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Abstract—Accurate numerical simulation and modeling of
ocean dynamics is playing an increasingly large role in scientific
ocean applications. However, resolving these dynamics with tra-
ditional computational techniques can often be prohibitively ex-
pensive, necessitating the creation of next-generation high-order
ocean models. In this work, we apply the local discontinuous
Galerkin (LDG) and hybridizable discontinuous Galerkin (HDG)
finite element methodology to discretize the ocean equations
with a free-surface. We provide comparison of the strengths
and weaknesses of the two formulations in terms of accuracy,
efficiency, and scalability, and provide detailed discussion of
numerical choices and their consequences as they relate to
ocean modeling. We verify our methodology with numerical
experiments and results from nonhydrostatic gravity wave theory.

Index Terms—ocean modeling, ocean dynamics, finite element,
high-order, nonhydrostatic, free surface

I. INTRODUCTION

Numerical modeling of nonhydrostatic ocean dynamics is
a challenging endeavor due to complicated multi-scale inter-
actions. Ocean models typically make a hydrostatic approx-
imation, as the horizontal length scales dominate relative to
the depth scales. However, when considering ocean processes
arising in regions where the depth scale is significant relative
to the horizontal scale, such as in the case of flows encoun-
tering steep topography, nonhydrostatic dynamics can become
important.

Discontinuous Galerkin (DG) finite element methods have
been employed with a great deal of success in hydrostatic
ocean models over the past few decades, especially for the
shallow water equations [1]-[3]. The piecewise polynomial
spaces used in DG finite element discretizations allow for
high-order accuracy on unstructured grids and often provide
strictly conservative numerical solutions. Moreover, DG meth-
ods are able to gracefully handle nonconforming elements and
adaptive mesh refinement, an inherent limitation to classical
finite element and spectral methods [1], [4]. Nonhydrostatic
ocean simulations can be computationally expensive, as the
nonhydrostatic pressure necessitates the solution of a globally
coupled problem—however, since nonhydrostatic dynamics
are typically only important in certain specific regions, an
unstructured, adaptively-refined grid can allow for an efficient
solution close to the cost of a hydrostatic model [5], making

high-order DG methods a good candidate for nonhydrostatic
ocean modeling.

Our initial research with finite element schemes was an
incubation of high-order HDG schemes on 2D unstructured
meshes [6]. For efficiency, legacy ocean solvers often uti-
lize variations of projection schemes and only the pressure
equation then ends up dominating costs. We thus combined
the HDG method with a projection method, deriving new
numerical HDG-projection-method schemes and new selec-
tive slope limiting for high-order computations. Overall, we
obtained novel high-order accurate schemes for nonlinear
Navier—Stokes and Boussinesq flows [7], [8]. We developed
new boundary condition treatments to mitigate the formation
of artificial numerical boundary layers along the bathymetry,
especially in steep topographic regions. We have also explored
distributed computing approaches for these methods [9]. These
schemes can be employed for accurate, focused process studies
of flows interacting with abrupt topography.

We have applied our HDG code to idealized non-hydrostatic
dynamics. A coupled physical-biological example was used
to determine that, for equivalent computational cost, high-
order low-resolution simulations capture the dynamics while
low-order high-resolution ones do not [6]. A lock exchange
benchmark [10] showed that the non-hydrostatic solution
accurately reproduces Kelvin—Helmholtz instabilities. In an
idealized Stellwagen Bank test, the mode-1 Froude num-
ber and slope criticality parameter were used to determine
nonlinear regimes. Coupled physical-biological simulations
then revealed that non-hydrostatic physics modified primary
production and significantly altered phytoplankton concen-
trations above the steepest slopes [7], [11]. We applied our
HDG code to high-resolution simulations of internal solitary
wave generation in an idealized setting [9]. These model
runs capture significant overturning motions and small-scale
turbulent mixing effects not observable in less computationally
expensive models such as isopycnal models.

