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Abstract—Accurate and computationally efficient acoustic
models are needed for varied marine applications. In this paper,
we focus our attention on forward models, which are essential
to inverse problems such as imaging and mapping. First, we
introduce new dynamically orthogonal (DO) equations for the
acoustic wave equation in full generality, allowing for stochastic
and spatially heterogeneous parameters. These equations may
be spatially discretized and integrated in time numerically.
Alternatively, the DO equations may be discretized themselves,
admitting a non-intrusive reduced-order approach to solve the
stochastic wave equation. We demonstrate the latter with a test
case of an acoustic pulse traveling through the ocean with an
uncertain sound speed. Second, we adapt the spatially discrete
DO approach, typically used to reduce the stochastic dimension,
to efficient reduced-order modeling of deterministic 3D acoustic
propagation. We solve the 3D parabolic wave equation and show
that low-rank solutions rapidly converge to the full-rank solution.
Together, these approaches offer novel ways to solve stochastic
and deterministic problems with strong or weak scattering at a
reduced computational cost.

I. INTRODUCTION

Despite considerable efforts, the ocean remains largely un-
mapped; not only are there challenges due to the ocean’s sheer
size, but electromagnetic radiation is attenuated significantly
in the water [1]. Hence, acoustic waves are used to collect data
in the ocean, but this comes with its own set of challenges.
First and foremost, the geoacoustic parameters of the ocean are
spatially heterogeneous and often uncertain, making acoustic
prediction and inversion quite challenging [2]-[11]. In this
work, we take a first step in deriving and applying efficient
reduced-order forward models for three-dimensional high-
resolution ocean acoustic propagation [12], a key ingredient
in the process of imaging [13], [14].

The dynamically orthogonal (DO) equations offer an instan-
taneously optimal set of equations to evolve a reduced-order
model [15]. Given a time-varying stochastic field, we decom-
pose the solution into time-varying, deterministic, spatially-
varying modes and time-varying, stochastic coefficients. The
DO equations were first developed for stochastic parabolic
differential equations [16], and they have been applied to
stochastic advection [17], stochastic fluid and ocean flows
[18]-[21], and stochastic optimal path planning [22]-[25].
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Most recently, DO equations were derived and employed
using the stochastic parabolic (or paraxial) wave equation for
stochastic ocean acoustics estimation and Bayesian inversion
[26]-[28]. This works well for forward acoustic propagation at
medium to low frequency, and, due to its parabolic nature, the
PDE is computationally efficient to solve. However, for com-
plex (and higher-frequency) propagation in range-dependent
media that are especially important in scattering phenomena,
we may need a more accurate forward model.

We introduce two novel ideas in this paper. In section II, we
introduce new DO equations for the acoustic wave equation
in full generality. These equations may be used to numerically
solve a wave equation in R? with stochastic and spatially
heterogeneous coefficients. In section III, we also show how
the dynamical low-rank approximation [29]-[31] may be
applied to the stochastic acoustic wave equation, which is
much less intrusive and abstracts away the need for explicitly
computing new DO equations for each new PDE. In section
IV, we show how the dynamical low-rank approximation may
be applied to the deterministic 3D parabolic wave equation,
yielding approximate reduced-order solutions of 3D waves
very efficiently. We conclude in section V with some remarks
on the aforementioned methods’ efficacy as well as future
research directions.

II. SPATIALLY CONTINUOUS AND DISCRETE DO
EQUATIONS FOR STOCHASTIC ACOUSTIC WAVE
PROPAGATION

In this section, we derive DO equations for the stochas-
tic acoustic wave equation with spatially heterogenous and
stochastic attenuation, sound speed, and density. Consider the
time-space wave equation in the form below.
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where p denotes pressure, ¢ sound speed, p density, and «
attenuation, and f is a forcing function; these may all be

978-0A602+386 5609202 IMIF&I to: MIT Libraries. Downloaded on February 21,2022 at 19:48:41 UTC from IEEE Xplore. Restrictions apply.



stochastic and spatially varying. To simplify the algebra, we
make a variable transform. Letting ¢ = log p, eq. (1) becomes,
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As is done in the symplectic case with a simpler wave equation
[32], [33], we convert the hyperbolic PDE into a parabolic one
by writing down the PDE in its phase space representation. Let
¥ = (p, 22). The second-order PDE (2) may now be written
as a system of first-order PDE:s.
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Now that the PDE is in parabolic form, we develop the
corresponding DO equations. We assume U, a stochastic field,
may be decomposed into the mean of the field, U, as well
as the superposition of the product of stochastic coefficients,
¢, and spatially-varying, deterministic modes, v [16]. This is
a dynamic extension of the Karhunen-Loeve expansion [34],
[35].

