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Abstract—In fish modeling, a significant amount of uncertainty
exists in the parameter values, parameterizations, functional form
of model equations, and even the state variables themselves.
This is due to the complexity and lack of understanding of
the processes involved, as well as the measurement sparsity.
These challenges motivate the present proof-of-concept study
to simultaneously learn and estimate the state variables, pa-
rameters, and model equations from sparse observations. We
employ a novel dynamics-based Bayesian learning framework for
high-dimensional, coupled fish-biogeochemical-physical partial-
differential equations (PDEs) models, allowing the simultaneous
inference of the augmented state variables and parameters. After
reviewing the status of ecosystem modeling in the coastal oceans,
we first complete a series of PDE-based learning experiments
that showcase capabilities for fish-biogeochemical-physical model
equations and parameters, using nonhydrostatic Boussinesq flows
past a seamount. We then showcase realistic ocean primitive-
equation simulations and analyses, using fish catch data for
the Lakshadweep islands in India. These modeling and learning
efforts could improve fisheries management from a standpoint of
sustainability and efficiency.

Index Terms—Fish model, Biogeochemical model, Uncertainty
quantification, Bayesian learning, SEAPODYM, Gaussian Mix-
ture Models, Dynamically Orthogonal, Ocean Primitive Equa-
tions

I. INTRODUCTION

Fisheries are a major industry in the coastal states of India,
employing millions of people and contributing to 1.1% of GDP
and 5.3% of agricultural GDP. Globally, the Indian fishing
industry is the third largest in the world. The total marine
fish production is around 3 billion metric tons. Indian waters
contain about 2,500 species of finfishes and shellfishes. Among
these, there are about 65 commercially important species or
groups. In 2004, 52% of these commercially important groups
were pelagic and midwater species. In 2006, over 600,000 met-
ric tons of fish were exported, to some 90 countries, earning
over $1.8 billion [10]. Increased demand for fish, coupled with
unsustainable fishing practices lead to over-exploitation and
fast depletion of fish stocks. Coastal fisheries and aquaculture
stocks often thrive on very specific water conditions—building
capabilities for coastal physical-ecosystem forecasting and
monitoring will help ensuring and managing the survival and
reproduction of healthy stock. Without sustainable fisheries
management and conservation practices in place, there could
be dire consequences for the many communities that rely on
the ocean for their economic well-being.

Marine ecosystems are very complex, but in broad terms
they can be seen as a flow of energy from nutrients, to

phytoplankton, to zooplankton, to fish, ending with the nutri-
ents being recycled back into the ecosystem. There does not
exist a single generic model that encompasses all the detailed
components of a marine food web due to the complexities
and multiple scales of natural marine ecosystems. Hence, in
general, current research seeks to model small, isolated parts
of the food web. These isolated parts need to be properly
parameterized in order to link them with other portions of the
food web. The ocean ecosystem is commonly divided into two
main parts, Lower Trophic Levels (LTL) and Higher Trophic
Levels (HTL) including fish. Common ecosystem models are
reviewed in Section II.

The LTL models have many sources of uncertainties [27,
41, 39, 22, 61]. Due to the semi-empirical methodology
of developing HTL models, there is even more uncertainty
associated with the parameters, functional forms, and the level
of complexity of fish models. This is an inherent drawback
to purely deterministic fish modeling approaches. A set of
parameter values may only be valid in certain ocean regions,
or may be subject to seasonal variability. Observations are
integral to the formation of these models, but are in general
used for data fitting in order to find appropriate parameter
values or functional forms of these models in offline mode, or
for interpolation/extrapolation of data using the models. Due to
the lack of comprehensive and reliable fish data [29, 48], learn-
ing approaches such as the ANNs are also not very suitable.
However, instead, it is possible to combine the existing models
with the observational data in a Bayesian inference framework.
A variety of data assimilation techniques are indeed used
in biogeochemical modeling [54], but most employ standard
parameter optimization techniques, where model parameters
are calibrated by minimizing misfits between model output and
independent observations [21, 44, 67]. Very few studies deal
with the simultaneous estimation of state variables parameters
and parameterizations [11, 31].

