is important to
reiterate that this computed path is globally optimal; no other
path from the start to the end point exists in which the vehicle
can reach faster while collecting 0.7 units of the field.

Fig. 7: The final computed globally-optimal path for the algae
collection problem with the vehicle (white circle) shown traversing
it at some intermediate time.

2) Mass. Bay – Harvesting Dynamic Chlorophyll Fields:
For the second sub-case, we consider the Mass. Bay region.
We showcase an alternate control strategy to monitor harmful
algal blooms: the study of chlorophyll fields. Various studies
have shown that the concentration of chlorophyll (particularly
chlorophyll-a) provides a direct measurement of algae growth
in aquatic environments [30]. This close connection between
chlorophyll and algae has been exploited in several research
avenues for predicting harmful algal blooms [2], [62], [64] and
here motivates our collection of dynamic chlorophyll fields.

Our high-resolution coupled physical-biogeochemical sim-
ulations (Sect. II-B) are used to model the ocean currents
(Fig. 8) as well as the chlorophyll field.

Using our theory and schemes for optimal harvesting
(Sect. II-A), we plan the path of a vehicle that travels from a
start point to a destination while optimally collecting chloro-
phyll along the way. Fig. 9 shows the evolution of the level
sets from the forward solve. Here, as before, the reachability
front evolves at almost a constant collected algae value until
it reaches offshore from Scituate. In this region, chlorophyll
has bloomed which results in a corresponding increase in the
reachability front value (at 3:40 GMT for instance). The front
then, as before, expands until it reaches the target point with
the desired final algae field amount of 0.4 units.
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Fig. 8: Dynamic velocity field in Mass. Bay simulated using our
data-assimilative MSEAS-PE modeling system and plotted between
11 and 13 Aug. 2019.

Fig. 9: Evolution of the forward level set. The background represents
the concentration of Chlorophyll from our MSEAS PE-bio simulation
at that time. The contours shown represent the reachability front at
various collection levels.

Fig. 10 shows the final optimal path computed using eq.
(4). As expected, the autonomous vessel’s optimal path takes
it to high algae concentration regions offshore from Scituate
to harvest just enough of the field before starting its return
journey to the target. The vehicle reaches the end point with
the desired algae amount of 0.4 units at 12 Z 12 Aug 2019.

Fig. 10: The final globally-optimal path from start (full circle) to
finish (star) while collecting the required amount of Chlorophyll. A
snapshot is shown at an intermediate time (vehicle shown as the
circle). Shown in the background is the spatially varying Chlorophyll
collection rate field (in units of [units of Chl]

[time] ) – high values correspond
to regions where the concentration of Chlorophyll is higher resulting
in a higher collection rate.

IV. CONCLUSION

In this work, we addressed two challenges to the efficient
operation of offshore algae farming: (i) accurate models of
the dynamic ocean environment including macroalgae ecosys-
tem dynamics and (ii) intelligent path planning algorithms
for autonomous vessels that optimally manage and harvest
the algae fields. We first integrated our numerical modeling
system of the ocean environment with a numerical model
for forecasting the growth and decay of algae fields. These
fields are then input into our exact optimal path planning,
augmented with the optimal harvesting goals and solved using
level set methods. The resulting path is a provable time-
optimal route for the vehicle to follow under the constraint
of having to monitor or harvest a specified amount of the
field to collect. We demonstrated our theory with simulated
algal growth in both idealized and realistic data-assimilative
dynamic ocean environments and computed the optimal paths
for an autonomous collection vehicle.

We showed that our theory and schemes can be used to
compute accurate optimal path in a variety of scenarios.
Our first case considered the problem of time-optimal path
planning between point farms at fixed spatial locations, where
the vehicle was required to visit each farm while navigating
optimally in the dynamic ocean environment. We then relaxed
the point farm assumption and considered the case of spatially
varying algae farm fields fixed in space (e.g. kelp farms). For
this, an algae dynamic model predicted the growth and decay
of the algae field, which was then used to inform the optimal
paths to harvest. Finally, our third case added the complexity
of collecting algae fields no longer fixed in space but also
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advected by currents. An example of this case is the optimal
harvesting of harmful algal blooms. We first demonstrated
the optimal harvesting for an idealized double gyre flow
scenario and our dynamic algae model with advection. Finally,
we showcased the scenario of optimal harvesting a dynamic
Chlorophyll field in realistic data-assimilative simulations
of the physical-biogeochemical Mass. Bay environment. All
these results are very promising for a wide range of future
optimal ocean monitoring and harvesting.
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