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Abstract—We describe and investigate several Dynamic Mode
Decomposition (DMD) and reduced order projection methods for
regional stochastic ocean predictions. We then showcase some
of their results as applied to a 300-member set of ensemble
forecasts from the POSYDON-POINT sea experiment in the
Middle Atlantic-New York Bight region for the period 23-27
August 2018 as well as to a 42-day data-driven reanalysis from
the AWACS-SW06 sea experiment in the Middle Atlantic Bight
region for the period 14 August to 24 September 2006. We discuss
these results for use by autonomous platforms in uncertain
scenarios as well the combination of DMD with ideas from
large-ensemble forecasting and Dynamically-Orthogonal (DO)
differential equations.

Index Terms—reduced order model, Dynamic Mode Decom-
position, stochastic models, autonomous marine vehicles

I. INTRODUCTION

For autonomous unmanned platforms at sea, assessing the
regional uncertainties and predicting the likely scenarios for
the maritime environment around the platforms is a grand
challenge. In light of the high dimensionality of ocean models
and of the limited observations, such a probabilistic prediction
would indeed be most useful [1], [2]. Due to the operational
constraints including onboard power and space limitations,
new efficient stochastic reduced order models (ROMs) are
needed for onboard predictions. The regional stochastic ROMs
could then learn and assimilate information from both remote
comprehensive probabilistic ocean forecasts and sparse mea-
surements made by the platforms themselves.

To initiate this research, we first investigated several Dy-
namic Mode Decomposition (DMD) methods [3] for onboard
regional ocean predictions. DMD methods commonly utilize
a set of fixed-time snapshots from a single simulation or data
set over a period of time, and reduce this set of snapshots to
the dynamic modes. The modes are then utilized to forecast
further in time from the knowledge of a new initial condition.
Two challenges with classic DMD methods are that DMDs
are not commonly coupled with a dynamical model, e.g. the
original ocean partial differential equations (PDEs), and do
not commonly account for uncertainty. The reduced-order
dynamically-orthogonal (DO) differential equations approach
however directly works with the ocean PDEs and optimizes the
instantaneous accuracy of the uncertainty representation [4]-
[7]. A long-term research objective is thus to combine DMD
ideas of time-space reductions with reduced-order DO ideas,
so as to achieve adaptive reduced-order stochastic predictions
for onboard autonomous platforms.

In what follows, we first describe each of the DMD methods
we have evaluated as well as a few reduced order projection
and subspace methods. We then showcase some of their results
as applied to a 300-member set of ensemble forecasts from
the POSYDON-POINT experiment in the Middle Atlantic -
New York Bight region for the period 23-27 August 2018 [8]
as well as to a 42-day data-driven reanalysis from the Au-
tonomous Wide Aperture Cluster for Surveillance (AWACS)
and Shallow-Water 06 (SW06) sea experiments in the Middle
Atlantic Bight region for the period 14 August to 24 September
2006 [9]-[12]. Finally, we discuss these results for use by
autonomous platforms in uncertain scenarios, initiating the
combination of DMD and DO ideas.

II. METHODOLOGY
A. Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) was originally de-
veloped by Schmid [13], [14]. DMD allows for complicated
nonlinear data sets to be decomposed into spatiotemporal
coherent structures. The equation-free nature of DMD is
attractive because it can be used for a wide range of data and
provide useful diagnostic, prediction, and control methods. A
major promise of DMD is the ability to synthesize data from
simulations, experiments, or environmental measurements into
accurate Reduced Order Models (ROMs). There have been
many methods of DMD developed in its short history and
improvement of DMD methods is an area of ongoing research.