In this paper, we use a PDE-based Bayesian learning frame-
work to showcase a series of learning experiments that si-
multaneously infer the augmented state variables, parameters,
and parameterizations of the fish model SEAPODYM coupled
with a LTL dynamical model and a nonhydrostastic varaible-
density Boussinesq flow past a seamount. The principled
Bayesian learning [46, 45, 23] combines the Dynamically
Orthogonal (DO) methodology [55, 15] for reduced-dimension
stochastic evolution with a Gaussian mixture model (GMM)-
DO filtering scheme [59, 60]. Focusing on the Lakshadweep
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islands in India, where the main fishery is tuna, we then
use the capabilities of our MSEAS primitive equation ocean
modeling system [25, 40, 24] to capture the complex oceanic
phenomenon in the region. We finally perform a qualitative
analysis of these phenomena compared with some fish catch
data available for this region [18]. Conclusions and future
extensions are discussed in Section V.

II. MARINE ECOSYSTEM MODELING

A. Lower Trophic Level

There exist many well-studied models of varying complexi-
ties for LTL. A basic model is a simple, 3-component nutrient-
phytoplankton-zooplankton (NPZ) model [19, 17, 5]; Franks,
2002 ([20]) provides a thorough review on development of
such models. In a workshop on the status of upper layer cou-
pled biological-physical modeling [9], researchers proposed
couplings of various mixed layer physical models with NPZ
and NPZD (NPZ-Detritus) biological models. Fasham et. al.,
1990 ([14]) presented a 7-component model of the annual
cycles of plankton dynamics and nitrogen in the ocean. One of
the most complex lower-trophic level marine ecosystem model
is the European Regional Seas Ecosystem Model (ERSEM,
[3, 2, 6]), initially developed for the North Sea.

B. Higher Trophic Level

HTL models vary greatly in how they model fish; some
model individual fishes in Lagrangian sense, some are em-
pirical data-based models, and some treat them as aggregate
(continuous) biomass and capture more realistic biological
interactions and processes. The effective coupling of LTL
models and HTL full-life cycle fish models is notoriously
challenging, mainly due to the difficult practical and theo-
retical problems associated with resolving relevant temporal
and spatial scales at all biologically meaningful trophic levels.
Nonetheless, they can be coupled using different mathematical
functions that model source and mortality terms, and close the
ecosystem. One of the oldest models developed for fisheries
management is the MultiSpecies Virtual Population Analysis
(MSVPA) [47]. It solves a system of coupled nonlinear equa-
tions in terms of biomass of species and number of fishes
belonging to each cohort averaged over large spatial and
temporal scales. Parameterization requires stomach-content
data of fish and estimates of the number of fish in a particular
cohort; this requires lots of hard-to-obtain data, data only
sparsely collected for a small number of fish species.

Larval Individual Based Models (IBMs) [26] attempt to
model the larval stage, which is in-between LTL and HTL.
They start with an ensemble of eggs seeded in the domain,
and let them advect and interact with the underlying physical
and biogeochemical fields, while mortality is also modeled as
a stochastic event which determines whether individual eggs
develop to the juvenile stage. A drawback to this approach is
the fact that larvae cannot really represent fish population.

A prominent box model is NUMERO.FISH [50, 32], which
simulates the daily predator-prey interactions and biogeo-
chemical cycling of phytoplankton, zooplankton, nutrients,

and detritus. The FISH model simulates the daily growth
and mortality of herring in each of multiple age-classes and
is coupled to NEMURO via zooplankton-dependent herring
consumption, excretion, and egestion. The FISH model is
based on an energy balance equation that equates energy
consumed with energy expended and gained.

Interacting Particle Model for Migration of Pelagic Fish [1]
models individuals rather than keeping track of the density of a
population. Particles look to their neighbors to determine their
directional heading at each time step, averaging the neighbors’
directional headings to determine their own. This allows the
particles to move together as a group. Size spectra models
[49] are based on the biomass spectrum theory, which assumes
that size governs biological rates and predatory interactions.
In size-spectra studies, the whole ecosystem or community
is represented by a continuum of biomass and organisms
are represented only in terms of their body size. The bio-
ecological processes taken into account to model consumers
are predation, mortality, assimilation and use of energy for
maintenance, growth and reproduction.