One of the novel elements of the present work is the imple-
mentation of a free surface in our high-order DG ocean model,
with the option of quadrature-free and quadrature-based spatial
discretization. Incorporating a free-surface in a flow simulation
is problem-dependent, and common techniques for repre-
senting a free-surface include Arbitrary Lagrangian-Eulerian
(ALE) methods, volume of fluid (VOF) methods, multi-layer
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methods [12], [13], and level-set methods [14]. Large-scale,
regional ocean modeling often involves free-surface elevations
which are small compared to the depth scale, and therefore
in this work we do not attempt to capture wave breaking
or overturning. In the interest of computational efficiency,
the model considered in this work employs a static mesh
and introduces an auxiliary problem for the free-surface as
a single-valued function of the horizontal coordinates of the
mesh.

In this manuscript, we consider high-order DG methods
developed for second-order problems, namely, the hybridiz-
able discontinuous Galerkin (HDG) method [15], and the
local discontinuous Galerkin (LDG) method [16], [17]. HDG
methods involve parametrizing the local DG problem on to
a trace space defined on the edges between finite elements,
resulting in a reduction of globally-coupled degrees of freedom
as compared to classical DG methods. The LDG method
involves a weak formulation over the typical discontinuous
piecewise polynomial space defined over the interior of each
finite element and as such, does not enjoy the reduction of
degrees of freedom as does HDG, but eliminates the need for
the parametrization of the local problem onto the mesh edges,
presenting a computational advantage over HDG. Both meth-
ods are mixed formulations that solve for a primal unknown as
well as its gradient, but the computational trade-offs of each
method in terms of accuracy, efficiency, and scalability are
subtle and crucial to consider in designing a nonhydrostatic
ocean model. One of the novel contributions of this work is
an analysis of the impacts of the performance characteristics
HDG vs. LDG methods on their respective applicability to
large-scale ocean simulations.

The remainder of the paper is organized as follows. In
Section II, we introduce the ocean equations and we outline
our projection scheme [7] for advancing the unsteady ocean
equations with a free-surface. Section III is devoted to the
HDG and LDG discretizations of the projection scheme. This
sets the stage for Section IV, where we discuss the scalability
and performance trade-offs of the two different methods in the
context of discretizations of the ocean equations. We provide
numerical verification with a benchmarking set of test cases
illustrating the capabilities of the model in Section V, and we
conclude and provide remarks in Section VL.

II. PROJECTION SCHEME
A. Governing equations

The non-hydrostatic primitive ocean equations are given as
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where F,, = V - (u® u) is the advection term and where
F.o. = fc2z x uis the Coriolis forcing with parameter f,.

We define the total velocity u = [u, v, w], and its horizontal
and vertical components u = [u, v, 0] and w = [0, 0, w],
respectively. As convention, we take L = Vu, such that
(Vu)y; = 9%, and (V- L); = aL—” We define the

ox;’ oz
horizontal and vertical gradient operators V, = {%, 8%, O}
and V, = [O, 0, %] We denote the depth of the bathymetry
as H(z,y).

B. Temporal Discretization

In this section, we outline our projection scheme derived
for the ocean equations in [7]. The PDEs and projections are
as follows to advance the numerical solution from time k to
k+1=Fk+ At

1) Velocity predictor: We construct an intermediate velocity
field w1 which is not divergence free

ﬁk‘+1
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subject to the boundary conditions
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2) Free-surface correction: We solve a d — 1 dimensional
problem for the change in the free-surface:
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subject to appropriate boundary conditions.