B. DMD Architecture

The DMD architecture normally considers a continuous-
time dynamical system

dx

dt
where x(t) € R™ is the vector representing the state of the
system at time ¢, p contains the parameters of the system, and
f(-) is the dynamics. We are typically concerned with systems
with n > 1 (n representing the size of the state space), as
such large systems correspond to the discretization of PDEs
at many discrete locations in space. We can further discretize
(1) in time or sample the solution at every At. Denoting the
discrete time index by subscript k such that x; = x(kAt),
measurements (or estimates) of the system are collected at the
discrete intervals from £ = 1,2,...,m. Numerical solutions
are typically used to predict future states solutions of (1) as

f(x,t; 1) )
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analytical solutions cannot often be determined. DMD uses an
equation-free idea where the right hand side of (1) does not
need to be known. Instead, past discrete solutions or direct
measurements are used as inputs by DMD to approximate the
dynamics and allow for future state prediction.

DMD constructs the approximate linear representation of

(1) as J
X

If the initial condition is x(0) = x1, then the solution is [15]

n
x(t) = Z ¢, exp(w; t)b; = ¢ exp(Nt)b, 3)
=1
where ¢, and w; are the eigenvectors and eigenvalues of
the matrix 8 and by contains the coordinates of x; in the
eigenvector basis. Methods for computing b are discussed in
descriptions of DMD methods in the following section. ¢ is
a matrix whose columns are made up by the eigenvectors ¢,
and €2 is the matrix whose diagonals are w;.

From the given continuous dynamics (2), it is possible to
construct a discrete-time system given by,

Xp4+1 = Axp, 4

where
A = exp(‘BAL). &)

Here, ‘B is the continuous-time dynamics matrix in (2) and
At is the fixed interval between time steps. The eigenvectors
and eigenvalues of A are referred to as the DMD modes (qu)
and DMD eigenvalues ();) respectively. The solution to (4)
can then be given by

Xpp1 = 3 d;Mb; = pA*b. (6)
j=1

A DMD method estimates the low-rank eigendecomposition
of matrix A such that

[ xk+1 — Axgll, (7

is minimized for times k = 1,2,...,m — 1. The optimality
holds over the training window in which A is constructed and
can be used for future predictions beyond the window.

To minimize the error (7) using the sample set of snapshots
from kK = 1,2,--- ;m, two matrices are formed (they will
be the inputs to the DMD algorithms). For a sequential set
of column vectors {x1,Xsa,- - ,X,,} where each x; € R",
matrices X and X' are formed as follows

|
X = X] X2 ot Xmpm—1 (8)
| |
. |
X' '=|x9 X3 - Xm]|. ©))
| |
Considering x;4+1 = F(x;) where F is the map correspond-
ing to the evolution of (1), DMD computes the eigenvalues

and

and eigenvectors of the best-fit liner operator A that relates
X’ =~ AX. If the size of the state space is small, A could
be computed as A = X’XT, where 1 indicates the Moore-
Penrose pseudoinverse. This is not normally practical when
the state space is large, so DMD methods provide alternatives
to find the eigendecomposition of A which then allows for
future-state predictions.

C. DMD Methods

In this paper, we utilize and compare several methods for
reduced-order regional ocean prediction. Although many of the
DMD methods can be used with imaginary inputs, we denote
the algorithms assuming real inputs since the ocean simulation
data we use are real numbers.

1) Projected DMD: For projected DMD the snapshots must
be in order (which is not a requirement for some other methods
such as exact DMD). The algorithm produces a low-rank ma-
trix projected onto Proper Orthogonal Decomposition (POD)
modes to improve efficiency when computing the eigenvectors
(DMD modes) and eigenvalues of the time-stepping matrix
A [3]. The DMD modes are projected onto POD modes, hence
the name projected DMD.

Algorithm: Projected DMD:
1. Arrange the inputs into sequential snapshot matrices X and
X’ as in (8) and (9).

2. Compute the compact Singular Value Decomposition (SVD)
of X such that

X~ U,X, VT (10)

where U, € R | ¥, € R"™*" and, V, € Rm=Dxr
is the reduced rank of X, and Vf denotes the transpose of
matrix V,.. The matrix U, (the left singular vectors) are the
proper orthogonal decomposition (POD) modes.