Ordinary differential equations based models include the
Ecopath with Ecosim (EwE) Ecosystem Modeling Suite [7,
34]. EwE facilitates the construction of a static ecosystem
model (Ecopath) that can then be used to run time-based
dynamic (Ecosim) and spatial (Ecospace) simulations. Mod-
elling in EwE begins with creating a mass-balance model
using Ecopath to obtain a static snapshot of the ecosystem
under study. The underlying principle behind the mass balance
approach is to balance the energy flow among different trophi-
cally linked functional groups by solving a set of simultaneous
linear equations (one equation for each functional group).

SEAPODYM (Spatial Ecosystem And Populations Dynam-
ics Model) [38, 37] is an Advection-Diffusion-Reaction (ADR)
equation-based model that couples a physical-biological in-
teraction model at basin scales, combining a forage (prey)
production model with an age-structured population model
of targeted (tuna predator) species. An adult habitat index
combines the spatial distribution of tuna forage biomass with
a temperature function defined for each species. Young and
adult tuna movements are constrained by this adult habitat
index while a spawning habitat index is used to constrain the
recruitment to environmental conditions. Related ADR models
were used for regional fisheries management [53].

Lastly, recent research involves machine learning ap-
proaches such as training Artificial-Neural-Nets (ANNs).
When using ANNs, typically the output is in the form of
catch-per-unit-effort (CPUE) and input includes Sea-Surface-
Temperature (SST), Sea-Surface-Height (SSH), gradient of
SST, chlorophyll-a, latitude, longitude, time, and other relevant
quantities [66, 65, 35, 63].

III. LEARNING AND MODELING METHODOLOGY

A. PDE-based Bayesian Learning Machines

A Bayesian learning setting involves choosing a prior proba-
bility distribution for the state variables (X ∈ RNX ) of interest,



taking into account all sources of uncertainties, pX(x). Obser-
vations (Y ∈ RNY ), with likelihood (pY|X(y|x)) are used to
estimate the posterior probability of the states (pX|Y(x|y))
[4, 57]. In the present problem, the state variable consists
of physical, lower-trophic-level and higher-trophic level bio-
logical variables, governed by a coupled physical-biological-
fish model, along with initial conditions, parameters, and
parameterization uncertainties. For the observation likelihood,
we assume a linear model given by, Y = HX + V; where
H ∈ RNY ×NX is the sparse observation matrix; and V ∈ RNY

is a zero-mean, uncorrelated Gaussian noise with covariance
matrix R ∈ RNY ×NY .

1) Physical Model: The physical model is described by
the stochastic nonhydrostatic Navier-Stokes equations with a
variable-density Boussinesq approximation,

∇.u = 0
∂u

∂t
= −∇.(uu)−∇P + ΛRe(ω)∇2u +

[
ρ′

ρo

]
g

∂ρ′

∂t
= −∇.(ρ′u) + κ∇2ρ′ (1)

where u ≡ u(x, t;ω) is the two-dimensional stochastic
velocity field; P ≡ P (x, t;ω), the stochastic pressure field
that contains contributions from the hydrostatic pressure due
to the variable density as well as the nonhydrostatic pressure;
ρo, the mean density; ρ′ ≡ ρ′(x, t;ω) = ρ(x, t;ω) − ρo,
the density perturbation from the mean; g = −gez; κ,
the constant of kinematic diffusivity; and ΛRe(ω) is here
an uncertain parameter equivalent to the inverse of eddy-
viscosity (νE) Reynolds number (Re = UL

νE
). This stochastic

system belongs to a domain x : {x, z} ∈ D, and ω is
a realization index belonging to a measurable sample space
Ω. We also consider the density perturbation to be solely
a function of temperature T (x, t;ω), given by the relation,
ρ′ = α(T−To), where α is the coefficient of expansion and To
is a reference temperature. We specify uncertain initial velocity
u(x, tinit;ω) = uinit(x;ω) and temperature T (x, tinit;ω) =
Tinit(x;ω) fields. The velocity uncertainty is initialized by
adding sinusoidal perturbations to a divergence-free domain-
confirming potential flow, while for density, different stable
stratified profiles are considered for each realization.