3) Intermediate velocity projection, free-surface update:

W= w0l gV, 3)
nk+1 _ nk + 577k+1 4)

4) Pressure correction:

\vARTLaz!
v25 /,k+1 — 5
P Yy v &)
subject to appropriate boundary conditions [7].
5) Velocity projection, pressure update:
Pt = P — g AtV op R (6)
p/,k+l — p/,k + 5p/,k+1' (7)

The PDE solves, namely, the velocity predictor, free-surface
correction, and pressure correction steps all treat the diffusion
terms implicitly to avoid an overly strict CFL limitation; the
other terms are treated explicitly. As second-order parabolic
and elliptic equations, an implicit discontinuous Galerkin
formulation of each is recommended [4]. Since the projection
steps require not only the primal unknowns, but their gradients,
the mixed DG methods are a natural choice, since the gradient
of the primal variable can be recovered at little extra cost,
motivating the use of the LDG and HDG methods in this work.
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Fig. 1. Notation for domain discretization

III. SPATIAL DISCRETIZATION
A. Notation

In order to state the weak form of the problem, we will first
introduce some requisite notation. We let 7;, = UK be a finite
collection of non-overlapping elements, K;, that discretizes
the entire computational domain 2 (Figure 1). Also, let 07y, =
{0T : K € Ti} be the set of interfaces of all elements, where
OK is the boundary of element K. For two elements sharing
an edge K and K, we define e = 9K TNAK ™ as the edge
between elements K+ and K . The edges can be classified as
° and €9, the set of interior and boundary edges, respectively,
with e = e°Ue?. Kt and K~ have outward pointing normals
n* and n—, respectively. The quantities [a*, c*] denote the
traces of [a,c] on the edge e from the interior of K*. The
“mean” value {{e}} and “jumps” [e] on the interior interfaces
e € ¢° for scalar and vector quantities are then defined as

{cht =(c"+c7)/2,

[ =ctnt +cn.

{al} =(@" +a7)/2,

[a] =at - nt+a -n",

On the set of boundary interfaces e € 2, (with outward
facing normal n on 0f2), we define these mean and jump
quantities the usual way:

{al} = a,

a] =a-n,

{{C}} =

[c] = en.

Let PP (D) denote the set of polynomials of maximum degree
p existing on a domain D. We introduce the discontinuous
finite element spaces:

WP = {we L*(Q): w|xe PP(K),VK € Ty}
VP = {v e (L*(Q)%: v |ke (PP(K)), VK € Tp,}
as well as the traced finite element space
Mf = {p € L?(en): p]c€ PP(e),Ve € en} -

Lastly, we define the inner products over continuous do-
mains D € R? and 0D € R4! as

(a,b)D:/a-bdD (c,d)D:/cddD
D D

(a,b)aD:/ a-bddD (c,d>aD:/ cdddD
oD o

D

B. DG Formulations

To provide a unified framework for the semi-discretization
of both the HDG and LDG approaches, we consider the
generic second-order PDE

% -V (kVu) = f, (8)
We remark that the PDE in equation (8) abstractly describes
both the velocity predictor and free-surface correction steps
and the subsequent discretizations apply to both; the pressure
correction step follows the same discretization procedure but
omits the temporal derivative. Specific discretizations of the
right-hand side forcing terms are given in Section III-E.

In order to arrive at either DG formulation, we consider the
first order system

q— kVu =0,
ou
= _V.q= Q,
ot g=f on ©)
qg-n=gny only,
u=gp onlp,

where the auxiliary variable g is a numerical representation
of the gradient of the primal unknown u. Multiplying by an
appropriate test function and integrating by parts over the
domain yields a weak form where we seek the numerical
solution (gn, up) € (V;P,W}) such that

(v, R_IQh)Th + (Vv up)y, — (v -, dp)yy, =0,
(w Z—"j)T (Y, a0, — (w0 dn Yoy = (0, g
for all (v, w) € (V,’,W}), where ¢, and 4y, are the numerical
fluxes approximating the quantities g and w on the element
faces, respectively. The definition of the numerical fluxes
(Gn,ayp,) in terms of the approximate solution (gp,up) and
boundary data is sufficient to complete the description of both
the LDG and HDG methods. For both methods, we perform
a local elimination of the unknown gy, as the resulting linear
system would otherwise be prohibitively expensive to solve.