3. The matrix A could be computed as follows

A =XV, Ul (11)

In practice though, computing A is extremely expensive so
instead, it is much more computationally efficient to define a
matrix A which is the r X r projection of A onto POD modes
as

A= UIX'vV,nh (12)

where the left/right multiply of (11) by UZ/U,. projected onto
the POD modes.

4. The eigenvalues and eigenvectors of A are determined by

AW = WA, (13)

where column vectors of W are the eigenvectors of A and
diagonals of A are the corresponding eigenvalues 5\j. The
eigenvalues of A are also the non-zero eigenvalues of the
much larger matrix A. The projected DMD modes (which
are the estimated non-zero eigenvectors of the full matrix A)
are given by the column vectors of the matrix,

®=UW. (14)
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5. To perform state reconstruction or future-state prediction,
for convenience we define a matrix {2 whose diagonal entries
are made up by w; = ln(AAtj) . Then the predicted DMD solution
at some time ¢ is given by

x (t) = ®exp () b.

(15)

Here b is a vector of DMD amplitudes. If the initial snapshot
X7 is at time ¢, = 0, then x; = ® b and thus

b=®"x;. (16)

This can be expensive if the size of x; is large. As an
alternative, DMD amplitudes can be calculated much more
inexpensively using POD projected data [16]. If we consider
A defines the linear model for the dynamics such that X541 =
A %y, then we can compute the DMD amplitudes using the
following:

x; = ®b (17a)
U,x;, = X'V, X 'Wb (17b)
%, = UIX'V, = 'Wb (17¢)
%, = AWb (17d)

%1 = WAb (17¢)

b= (WA) 'x;. (17f)

2) Exact DMD: Exact DMD solves the same problem as
projected DMD but computes the exact DMD modes of A
rather than projecting onto POD modes [3]. These exact modes
are determined all while still avoiding explicitly computing A.
Indeed, as showed by Tu et. al. [17], the dominant 7 exact
eigenvectors of matrix A can be computed from the eigende-
composition of A. Besides determining the exact DMD modes,
as long as input pairs x; and X1 are in the same columns
of X and X'’ respectively, another benefit is that the calculated
eigenvalues and eigenvectors of A will be the same regardless
of the order of the snapshot pairs.

Algorithm: Exact DMD:
1. Arrange the inputs into snapshots matrices X and X’ as in
(8) and (9).

2. Perform SVD as in equation (10), compute A as in (12),
and perform eigendecomposition as in (13).

3. The exact DMD modes are given by the column vectors of
the matrix
=XV, 2 'W. (18)

4. The state solution at time ¢ can be predicted using (15).

3) Compressed DMD: Compressed DMD solves the Eu-
clidean norm minimization problem, but it compresses the
inputs first [18]. With matrices X and X’, it is possible to
compress the inputs, compute DMD on the compressed inputs
and reconstruct DMD modes and eigenvalues of the full-state
by linearly combining full-state snapshots according to the
compressed DMD transformation. This DMD computation is
much faster than DMD on full-state data particularly for large

data sets. It should be noted that the compressed DMD here
refers to the spatial compression.

Compressed DMD relies on two essential conditions. First,
the snapshots have to be sparse in some basis given by the
columns of ¥, so that X = WS and X' = ¥S’. Here, S
and S’ have sparse columns and are considered the sparse
portions of X and X’ respectively. The basis ¥ € R™*™ can
be Fourier, wavelet, or it can be the first p—dominant POD
modes found by the initial SVD (a potential implementation
strategy would be to re-evaluate the POD modes from time
to time to reflect the change in the dynamics) [19]. Next, we
consider a (pseudo)-measurement matrix C € RP*", where
p < n, that must be incoherent with respect to the sparse basis
W, i.e. rows of C are uncorrelated with columns of W. This
will hold true generally as long as C is a Gaussian random
measurement matrix. If we assume each column of X and X’
is in the same sparse subspace of the basis ¥, then we can
ensure that the POD modes and DMD modes will also be in
the same sparse subspace.