2) LTL-Biological Model: The lower-trophic-level bio-
geochemical model used in the present study is adapted
from Newberger et. al., 2003 ([52]). We employ the three-
component NPZ model (nutrients (N(x, t;ω)), phytoplankton
(P (x, t;ω)), and zooplankton (Z(x, t;ω))). The NPZ model
is given by,

SN = −G PN

N +Ku
+ ΞP + Γ1Z + a(ω)Γ2Z

2

+RmγZ(1− exp−Λ(ω)P )

SP = G
PN

N +Ku
− ΞP −RmZ(1− exp−ΛP )

SZ = Rm(1− γ)Z(1− exp−ΛP )− Γ1Z − a(ω)Γ2Z
2

(2)

where: G represents the optical model given by, G =
Vm

αIl
(V 2

m+α2I2l )1/2
and Il(x) = Iol expkwz . Along with the

uncertain state variables, we assume a uncertain Ivlev grazing
parameter (Λ(ω)) and a special binary stochastic parameter
(a(ω) ∈ {0, 1}).

The biogeochemical models are coupled with the physical
model using stochastic Advection-Diffusion-Reaction (ADR)
equations. Let φi(x, t;ω), i = {1, 2, 3} represent the three
stochastic biological tracers, the ADR equations are then,

∂φi

∂t
+∇.(uφi)− κ∇2φi = Sφ

i

(φ1, φ2, φ3,x, t;ω),

i = {1, 2, 3} , (3)

where u(x, t;ω) is the stochastic velocity field which is
derived from the physical model (Eq. 1), Pe is the Peclet
number, and Sφ

i

(φ1, φ2, φ3,x, t) are the reaction equations
for various biological variables which are given by the NPZ
biogeochemical model (Eq. 2). The initial conditions for this
model are here generated by solving for stable equilibrium
solution (Sφ

i

= 0, i = {1, 2, 3}) for each of the parameter
realizations.

3) Fish Model: We use the spatial ecosystem and pop-
ulation dynamics model (SEAPODYM) based on an ADR
formulation that focuses on spatial tuna population dynamics
[36]. It couples low-trophic-level (LTL) and high-trophic-level
(HTL) biological models. The physical and LTL biological
models, given in sections III-A1 and III-A2, respectively,
provide estimates of stochastic physical state variables such
as velocity (u(x, t;ω)), temperature (T (x, t;ω)), and primary
production (P (x, t;ω)). The primary production acts as a
source for the forage (F (x, t;ω)), after taking into account the
recruitment time and mortality, given by source S(x, t;ω) =
1
λP (x, t;ω) exp−mrTr(ω), where λ is the mortality, mr is a
loss coefficient, and Tr(ω) is the uncertain recruitment time.
Thus, the forage field is governed by,

∂F

∂t
+∇.(uF )− κ∇2F = −λF + S . (4)

Tuna tend to favor certain temperature ranges and high
food concentrations; the habitat index, given by I(x, t;ω) =
g(F (x, t;ω))φ(T (x, t;ω)− To), acts as a spatial field which
defines the favorability of location for the fish, here tune. We
take g(F (x, t;ω)) = F (x, t;ω) and

φ(T (x, t;ω)− To) = 1/(1 + exp−(T (x,t;ω)−To)) .

Gradients of the habitat index then affect the movement
of the fishes. This is captured by defining effective advec-
tion velocities, Ax(x, t;ω) = u(x, t;ω) + χ∂I(x,t;ω)

∂x and
Ay(x, t;ω) = v(x, t;ω) + χ∂I(x,t;ω)

∂y . Hence, the population
density (Pden(x, t;ω)) of tuna is then governed by an ADR
equation with the effective advection,

∂Pden
∂t

+∇.(APden) = ∇.(D∇Pden)F

−Z(I)Pden +R , (5)

where D is the diffusion coefficient; Z(I) is a habitat index
dependent mortality coefficient given by λz exp−λII ; and R



is growth rate. Again the initial uncertainty estimates for
F (x, t;ω) and Pden(x, t;ω) are here found by solving for
the stable equilibrium solutions of Eqs. 4 and 5 for each
realizations.