C. LDG Formulation

We arrive at the LDG weak formulation with the choice of

Hantt — B lan] — 7[us], oné}
gn = { gnm, on ey
qn — 7(un — gp)n, on ep
and
{un}} + 8- [un]  onej,
Up = § Uh, on ey
9D, on €p

where 3 = n/2 and 7 is a stabilitization parameter on the
order of the element size 7 ~ O(h~!)—for additional details,
see [4], [16], [18]. Making these substitutions, we can express
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the generic weak form in equation (10) as the following: find
(gn, up) € (V;P,W?) such that

a(vv qh) + b(’U, uh) = 7"(’1}),
b (w, qn) + c(w, up) = f(w),

for all (v, w) € (V}P,W}), where we define the bilinear forms

Y

a(v,qn) = (v, &~ 'qn)T,
b(v, up) = (V- v, up), — (v-n, up)ry
—(v-n, {ut}t + 8- [un])orir
bT(wa Qh) = (va qh)Th - <’LU, gh n>FD
—(w, ({{an}} — [gr]B) - n)or\r
c(w, up) = (w, Ou/0t) . — (w, Tup)rp
— (w, 7[un] - m)or\r
and the linear forms
’I“(’U) = <'U "n, gD>FD
f(w) = (w7 f)Th + (w> gN)FN - <w7 TgD>FD‘
Our formulation differs from the typical description in the
literature in that we organize the integral operators over each
element boundary 0K, since 9T, = {OK: K € T}, rather
than over each interface. Due to the discontinuous nature of
the DG polynomial approximation spaces and our organization
of the operators over the boundary of each element, the

discretization of equation (11) over each element admits the
local linear system

(5 ¢) (@)= ()

allowing for the elimination of the unknown gq; by way
of the Schur complement with respect to the block A. The
aforementioned static condensation leads to the global linear
system KU = F, where

K=C-B"A !B,
F=F—-BTA'R.

12)

13)

We remark that since the linear operator A has the form of a
mass matrix defined locally over each element, the inverse is
cheap to compute and can even be discretized in a quadrature-
free manner to avoid a dense inverse operation entirely [19].

D. HDG Formulation

For details on the HDG method, we refer to publications
[15], [20]. We integrate (9) by parts over each element K
and define approximations to g and wuy, in equation (10) with
the numerical traces @ and y, respectively, defined on the
element boundary 0K as

Gn = qn — 7 (up — Up) m,

. Pgp, one?NTp
uh =
An

one®\Tp '
where the scalar 7 > 0 is a stability parameter, taken as 7 = 1
unless otherwise specified. We additionally add a transmission

(14)

condition which enforces that the normal component of the
numerical flux be single-valued on each interior edge:

<:U’7 dh : n>87’h\1" + </’La th n— gN>1"N = 0. (15)

The resulting weak form of the problem is to find
(gn, un, A\n) € (VP, WP, MP(0)) such that
(57 an, V), + (un, V)7, = Qs Vo) og, = (Pgp, ven)p
—(V-an, W)T,L + (Tunp, W>aT,L —{TAn, W>aT,L = (f, W)T;L
(@n -7, o rp = (T(Un = An); Worrp, = (PIn,

for all (v,w, u) € Vi’ x W/ x M}’ (0). The weak form can be
expressed as [15]

a(gn, v) + b(up, v) — c(An, v)  =7(v),
b(w, gn) — d(up, w) + e(Ap, w) = — f(w), (16)
c(qn, 1) — g(un, p) +h(An, p) = £p).