Algorithm: Compressed DMD:
1. Arrange the inputs into snapshots matrices X and X’ as in
(8) and (9).

2. Determine the reduced number of (pseudo)-measurements
to be used, p, and use a random matrix (or Gaussian random
matrix) C € RP*" to compress the inputs and obtain reduced
sets as follows:

Y =CXand Y =CX. (19)
3. Compute exact DMD on (Y,Y’) as in (10), (12), (13), and
(18) replacing X with Y and X’ with Y’ to obtain (Ay, W)
and Pv.

4. The full-state DMD modes can then be constructed using
P =X'VyEy' Wy (20)

5. With the DMD modes (®) and the DMD eigenvalues
(diagonal entries of Ay ), the DMD future-state prediction for
the full-state uses (15).

4) Total DMD: Conventional DMD methods often fail to
accurately capture the underlying dynamics when snapshot
data contain significant sensor noise. Total DMD projects each
input time snapshot and its sequential pair onto a joint sub-
space. When the sensor noise remains mostly in the orthogonal
complement of the joint subspace, this reduces noise in the
inputs to the DMD algorithm. This leads to a slight cost in-
crease but allows DMD to capture the dynamical descriptions
much more effectively. Conventional DMD methods (such as
Exact and Projected) minimize errors with respect to the time-
shifted matrix X’ only. This yields a biased analysis when the
snapshots exhibit noise. Total DMD, however, minimizes the
orthogonal distance between the linear fit involving both initial
X and final X’ states, allowing a de-biased analysis [20].

Mathematically, instead of minimizing the residual
X" —AX]|| as in other methods, Total DMD [20]
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minimizes

[ﬁ;] subject to X' + AX' = A(X + AX).
F

This total-least-squares problem can then be solved by
projecting X and X’ onto an augmented subspace created

from the matrix }){(, .

Algorithm: Total DMD:
1. Arrange the inputs into snapshots matrices X and X’ as in
(8) and (9).

2. Determine the best subspace by compact SVD an aug-
mented matrix Z

21

3. Project X and X’ onto the subspace, resulting in noise-
free /reduced inputs Y and Y’ as follows:

Y =XVzVZ and Y = X'V V3. (22)
4. Perform DMD using (10), (12), (13), and (18) except that
wherever X is used substitute Y and wherever X’ is used
substitute Y’. Instead of (18), (14) could be used if projected
DMD modes are preferred over the exact DMD modes.

5. Use (15) to compute the state space prediction at time t.

5) Optimized DMD: A pitfall of many of the DMD meth-
ods (e.g.projected, exact, compressed) is that the computed
eigenvalues are biased by the presence of sensor noise in the
inputs (only residuals of the linear system are minimized).
Total DMD is one of the de-biasing methods that tries to
overcome this by minimizing both the initial and final errors.
Alternatively, Optimized DMD [21] addresses the issues of
biases due to sensor noise by creating an optimization problem
where the identified linear operator has a fixed rank. The
standard DMD methods treat the data pairwise, snapshot to
snapshot, rather than as a whole, and favor one direction
(forward in time). Optimized DMD allows the reconstruction
errors to be distributed throughout, eliminating noise.

Algorithm: Optimized DMD:
1. Arrange inputs into a single matrix made up of all the
snapshots:
|

Xm

2. Suppose x(t) is the solution to x(t) = Bx(¢). With initial
condition x1, the analytical solution is:

|
X = X1 X2 (23)
|

x(t) = exp(Bt)x;. (24)

3. Assume that the matrix ‘B is diagonalizable such that B =
SAS™! where S € R"*" and A € R"*" for a target rank 7.
Therefore, x(t) can be rewritten:

x(t) ~ Sexp(At)STx;. (25)

4. If we let the diagonals of A be given by aj, s, ...,
and define the matrix basis function or time matrix (o) with
entries () ; = exp(a;ty) for m sample times ¢, XT can
be written:

X" ~ Q(a)B, (26)

where B; ; = S;; (STx;); are the entries of B. Here, S;; is
the j-th row and i-th column of matrix S and (S'x;); is the
i-th entry of the vector (Sfx;).