4) GMM-DO Bayesian Learning: The above coupled
physical-biological-fish PDE model is a high-dimensional
stochastic dynamical system encompassing multidisciplinary
state variables, rendering uncertainty quantification and
Bayesian inference a challenging task. Uncertainty propaga-
tion is performed using an efficient reduced-dimension un-
certainty quantification method, the Dynamically Orthogonal
(DO) equations [55, 56, 16]. To perform inference of the
augmented state variables and parameters, we make use of
a PDE-based machine learning framework developed by com-
bining the DO method with a Gaussian mixture model (GMM)
filtering algorithm [46, 45, 23], and implemented in a finite
volume framework [64].

5) Simulated Experiments and Dynamics: The experimen-
tal setup for the Bayesian learning consists of a 2-dimensional
domain with a seamount representing an idealized sill or
strait (Figure 1) that can create an upwelling of the nu-
trients and thus phytoplankton blooms. The seamount also
forces the advection of cold water upward, that leads to a
competing effect on the habitat index, thus limiting the tuna
to very specific depths. With the nonhydrostatic dynamics,
internal waves, recirculations, and other instabilities can also
be created downstream of the seamount, leading additional
biogeochemical-fish responses. This domain is inspired by the
Stellwagen Bank off of Massachusetts. Here, flow occurs from
left to right in the positive x-direction over the seamount.
For velocity, we apply a Dirichlet boundary condition for the
inlet, no-slip for the bump, free-slip at top and bottom, and
open boundary at the outlet. For the tracer fields, we use
zero-Neumann on all the boundaries. The parameter values
associated with the domain are provided in table I.

LD
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1D

XcD

x

y

Inlet

Outlet
U

Sensor Locations

Fig. 1: Two-dimensional spatial domain of the nonhydrostatic
flow past a seamount. All lengths are given in terms of
length scales (D & H) of the seamount, described by height
H exp(x−Xc)2 . Observation locations are marked by dots,
downstream of the seamount.

B. MSEAS Primitive Equation Ocean Model

The MIT Multidisciplinary Simulation Estimation and As-
similation System (MSEAS) primitive equation (PE) modeling
system [25, 42, 24] was used to produce hindcasts for the
Lakshadweep region. The Lakshadweep domain (Figure 7) off

TABLE I: Values of the parameters used in the cou-
pled nonhydrostatic physical-biological-fish model. For the
non-dimensionalization, the scalings used are: NT =
30 mmolN m−3, H = 50 m, D = 1 km, and time-scale
of 12.5 d.

Parameters Values
Domain

Horiz. length scale, D (km) 1
Vert. length scale, H (m) 50
Domain length, L (non-dim.) 20
Domain height, h (non-dim.) 2
Seamount center, Xc (non-dim.) 7.5

Physical Model
Inlet velocity, U (cm/s) 1
Eddy viscosity, νE (m2/s) 10
Inverse of Eddy viscosity based Reynolds number
(ΛRe)

unif(0.01, 1)

Diffusion constants in horiz. and vert., Kx & Kz

(m2/s; same for all tracers, except fish density)
0.01 & 0.001

Reference temperature, To (◦C) 15
Coeff. of expansion, α (kg/m3/◦C) 1.5×10−7

LTL-Biological Model
Light attenuation coeff. kw (m−1) 0.067
Slope of the P-I curve α ((W m−2 d)−1) 0.025
Surface available radiation Iol (W m−2) 158.075
Phyto. maximum uptake rate Vm (d−1) 1.5
Half-sat. for phyto. uptake of nutrients, Ku