The discretization of the integral operators in (16) results in
a linear system for the unknown coefficients specifying the
finite element solution (g, up, Apn),

A B -C1[Q R
BT -p E||U|=]|-F (17)
cT -G H||A L

One of the attractive features of HDG schemes is that, due
to the discontinuous nature of the approximation spaces V}”
and W,’; and choice of numerical flux, the matrices A B and
D are block-diagonal with respect to the elements. Thus g,
and uj can be eliminated element-by-element to yield the
statically-condensed linear system for the trace variable A\
alone, resulting in the linear system KA = [, where

K=H+ [CT —G][A B}l{c},

BT —-D —F (18)
A B1'[R
F=L-[CT -G {BT D] [F]

As we removed the degrees of freedom on I'p, we compute
the complete approximate trace uy, by augmenting A, with the
boundary data gp, and reconstruct the unknowns g; and up
on each element as

Pl -[ 5] (FR][5]w)

where Fy = (f, w)j no longer includes the Dirichlet forcing
data. Since uy, is single-valued on the set of edges ¢, this re-
construction can be computed on each element independently.

E. Discretization of Forcing Terms

Advection operator. To derive the discontinuous Galerkin
formulation of the advection term, we integrate the advection
term (v, V - F,(u}))k by parts to yield

ah(vaufm gD) = - (V’U, Fa(ui))K + <'Ua F:(ulling)>aK )

where F(uy) is the numerical flux. Several choices exist,
including an upwind, central, or local Lax-Friedrichs flux.
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Pressure gradient operator. We apply the same procedure
as above to obtain the DG formulation of the pressure gradient
term (v, Vp')k:

pgh(v7p2) = - (v - v, p;{k)K + <’U, (p;L)*n>6K7

where the numerical flux is taken to be a central flux:
Py = {{p,P. We remark that DG formulations in
which the pressure gradient term is not integrated by
parts, i.e., (v, Vp})kx as in [4] have been shown to lead
to instabilities in the context of high-order discontinuous
Galerkin discretizations of projection methods [21].

Free-surface velocity divergence. The quantity U; =
k
ff I ﬁ’;;’}b dz is the gepth-integrated horizontal velocity, and
the operator dp(w,,U) is

dy(w, O) = (w, V- T) .

== (Vw, 0) c + (w, (0)"-m)

where U* is an appropriately chosen numerical flux; here we
use a central flux (U)" = {{U}}.

IV. COMPUTATIONAL EFFICIENCY AND SCALING
A. HDG vs. LDG Performance

We make the following remarks as to the strengths and
weaknesses of each approach, which are not often discussed
in the literature.

The introduction of the traced-finite element space M} and
global transmission requirement in the HDG method allows
for a substantial reduction in the globally-coupled degrees of
freedom as compared to the LDG and other classical DG meth-
ods, in addition to better optimal convergence properties [15].
In particular, as the polynomial order of the numerical solution
increases, HDG offers increasing computational savings over
the classical DG methods.

However, the computational savings due to the parametriza-
tion of the PDE onto the space M} come at a cost. Comparing
the elemental contributions of the two methods in equations
(18) and (13), it is apparent that forming the elemental con-
tributions and right-hand side involves an expensive matrix-
inverse operation involving the local unknowns (gp,up) on
every element in the mesh. As the polynomial order increases,
these inverses become concomitantly more expensive. This
discrepancy becomes more limiting in truly large-scale sim-
ulations, where the elemental inverses can not be stored, but
rather must be applied in a matrix-free manner. In this case, the
memory required to store local factorizations of the elemental
inverses becomes a bottleneck, moreso than the linear system
itself. By comparison, the recovery of the local gradient gy,
in the LDG method involves a local inverse, but only of
the A operator, which is a block diagonal mass-matrix and
much more cheaply invertible. Ultimately, both methods are
promising for high-order ocean models, with HDG providing
better accuracy and LDG providing better scalability.

B. Quadrature-free Discretization

In this work, we consider two methods for discretization of
the LDG and HDG integral operators introduced in Section
III. The first are quadrature-based methods using Gaussian
quadrature standard in finite element methods. The second is
a quadrature-free approach [22] which stores only templated
mass matrices and stiffness matrices on the master element,
and uses local isoparametric transformation data to form the
operators in the weak form; we refer the reader to [4], [19],
[22] for details. The advantage of quadrature-free discretiza-
tion is the lack of a need to interpolate volume and face data
to the quadrature points, instead using only nodal quantities;
however, this approach comes at the cost of a reduction in
accuracy and loss of symmetry, discussed in Section V.