() + Y i@, t)Gi(tsm) 4)

i=1

U(x,t;n) =

Here, x and ¢ are space and time, as usual, and 7 rep-
resents a simple event in the stochastic event space (). In
a typical Galerkin sense, we substitute (4) into (12) and,
followmg the procedure in [16] using the DO condition
that < 5i5 i) Vi, j, we obtain differential equations for the
mean, mode, and coefficients,
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where we used the orthogonal projection operator @j; A, and
the covariance matrix C¢¢« defined below,
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Note that v and ¢, when referenced without a subscript 4,
denote row vectors (¢1,s,...) and ({1, (s, . . .), respectively.
A variable with * denotes the complex conjugate of the
respective variable. The ijth element of the spatial inner
product (a,b) between vector quantities a and b is defined
(a;,bj), where a; and b; are scalar fields.

With these equations, one may spatially discretize and adopt
a classic numerical time-integration scheme to numerically
advance VU, 1, and ( starting from initial conditions given
by the singular value decomposition (see, e.g., [17], [18])
When doing so, one must be careful to rescale p and 2 by
the standard deviation or similar statistic of their respectlve
distributions in the initial condltions; this non-dimensionalizes
the system. Because p and Of share stochastic coefficients ¢,
it is imperative to normalize by some statistic [36]-[38], oth-
erwise a majority of the uncertainty may be falsely attributed
to whichever variable is larger in magnitude.

Alternatively, the DO equations themselves may be dis-
cretized as in the dynamical low-rank approximation [29],
and the discretized differential operator for the acoustic wave
equation may be inserted to numerically solve the reduced-
order model. For details of this methodology, see [15], [17],
[31], [39]. Here, we will provide a brief overview. For a PDE
of the form %‘f = Z.(VU,t;n), we seek a spatially discrete
solution W, that can be represented in low-rank form: W4 (t) =
Ut)Z(t)T. For a fixed time t, if Wq(t) € R™*™, we insist
that U(t) € R™*" and Z(t) € R™*" where r < m,n. This
way, we save in storage due to the compressed form of ¥, and
improve computational efficiency because of the reduced cost
of matrix multiplications and inversions of smaller matrices
in the time marching and computation of .Z;. The spatially
discrete DO equations tell us how to instantaneously optimally
evolve U and Z to follow the dynamics of .£; [15] and take
the following form,

U=2r2,U0Z7 ;0227 7)1
Z=2U0z% t;n)TU
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Here, £, represents the spatially discretized version of the
spatially continuous differential operator .%,. Zz = I-UUT,
and the columns of U, u;, correspond to the modes v; in (4).
Similarly, the columns of Z, z;, correspond to realizations of
¢i. The discrete DO condition is now UTU = 0. Although
the discrete DO equations do not explicitly extract the mean
of U4, the mean may be included by adding a column in U
and a column of ones in Z. An important difference between
the spatially and discrete DO equations is that the spatially
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continuous version is intrusive, requiring a new derivation
for each PDE, whereas the spatially discrete version is non-
intrusive. This is evident in the simplicity of equations (11).

For our problem of interest, we would simply discretize (12)
using a finite difference/volume/element scheme to find %
and insert it into (11) to find our coupled system of ODEs.
Integrating these ODEs in time is no trivial task; this is a
coupled set of nonlinear equations that can become unstable
if treated improperly: the system may become ill-conditioned,
U must be re-orthonormlized [40], and retraction error could
cause overshoot [39], among other technicalities. We refer the
reader to [31], [39], [41] for examples on how to integrate
these equations in a stable and high-order manner.