5. Suppose & and B are solutions to minimization of
||XT — Q(a)BH 1 (solved using a variable projection algo-
rithm [22], [23]).

6. Optimized DMD eigenvalues are defined by \; = &; and
the DMD modes are

1 A
¢ = BT (:,1), (27)
T(. ;
()|,
where BT (:,4) is the i-th column of BT
7. If we define b; = HBT(:,Z')H , future-state prediction at
time t; can then be made with the following equation:
Xk = Y _biexp(\;ti) ¢;. (28)

i=1

6) Streaming DMD: Most DMD methods view DMD as a
post-processing tool, meaning we require a large number of
inputs to extract spatial and temporal modes for analysis. There
are many instances where an online and incrementally updated
method would be advantageous. A streaming method, where
a snapshot pair is evaluated as it is received, can minimize
data storage [24]. Streaming DMD allows for DMD to be
performed incrementally as new snapshot pairs are available.
We arrange snapshot pairs x; € R™ and x;1; € R™ that are
spaced a fixed time interval apart (At) stored in X and X’ as
in (8) and (9).

First we must compute a matrix Qx € R"*" (where r is the
reduced rank of X and X’) whose columns form orthonormal
basis for the image of X. The DMD operator is then

K = QxKQx, (29)
where K is a 7 x r matrix defined by
K= Qx"X'X'Qx. (30)

The DMD modes and eigenvalues are the eigenvectors and
eigenvalues of K which may be computed from the much
smaller matrix K.

For streaming DMD situations we assume that we only have
access to a pair of snapshhots (xx,X+1) at time k. There is
then an alternate way to compute K to allow for it to be
incrementally updated as new snapshots are available. To do
this, we need to determine the orthonomal basis for X and
X' creating column matrices Qx € R™*" and Q) € R"*".

Next, we project X and X’ onto the respective orthogonal
def

base Y = Qx X and Y’ = Qx/TX'. Then, we can define
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new matrices C =Y'Y”, Gx =YY, and Gx/ = YY"
which allows us to rewrite K as

Advantages of this formulation is that K can be updated
incrementally and much less storage is required particularly
for streams where m is already extremely large and increasing.
Methods that learn subspaces and complete rank updates can
be used [6], [25]-[29].

3D

Algorithm: Streaming DMD:
As a new snapshot pair is acquired, an iteration to update the
DMD is performed as follows:

1. For the new snapshot pair x; and xj4;, compute the
residuals

ex = (I - QxQ%)xx (32)

and
ex: = (I - Qx/Qx/)Xk11

where I is the appropriate dimension Identity matrix.

(33)

2. If |lex]|| > € or |lex/|| > € (where € is a user defined
tolerance), the dimension of the corresponding basis, Qx
or Qx-, is increased by appending an additional column
ex/ |lex|| or ex:/ ||lex/|| respectively. Gx, Gx/, and C must
be zero-padded to maintain dimensional consistency.

3. If either basis, Qx or Qx, becomes too large (rr > rg),
compute leading eigenvectors of Gx and Gx/ (Wx and Wx/
respectively), then set

Gx « W1GxWx,
Gx +— WL, GxWx/,
C +— W%, CWx,
Qx + QxWx,

and
Qx/ + Qx'Wx'.

Here, 7( is a pre-specfied maximum allowable matrix rank at
which the truncation step occurs.

4. Next, set
Yi = QxXk (34)

and

Vi1 = Qi Xpi1. (35)
Then, let

Gx «+ Gx +yryt,

Gx'  Gx/ + Ye+1Yht1

and

C+ C+yrn1yi-

5. If DMD modes and/or eigenvalues are needed at the end
of an iteration, compute the eigenvectors and eigenvalues of

CG;( . If v; is the j-th eigenvector of CG; then Qxv; is
the j-th DMD mode.

6. Now with the DMD modes and eigenvalues, DMD future-
state prediction or reconstruction can take place with equations
(15) and (16).