C. Preconditioning and Iterative Solvers

Each of the PDE solves in the projection method relies on
the solution of a global linear system. It is often the case that
the parabolic nature of the velocity predictor and free-surface
corrector equations result in linear systems which are much
better conditioned compared to the pressure corrector equation.
Our investigation of preconditioning strategies and efficient
linear solvers for the ocean equations is still preliminary;
however, we have found that both LDG and HDG schemes
for ocean modeling commonly result in linear systems that
are not symmetric, especially when considering quadrature-
free schemes or complicated boundary condition handling.
As such, we have investigated classes of iterative solvers
for nonsymmetric systems—Figure 2 depicts typical con-
vergence behavior for incomplete-LU (ILU) preconditioned
pressure-corrector systems for the GMRES, BiCG-stab, and
GCROT [23] iterative solvers. Preliminary results indicate
that the GCROT solver routinely outperforms the others for
ill-conditioned linear systems which arise in the presence
of strongly nonhydrostatic dynamic regimes, and are readily
improved even by mild ILU preconditioning with fill-in on the
order of the sparse linear system itself.

V. NUMERICAL EXPERIMENTS
A. Spatial Verification

In order to verify our LDG and HDG finite element
discretizations as formulated in Section III, we consider a
steady three-dimensional convection-diffusion problem with
a spatially variable, anisotropic diffusion coefficient, which
mimics the implicit terms of the velocity predictor, free-surface
correction, and pressure correction steps outlined in Section II.

We consider a flat-bottomed three-dimensional domain con-
sisting of a six layer extrusion of the horizontal domain
Qp = (—1,1) x (—1,1), represented with a mixed mesh of
both wedge and hexahedral elements (Fig. 3). The spatially
variable diffusion coefficient x = (1,1, 2?). The source term
f and Dirichlet and Neumann boundary conditions are chosen
such that we have the exact solution

(1-— e(m—l))(l —elv—1)
(1—e)(1—ev)

u(x,y,2) = Yz (19)
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Fig. 2. TIterative solver performance for the linear solve of the 2D HDG
pressure corrector equation with ILU preconditioning.

3 0 1

Fig. 3. Top-down view of a representative 3D wedge/hexahedral mixed mesh
used in the anisotropic diffusion convergence study.

Both the LDG and HDG schemes converged optimally with
respect to the scheme for 1D, 2D, and 3D versions of the test
case whose exact solution is described in equation (19), at
order (p+ 1,p) for LDG discretization and (p+ 1,p + 1) for
the HDG discretization for the numerical solution (uy, gp),
respectively. [llustrative convergence results are presented for
the 3D HDG test case in Figure 4 for both the quadrature-free
and quadrature-based discretizations, demonstrating that there
is a negligible loss in accuracy for the quadrature-free scheme.

3D mixed mesh

L2-norm error
N
o

10 10 10°

Fig. 4. History of convergence in the L2-norm of the numerical solution uy,
to the exact solution (19). Dashed lines indicate optimal convergence rates of
order p + 1 for the primal variable uy,.

B. Free-surface Seiche

To test the ability of our model to accurately represent
nonhydrostatic behavior, we verify the nonhydrostatic model
using linear gravity-wave theory. To do so, we simulate a free-
surface seiche, similar to the test case described in [13].

For a rectangular domain of length L and depth H, the
analytical solutions for the horizontal and vertical velocity of
the inviscid free-surface seiche are given by

k coshk(z + H)
95 cosh(kH)

ksinhk(z + H)

—qg T
w cosh(kH)

u=aq sin(kx) sin(wt), (20)

v = cos(kx) sin(wt), (21)
with the analytical free-surface 1 = acos(kx) cos(wt). The
quantity A, = 2L is the fundamental wavelength and k =
27 / Ay 18 the wavenumber. The hydrostatic shallow-water limit
is obtained as kH — 0 and the nonhydrostatic deep-water
limit is obtained as kH — oo.