(mmol N m−3)
1

Phyto. specific mortality rate Ξ (d−1) 0.1
Linear zoo. mortality rate Γ1 (d−1) 0.145
Presence or absence of quad. zoo. mortality term a unif{0, 1}
Quad. zoo.mortality rate Γ2 (d−1) 0.2
Zoo. max grazing rate Rm (d−1) 0.52
Ivlev constant Λ ((mmol N m−3)−1) unif(0.1, 0.2)
Fraction of zoo. grazing egested γ 0.3

Fish Model
Forage mortality, λ (yr−1) 4.6
Forage loss coeff. mr (day−1) 0.025
Recruitment time, Tr (day) unif(75, 100)
Fish mortality coeff. parameter, λz (day1) 0.8
Fish mortality coeff. parameter, λI (non-dim) 100
Taxis coeff., χ (m/day) 400
Fish recruitment rate, R (kg/m2/day) 4
Fish diffusion coefficient, Dx & Dy (m2/s) 0.1 & 0.01

Others
Number of realizations, NMC 10,000
State being observed Z

Observation error std. dev. (
√
R) 0.05

Number of obs. locations, NY 6
Observation start time (non-dim) 3
Time interval between obs. (non-dim) 2
Observation end time (non-dim) 11

the southwest coast of India has a 1.5 km horizontal resolution
and 70 vertical levels with optimized level depths (i.e., higher
resolution near the surface or large vertical derivatives). This
resolution was needed to develop and maintain complex lay-
ered features (not shown). The bathymetry was obtained from
the 15 arc-second SRMT15 data [58]. The sub-tidal initial
and boundary conditions were downscaled from 1/12 degree
Hybrid Coordinate Ocean Model (HYCOM) analyses [8] via
optimization for higher-resolution coastlines and bathymetry
[24]. Tidal forcing was computed from the high-resolution
TPXO8-Atlas from OSU [12, 13], by reprocessing for higher



resolution bathymetry/coastline and quadratic bottom drag (a
nonlinear extension of Logutov and Lermusiaux [43]). The
atmospheric fields consisted of the wind stresses, net heat flux
and surface fresh water flux from the 1/2 degree NAVGEM
3-hourly analyses [28].

IV. RESULTS

A. Bayesian Learning Experiments

To demonstrate the capabilities of the Bayesian learning
framework, we perform simultaneous estimations of state
variables, parameters, and parameterizations in the coupled
physical-biological-fish model using only very sparse obser-
vations. We employ so-called “identical twin experiments” in
which observations made from a simulated truth are generated
using a deterministic run with a particular set of parameter
values which lie within the uncertain realization space.

1) Experiment - 1: In the first main experiment, for the
physical model, uncertainty is in the initial conditions for the
state variables and the eddy viscosity parameter (ΛRe). We
consider the Boussinesq coupling between momentum and
density equation to be absent, with the density as a passive
tracer. In the lower-trophic-level biological model, uncertainty
is introduced by the ambiguity in the presence or absence
of quadratic zooplankton mortality functional (a ∈ {0, 1}),
along with the Ivlev grazing parameter (Λ). In the fish model,
the uncertainty comes from the presence of uncertain primary
production and the recruitment time (Tr) in the source term
of the forage equation (Eq. 4) and from uncertain physical
variables in the effective advection velocities (Eq. 5). The goal
is to learn all the state variables fields, along with the uncertain
parameters and parameterizations, through a few observations
of the Zooplankton field. These data are sparse in both space
and time, with the observations only available at six locations
every two non-dimensional times, starting at time T = 3
and ending at T = 11. The parameter values used in this
experiment, adapted from the literature, are given in Table I.

Figure 2 shows the prior of the system at T = 3, i.e.,
just before the first set of observations are available. There
are many differences between the mean and true fields of
all the state variables. The blue dotted line in the probability
plots of the parameters marks the true non-dimensional values.
The prior probabilities of these parameters are considered to
be uniform within a certain range. A phytoplankton bloom
develops in top-right of the seamount due to the upwelling
of nutrients from the bottom, which causes an increase in the
forage concentration. In-turn, the fish population increases. A
vortex also starts to develop in the wake of the seamount.
We provide the corresponding standard deviation fields in
Figure 3. There exists a large amount of uncertainty in the
exact location and size of both the bloom and the vortex.