D. Reduced Order Projection and Subspace Methods

The above DMD methods are commonly utilized when
high-fidelity model predictions are not available or too expen-
sive to compute, and when enough past observations are avail-
able to directly build reduced order models. These reduced
order models are then integrated forward in time to compute
the forecasts. In specific marine applications, high-fidelity
forecasts computed on land are however often available. In
this case, sending these forecasts efficiently to communication-
limited autonomous platforms is one of the challenges. One
approach to achieve this is to project the forecasts onto a suit-
able subspace and to only transmit the projected coefficients
to the autonomous platforms. There are many options for such
projections [3], [30], several of which based on singular value
decomposition (SVD), including adaptive SVD [31]-[33]. In
the stochastic case, the adaptive SVD methods become related
to DO decompositions [6], [34], [35]. We briefly review next
some of the classic projection and subspace methods.

E. POD, PCA, and EOF Projections

Proper Orthogonal Decomposition (POD) is a method
of analysis that identifies the dominant structures in a
dataset [36]. In the above DMD notation, the dominant POD
modes are the columns of U, that are determined from the
SVD of the matrix X, as in (10). These modes, or basis
functions, capture as much energy of the system as possible
[37]. POD is a commonly used model reduction technique,
often based on snapshot data only. In the POD literature,
Principal Component Analysis (PCA), and Empirical Orthog-
onal Functions [38] are often used to indicate similar basis
functions, but POD modes are not necessarily mean subtracted
as PCA models are (which is also refereed to as EOF analysis
when based on empirical data only [39]).

Due to the limited storage and power available on au-
tonomous vehicles, projection methods such as POD can
prove extremely useful for sending reduced forecasts to an
autonomous vehicle. Sending the full-state data is indeed often
impractical or impossible. To reduce the state space at time
k using POD modes, one option is to project the state-space
onto POD modes

X, = Ul'xy, (36)

where x; € R” and U, € R"*". The state space can be
reconstructed by x; = U, Xj. If the POD modes from a set
of past training data (columns of U,.) were pre-loaded onto a
vehicle, this subspace could be used to reconstruct full-state
data with future predictions that were inexpensively sent to the
vehicle. This is advantageous because in the ocean the full-
state dimensions are often O(10° —10%) where as the reduced
rank 7 is often O(10% — 103).
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F. K-SVD and other sparse Projections

K-SVD allows for dictionary learning to create a dictionary
for sparse representation of a signal [40] (note our notation
differs from the K-SVD literature for consistency with the
prior notation). There continues to be a growing interest in
the study of sparse representation of signals based on an over-
complete dictionary. Let x € R™ be an observed signal, and
the dictionary D € R"*¥ and y € R¥ are the representation
coefficients. We assume that without noise, x = Dy, where
the vector y is sparse. The goal of dictionary learning is to
learn an overcomplete dictionary, D, that contains K signal-
atoms. The sparse representation is the solution to

min [|y||, subject to x = Dy 37
y

or

min [|y||, subject to [[x — Dyl|, <€ (38)
y

where € is some small tolerance. To choose the best possible
codebook, D, we solve

min DY — X||3 subject to |lyill, < T (39)
where X = [x1, ..., Xy is the collection of m ob-
servations, Y = [yl, . ym} is the collection of m
representation coefficient vectors, and T is a constraint on the
number of non-zero entries allowed in a column of D. Now
the problem can be solved by alternating minimization

YU+ = min HD(j)Y - XHi7 subject to ||yill, < T-

’ (40)

and )
DU = min HDYUH) - XH : 41)

D F

In words, at each iteration the sparse representation Y and
the dictionary D are updated. The K-SVD algorithm may
be used for compression of large ocean data [41], [42] and
enable efficient transmission of ocean forecast and acoustic
data to remote vehicles with bandwidth-limited, disadvantaged

communications links. This is the subject of ongoing work.