III. REDUCED-ORDER STOCHASTIC ACOUSTIC WAVE
EQUATION

Using the discrete DO equations, we implement a test case
meant to simulate 2D acoustic propagation in an uncertain
ocean with a bumpy bathymetry as shown in figures 1-6. For
better stability properties, we discretize the density-reduced
acoustic wave equation below, where we solve for the variable
U =0 /p, and then multiply by ,/p at the end to get back to
the original variables.
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We use a 75 Hz point source at a range and depth of 50m
with Gaussian time-window, shown in Figure 1. The density
of the water (above the white border in figures 3-6) is 1000
kg/m3, and the density of the ocean floor (below the white
border) is 1500 kg/m3. The ocean sound speed is given by the
Mackenzie profile [42] at 15°C and 30 ppt salinity augmented
with stochastic constant, linear, and quadratic (in depth) terms
weighted by normal random variables. The ocean bottom has a
sound speed of 1700 m/s. The decay term « is set to zero in the
computational domain of interest for this example. The sharp
discontinuity in density and sound speed at the ocean bottom
creates an impedance boundary where some of the energy is
reflected back to the surface, where we use a pressure-release
(Dirichlet-zero) boundary. All other boundaries are open and
implemented with an absorbing boundary layer (not shown).
We use a rank-5 simulation, i.e. five DO modes, to represent
the solution with 1000 stochastic realizations on a 201 x 201
grid (excluding the absorbing boundary layers). To advance
%, in time, we use a classic leapfrog scheme, and we couple
this with the projector-splitting integrator used as a retraction
from [41]. For the spatial derivatives, we use second-order
central differences.

Figure 2 shows the received signal at a range of 100m and
a depth of 10m for each of the 1000 realizations. We see that
the signal is appropriately delayed with some change in shape
from the original pulse due to the reflection off of the surface.
The next pulse is the reflection off of the ocean bottom;
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Fig. 1. Normalized source signal
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Fig. 2. Received signal with stochastic variation

most of the energy is transmitted through the ground and
geometrically dispersed, so the reflected pulse is much weaker.
However, there is increased stochastic variability because the
pulses have traveled a longer distance through the stochastic
medium.

Figures 3-6 show the mean of the DO solution at various
points in time. First we see the pulse propagate outwards.
Then, it bounces off of the air-water interface later makes
contact with the ocean bottom. Some of the energy at the
bottom is reflected back to the surface, where it is reflected
back, creating an interference pattern. Although we only
display the mean of the solution, we note that any of the
1000 realizations may be easily reconstructed and visualized.
Similarly, varied statistics of the stochastic acoustic wave can
be easily evaluated. This includes fields of standard deviation,
kurtosis, and other moments, as well as mutual information
fields and other probabilistic forecasts [6], [23], [43].
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Fig. 6. Mean of DO solution at time t4

IV. REDUCED-ORDER DETERMINISTIC 3D PARABOLIC
WAVE EQUATION

In this section we apply the dynamical low-rank approxi-
mation to the three-dimensional deterministic parabolic wave
equation. In previous work, the DO equations have been
applied to reduce the stochastic dimensionality of the system.
Here, we reduce the deterministic dimensionality with the
same DO methodology but with a slightly different viewpoint.
This saves computational time and storage when solving 3D
acoustic forward models.

We start with the density-reduced 3D parabolic/paraxial
acoustic wave equation in Cartesian coordinates.

0 iko ,_ 7 0? 0?

a—f = [2(n2 1)+ 5 (ayQ + M)] ¢ (13)
The effective index of refraction n is given by the index of
refraction n and the density p as follows.

a2 b [VQ/) _3(Vp) - (Vp)}
2kg | p 22

Recall that to recover the pressure from the density-
reduced parabolic equation, we use the relation p(z,y,z) =
o(z,y, z)e'éko‘”\/ﬁ where ky is a reference wavenumber for the
media. In a similar fashion to normal-mode methods [12], we
assume that the solution ¢ can be decomposed as follows,

S,y 2) =Y Vilw,y)Zi(x, 2) (15)

ﬁQ

(14)

This decomposition is valid assuming ¢ is square-integrable
[44], which is essentially always the case for physical prob-
lems. In contrast to normal-mode methods, we allow ) and
Z to evolve in range, x. And to evolve ) and Z, we
employ the dynamical low-rank approximation (or the spatially
discrete DO equations) which gives us instantaneously optimal
differential equations. The only difference from the results of
the prior Sections II-III is that instead of having deterministic
modes and stochastic coefficients that evolve in time, we have
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Fig. 7. Wedge test case geometry from [45] with a 5° slope

two sets of deterministic modes that evolve in range. One way
to reason through the difference between (4) and (15) is to
replace ¢ € 2, a simple event in the stochastic event space,
with z € RR. Then, in the discrete formulation, the )V modes
are mapped to the matrix U, and the Z modes are mapped to
the matrix Z in (11).