In Figure 4, we provide the posterior of the system after
two observational episodes, i.e. at T = 5. By observing the
zooplankton field, we are not only able to correct the biological
model tracers and its parameters, but also the dynamics of the
flow, as seen by the clustering of the ΛRe distribution around
its true value. Though we do not see a large correction in the

(a) Physics model

(b) LTL-Biological model

(c) Fish model

Fig. 2: The prior state of the stochastic dynamical system
used in the experiment-1, at T = 3 (i.e. just before the 1st
observational episode). (a), (b), (c): The first two columns
consist of the true (left) and mean (right) field of the state
variables of the corresponding models. In the third column,
the first two plots show the variation of RMSE with time
for various stochastic state variables and parameters. The
remaining plots contain the probability distribution of the
uncertain parameters ΛRe(ω), Λ(ω), a(ω) (to learn the pres-
ence or absence of quadratic zoo. mortality), and recruitment
time Tr(ω) parameters, respectively. The white circles on the
zooplankton true field mark the observation locations.

fish model state variables, the probability distribution for the
recruitment time (Tr) begins to approach the true value. We
use the variation of Root Mean Square Error (RMSE) over



Fig. 3: The prior standard deviation of the stochastic dynamical
system used in the experiment-1, at T = 3 (i.e. just before the
1st observational episode).

time to judge performance. RMSE is the L2 distance between
the mean of the random variables in the stochastic run and the
simulated truth. The RMSE value for each of the variables at
every time is normalized by the corresponding RMSE value
just before the first assimilation step. Hence, our findings are
corroborated by the decrease in RMSE for the parameters and
state variables (except the temperature field), and the fact that
assimilating the first observation at T = 3 was not effective.

Finally, in Figure 5, we present the posterior after 5 ob-
servational episodes at T = 11. We unambiguously learn
all the parameter values from the data, even detecting the
absence of quadratic mortality term from our NPZ model. We
observe agreement between the mean and true fields for the
velocities, NPZ tracers, and the forage. It is interesting to note
that we make no correction to the temperature field. This is
perfectly as expected, because it does not affect the biological
tracers: since in the present simulation, temperature is a
passive tracer, the zooplankton data contains no information
about the temperature field: it is thus not identifiable from the
given data (also called the problem of identifiability [51]). The
fish population density is directly affected by the temperature
field, about which we have no information, but is indirectly
related to zooplankton through the primary production and
forage; hence, we are able to learn the fish population from
zooplankton data through the somewhat weak link of primary
production and forage.

2) Experiment-2: In this experiment, to show how the
overall learnability of the fish model from zooplankton ob-
servations can be improved, we consider the physical model
to be known, i.e. deterministic. However, we turn on the full
temperature-momentum Boussinesq coupling, hence leading
to more complex nonhydrostatic dynamics including internal
waves.

In Figure 6, we provide the posterior state of the system
directly after 10 observational episodes at T = 21, and
as expected, there is a better match between the GMM-DO
mean fields and the true fields for the fish model tracers.
The probability distribution for the Tr parameter has also

(a) Physics model

(b) LTL-Biological model

(c) Fish model

Fig. 4: Posterior state of the stochastic dynamical system
used in the experiment-1, at T = 5 (i.e. just after the 2nd
observational episode).

become concentrated around its true value. The effects of the
known internal lee waves are clearly visible on all coupled
physics-LTL-fish fields. As a result, the forage field is more
challenging to learn than before. Even though the physics is
known, due to the complicated nature of this flow dynamics,
a larger number of observational episodes were indeed needed
to achieve the learning objectives.

B. Realistic Simulations for the Lakshadweep Islands

The main fishery in the Lakshadweep islands is the live-bait-
pole and line tuna fishery, targeting Skipjack and Yellowfin.
We obtained fish catch data for four islands, Agatti, Kadmat,
Kavaratti, and Minicoy, in the region. The data was collected



(a) Physics model

(b) LTL-Biological model

(c) Fish model

Fig. 5: The posterior state of the coupled physical-biological-
fish model based stochastic dynamical system used in the
experiment-1, at T = 11 (i.e. just after the 5th observational
episode).

over a span of four years between January 2014 to 2018
under the community-based fisheries monitoring program of
the Dakshin Foundation in India [18]. Fish catch data includes
features such as date, total time and fuel, fish catch, etc. [30],
that can be used to compute a normalized catch-per-unit-effort
(CPUE) categorized into four categories, ranging from poor
(1) to very good (4) fish availability [66]. As we will show,
using our realistic ocean simulations for the region, we can
qualitatively explain trends in fish catch data with physical
ocean processes.