III. RESULTS AND DISCUSSIONS

We now showcase the application of reduced order methods
to two regional stochastic ocean forecasting experiments.
Specifically, we apply several of the above DMD and SVD-
based reduction methods, and discuss these results for use by
simulated underwater vehicles in uncertain scenarios.

A. DMD Method Predictions

First, we consider a 12-hr forecast period (August 27, 2018
00Z) in the POSYDON-POINT experiment [8], and compare
the performance of the SST forecasts of the above DMD
methods with respect to the persistence forecast. All of the
DMD forecasts were made from the first 85 hourly ocean
simulation snapshots (00Z August 23 to 12Z August 26, 2018).
The true forecast is assumed to be that of the full ocean
modeling system [9].

The pattern correlation coefficients (PCCs) [43] for the
Sea Surface Temperature (SST) forecasts of DMD methods
are given in Table I. From forecast hour 2 and beyond, all
DMD methods beat persistence. The DMD algorithms were
also compared for salinity and velocity, and at different times
and depths, with similar results (not shown here). For its low
cost, Compressed DMD performed well. Overall, Exact DMD
performed best, followed by Compressed DMD, Optimized
DMD, and Total DMD.

PCC
Compressed
Projected| DMD (90% | Optimized [Streaming
Time (hr) | Persistence |[Exact DMD|Total DMD| DMD |Compressed) DMD DMD

0 1 0.99| 1 1] 0.99 1 1
1 0.98 0.99| 0.99| 0.99) 0.99 1 0.99
2 0.93 0.98] 0.97| 0.97| 0.99 0.98] 0.97
3 0.85 0.97| 0.94 0.94 0.97 0.95| 0.94
4 0.77 0.94 0.91] 0.91] 0.94 0.92] 0.91
5 0.69 0.91] 0.88| 0.88| 0.9 0.89) 0.88
6 0.63 0.88| 0.86) 0.86) 0.87 0.87| 0.86
7 0.58 0.85] 0.83| 0.83] 0.83 0.84] 0.83
8 0.55 0.82] 0.8 0.8 0.81 0.82] 0.8
9 0.53 0.8 0.77, 0.77, 0.78 0.8 0.77
10 0.53 0.78| 0.75| 0.75| 0.88 0.79) 0.75
1 0.54 0.76) 0.74 0.74 0.85 0.76) 0.74
12 0.55 0.75] 0.72] 0.72] 0.74 0.73] 0.72

TABLE I: Pattern correlation coefficients (PCC) of SST errors vs.
forecast time for the ensemble member 100 of the POSYDON-
POINT experiment, for seven DMD methods. Green indicates PCC
values above 0.8, blue PCC values between 0.6 and 0.8, and red PCC
values below 0.6.

B. Splitting the Domain into Regions

To improve future-state prediction using DMD, we found
that in most instances, splitting the domain into separate
regions where relatively distinct or independent dynamics
occurred was a good idea. In the following example, we
separate the domain in two: the shelf region and the slope
and deep water region. DMD methods were employed on
SST from each domain on individual ensemble members to
compute 12 hour forecasts using 85 hour training snapshots.
The results are shown in Fig. 1. The 12 hour future SST
predictions had PCC values of 0.54 for persistence, 0.61 for
Total DMD on the entire domain simultaneously, and 0.75 for
Total DMD on the shelf/deep water separately. The smaller
domain for each of the regions means that the cost of DMD on
the split domain and DMD on the entire domain were similar.
We found similar results on other tests cases. In general,
they imply that regional DMD forecasts may be improved by
using a multi-domain approach. This would prove beneficial
when dealing with autonomous vehicles operating in these
specific regions, without capabilities for much inter-vehicle
communication.