We take as our computational domain Q = [0, L] x [-H, 0],
with parameters

a=0.1m
L=75m (22)
H=10m

and initialize the free-surface at time ¢ = 0 with the initial
condition (¢ = 0) = a cos(kz). To mimic the inviscid nature
of the test case, we use a small diffusion coefficient v = 1079,
and the value of w is chosen such that the seiche period is T' =
1 s. In light of the superior convergence properties enjoyed by
the method, we use the HDG formulation of the projection
scheme with polynomial order p = 3 discontinuous elements.

We compare the analytical results for both hydrostatic and
nonhydrostatic behavior given by gravity wave theory with the
output of our numerical model at the end of the first seiche
period. The normalized horizontal and vertical velocity profiles
are plotted in Figure 6 along a depth-wise slice taken along
xz=0.2.
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Fig. 5. Velocity fields after the completion of one seiche period.
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Fig. 6. Normalized horizontal (top) and vertical (bottom) velocity fields after
the completion of one seiche period, compared to predictions from hydrostatic
and nonhydrostatic theory.

From Figures 5 and 6, we see that the model is in good
agreement with nonhydrostatic theory, in a regime which is
strongly nonhydrostatic.

VI. CONCLUSION AND OUTLOOK

In this work, we have presented parts of a numerical model
for a next-generation, high-order discontinuous Galerkin
model for the ocean equations. Preliminary results show that
both LDG and HDG discretizations of the model are capable
of achieving high-order accuracy with both quadrature-based
and quadrature-free discretizations, the latter of which can
be used to improve computational efficiency in terms of
memory and time-to-solution. We addressed the strengths and
weaknesses of each method in terms of memory requirements,
and scalability, and illustrated the ability of the high-order
model to correctly capture nonhydrostatic dynamics.

We have shown that, while the HDG scheme is a more
cost-effective and accurate high-order method as compared
to LDG at small problem sizes, ultimately, the requirement
of element-local inversion for the HDG scheme limits the

scalability of this method for large-scale problems. LDG,
while exhibiting lower-order convergence, removes this ele-
mental inversion requirement, making it a candidate for truly
large-scale computations. We anticipate future models which
(adaptively) incorporate HDG in specific regions where high
accuracy is required, and LDG in the remainder of the domain,
as the underlying discontinuous nature of each method allows
for a seamless combination of the two.

The investigation of model performance capturing
Rayleigh-Taylor instabilities, the generation of internal waves
over steep topography, and other nonhydrostatic dynamics,
as well as the development of efficient matrix-free solvers
for high-order mixed discontinuous Galerkin formulations in
ocean modeling constitutes the subject of ongoing research.

Future work will also merge the present efforts with the
Multidisciplinary Simulation, Estimation, and Assimilation
Systems (MSEAS) ocean modeling for physical, acoustical,
and biogeochemical studies. MSEAS [24]-[26] is used for fun-
damental research and for realistic simulations and forecasts of
fields and uncertainties around the world’s oceans [27]-[40].
Practical applications include ocean monitoring [41]; real-
time acoustic predictions and DA [42]-[45]; biogeochemical-
ecosystem predictions and environmental management [46]—
[48]; relocatable rapid response [49], [50]; path planning for
autonomous vehicles [51]-[54]; and, adaptive sampling [55]-
[57]. MSEAS has been tested and validated in a wide range
of real-time forecasting exercises. They include: AWACS and
SW-06 [25], [33]; AOSN-II and MB-06 [27], [31], [32]; QPE-
08 and -09 [44], [58], [59]; PhilEx-08 and -09 [35], [60];
NASCar and FLEAT [36], [37], [61]; and POINT [62]. The
present nonhydrostatic finite-element progress may be used in
such simulations and other ocean modeling software to provide
new capabilities, both for research and applications.
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