We performed a case study on March 2015, and related

(a) LTL-Biological model

(b) Fish model

Fig. 6: The posterior state of the coupled physical-biological-
fish model based stochastic dynamical system used in the
experiment-2, at T = 21 (i.e. just after the 10th observational
episode).

the changes in fish availability with physical processes. For
example, we show in Figure 7a the change in fish availability
for the islands of Agatti and Minicoy on March 15th, 2015.
There is an increase in fish availability for Agatti and a
decrease for Minicoy. This change in CPUE may be related
to our realistic MSEAS hindcast simulations. Indeed, we find
upwelling and downwelling processes near these islands—
there is a positive 1-day averaged vertical velocity at a depth of
52m around Agatti, while mostly negative vertical velocities
for Minicoy. In Figure 8, we also compute a 2-day backward
z flow map at 52 m depth, as computed by the PDE-based
method of flow map composition [33]: the result provides
the depths at which the water masses originated 48-hours
ago. Blue represents depths greater than 52 m indicating
Agatti experiences upwelling, while Minicoy is surrounded by
mostly red, signifying water originating from lower than 52 m
depths. Upwelling occurs at Agatti because the impinging
flow gets pushed above the surrounding bathymetry, while for
Minicoy flows go around the bathymetry, generating negative
vorticity and downwelling. As deeper water comes laden with
nutrients, it provides a fertile zone, resulting in increase in fish
availability at Agatti.



(a) Measured change in CPUE value

(b) 1-Day averaged simulated vertical velocity
at 52m

Fig. 7: (a) Change in CPUE value for the islands of Agatti
and Minicoy on 15th March, 2015. (b) 1-day averaged vertical
velocity at a depth of 52m on 15th March, 2015, as hindcast
by the MSEAS PE model simulation.

V. CONCLUSIONS AND EXTENSIONS

We provided a comprehensive overview of the current
state-of-the-art in fish modeling. Taking into account different
sources of uncertainty including initial conditions, parameters,
and parameterizations, we numerically integrate a stochas-
tic coupled nonhydrostatic ocean physical-biological-fish dy-
namical model in an idealized domain, using the Dynam-
ically Orthogonal (DO) methodology, an adaptive reduced-
dimension stochastic modeling technique. We then use a
rigorous PDE-based Bayesian learning framework to perform
a nonlinear inference of high-dimensional states containing
multidisciplinary unknown states, parameters, and parame-
terizations. The learning results are promising for use with
realistic simulations. We then investigate the capability of
realistic physical simulations at predicting the advection of
biogeochemical quantities relevant for fish populations. Specif-
ically, we analyze the changes in tuna fish concentration from
collected fishing data for the Lakshadweep islands in India,
by connecting these changes to upwelling and downwelling

Fig. 8: 48-hour backward z flow map at a depth of 52m on 15th

March, 2015, as hindcast by the MSEAS PE model simulation.

processes predicted to occur by the MSEAS primitive equation
ocean model. The result indicate that the realistic MSEAS
simulations can forecast the physics relevant to the regional
Lakshadweep ecosystem.

Possible future extensions involve the derivation and im-
plementation of the LTL-biological and fish stochastic model
within the recently developed probabilistic Dynamically Or-
thogonal primitive equation (DO-PE) regional ocean modeling
system [62]. The MSEAS DO-PE is combination of the
MSEAS PE model with the DO methodology to perform
uncertainty propagation in realistic ocean models. Finally,
employing Bayesian learning in conjunction with real fish
catch data using the PDE-based GMM-DO filter [46, 45, 23]
constitutes the subject of ongoing research.
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