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Introduction

Problem: High computational costs associated with high-
fidelity simulations leads to low-fidelity models with
truncated scales, processes, and variables; however, this
often limits the reliability and usefulness of simulations
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Low-Fidelity Models: 0s —
* Reduced order models ~ e
» Coarse resolution models D
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Biogeochemical models of various complexities

Goal: Learn closure models from high-fidelity data e

Background

Mori-Zwanzig Formulation: Proves the need Biological time-scales: Exchange of
for a non-Markovian closure term information occurs on non-negligible time-scales,
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Methodology

Delay Differential Equations (DDEs): Widely used in modeling population dynamics, biology, and medicine
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Key Innovations:
 Unified approach to learn and model
any kind of DDE
* Elimination of the need for recurrent
networks for modeling memory effects
* Derived adjoint equations to enable
efficient training of neural-DDEs in any
ML framework
Experiment: Biogeochemical Models
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