We illustrate this new adaptive reduced-order deterministic
methodology through example of a 3D wedge test case from
[45]. The problem geometry is depicted in Figure 7 with an
artificial absorption layer (not shown). The water sound speed
is set to 1475 m/s whereas the bottom sound speed is set to
1700 m/s. Additionally, the water has density 1,000 kg/m3
and the ocean bottom has density 1,500 kg/m?. The water has
no absorption, but the ocean bottom has an absorption of 0.5
dB per wavelength. To implement the absorption, we utilize a
complex index of refraction. We solve over a 25 km x 4 km
x 0.5 km domain with 166, 667 points in x, 2,867 points in
y, and 650 points in z, for a total of about 3.1059 x 10! grid
points. We discretize x finely to ensure the scheme remains
stable. For simplicity, we use a modified Greene’s source [46]
at 75 Hz as our starter, though a more realistic 3D starter may
be used in the future rather than this 3D adaptation of a 2D
starter,

#(0,y, 2) = \/ko (1.4467 — 0.4201k3 (= — 100)°y?)

2
2 (2—100) k

—k g2y
. e Mo 30512 e 030512

(16)

We solve this equation with a central differences in space and a
Dufort-Frankel scheme [47] in time at ranks 5 and 20 using our
reduced-order scheme with the projector-splitting retraction
[41], and at full-rank, 650, using the traditional discretized
integration scheme.

In Figure 8, we show slices of the 3D solution with the
dynamical low-rank reduced-order deterministic DO method-
ology at ranks 5 and 20 as well as the full-rank solution. We
find that at rank-5, the solution is significantly different from
the full-rank solution, though it still looks physical, which is
an advantage of this reduced-order method. At rank-20, the

y=0m,r=>5

@ x10*

Fig. 8. Solution slices of the density-reduced pressure ¢ at y = 0 of wedge
test case, using the adaptive reduced-order deterministic DO equations at rank
r =5 and r = 20 compared with the full-rank, » = 650, solution.

solution looks very close to the full-rank solution; this implies
that a low-rank adaptive deterministic DO approximation of
the solution converges quickly to the full-rank solution.

This approach may be useful when the three-dimensional
computational mesh is particularly large and, without compres-
sion from the dynamical low-rank approximation, storage in
memory or even a hard drive is infeasible. As a result, the DO
deterministic approach is also particularly useful for acoustic
computation both for and onboard autonomous underwater
vehicles (AUVs) in real-time operations [48]-[51] as well as
for several new ocean acoustics applications [52]-[54].

V. CONCLUSION AND FUTURE WORK

We have developed two new frameworks for forward model-
ing in ocean acoustics. The first is to model the stochastic wave
equation with the newly derived DO differential equations (5-
7). This serves as an efficient alternative to stochastic wave
Monte Carlo simulations and may be used for non-Gaussian
uncertainty quantification and predicting complex scattering
phenomena. We demonstrate its efficacy on a 2D test case
of an acoustic pulse propagating through uncertain media,
reflecting off of the air-ocean interface and bumpy bathymetry.
By reconstructing realizations, we are able to evaluate any
statistics desired from the solution distribution. The second
framework is to use the DO equations on the deterministic
parabolic wave equation. This approach is similar in spirit to
the normal modes approach [12], but here the modes optimally
evolve in range according to the dynamics of the PDE to
give the best low-rank approximation rather than remain fixed
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a priori. This gives an accurate and efficient method for
solving deterministic 3D ocean acoustic problems with weak
scattering. For this case, we solve a 3D wedge test case and
show that low-rank solutions converge quickly to the full-rank
solution.

Future work include exploring additional acoustic approxi-
mations, e.g. low-rank ray and Eikonal methods. One may also
couple models, e.g. the full wave equation and the parabolic
wave equation, using the full wave equation near areas with
discontinuities in sound speed, density, or absorption, and
using the parabolic wave equation in regions with smooth
parameters (i.e. when scattering is weak). Finally, one can
apply these forward models as very efficient approximations
to the steepest descent direction in the adjoint-state method to
form an image.
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