C. Training Size

We evaluated the effect of the size of the training set on
the performance of DMD methods. To illustrate results, we
show in Fig. 2 the zonal velocity errors from the persistence

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2021 at 21:31:00 UTC from IEEE Xplore. Restrictions apply.



| Total DMD Error

Persistence Error I Exact DMD Error

Persistence Error | DMD on Entire Domain DMD on Split Domain

Fig. 1: SST errors of 12 hour forecast for persistence (left), Total
DMD applied to entire domain simultaneously (center), Total DMD
on shelf/deep water separately (right) on Aug 27, 2018 00Z, for the
POSYDON-POINT experiment.

and exact DMD forecasts on September 16, 2006 19Z, for the
AWACS/SWO06 experiment. Here, for a 12-hr state forecast,
persistence results in a PCC of 0.83; for 300 snapshot training,
exact DMD results in a PCC of 0.87, and for 800 snapshot
training, exact DMD results in a PCC of 0.91. In general,
we find that the DMD methods provide better forecasts when
the number of training snapshots increases at the expense of
longer computation times.

Fig. 3: SST errors of 84 hour forecast for persistence (left) and Exact
DMD (right) on Aug 25, 2006 19Z using 199 training snapshots (with
108 DMD modes used) from the AWACS/SWO06 experiment.

used 100 training snapshots from the AWACS/SWO06 experi-
ment in order to predict zonal velocity for the next 48 hours
using Streaming DMD. The PCC values at PE levels 1, 5,
15, and 20 of predictions every 4 hours are shown from
Aug 22, 2006 07Z to Aug 24, 2006 07Z in Table II. The
DMD prediction significantly outperform the persistence for
nearly all times and layers after time O (except for around 36
hours). 3D predictions of other variables (SST and Salinity)
also outperformed the persistence forecast in the vast majority
of instances over the same time period.

Exact DMD Error
Truth pshots PCC of Zonal Velocity Forecast at Level Indi: d
o : onal Ve 2 at Lev — N
DMD i DMD i |DMD i DMD i DMD
[Time(hr) Sea Surface Level 5 Level 10 Level 15 Level 20
0] 1.00 1.00] 1.00 1.00] 1.00 1.00| 1.00 1.00] 1.00 1.00]
4 0.07 0.93| -0.02 0.93| -0.15 0.92} -0.27 0.92} -0.39 0.93|
-0.25 0.79 -0.32 0.82 -0.40 0.86} -0.45 0.89| -0.46 0.90
12] 0.66 0.84] 0.65 0.85 0.64 0.87| 0.65 0.88} 0.72 0.89
16) 0.30 0.79 0.25 0.78 0.19 0.75| 0.13 0.74] 0.09 0.77
! 20] 0.38 0.80 0.34 0.78 0.29 0.74] 0.23 0.72} 0.15 0.75
' 24] 0.72 0.90 0.71 0.91 0.70 0.91} 0.69 0.91} 0.68 0.93
28] -0.14 0.54] -0.20 0.55 -0.27 0.58| -0.35 0.64] -0.36 0.73
. . . 32 0.13 0.76 0.08 0.71 0.01 0.66} -0.05 0.68} -0.06 0.68
Fig. 2: Zonal velocity truth (left), errors for the persistence (second v 085 082 087 0.80 087 080 083 o081 091 083
from left) and exact DMD forecasts on Sep 16, 2006 19Z, for 4o 014 066 008 064 000 o065 008 067 018 072
. .. . . a4 -0.35 0.61] -0.40 0.62] -0.46 0.64] -0.54 0.67] -0.59 0.70]
the AWACS/SWO06 experiment, training with either 300 snapshots - PR TRT 00 o 0 0sl 067 083 070 0es

(second from right) or 800 snapshots (right).

Even though increasing number of training snapshots usu-
ally improves prediction skill, in most instances for the
AWACS/SWO06 experiment, around 100 to 200 hourly training
snapshots allowed for reasonable predictions of about 3 days
into the future for SST, Zonal Velocity, and Salinity. An 84
hour SST prediction error alongside persistence error using
199 training snapshots is shown in Fig. 3 to demonstrate this
skill. In the case of the 84 hour forecast on Aug 25, 2006
19Z, the persistence forecast has a PCC of just 0.15 and the
exact DMD forecast has a PCC 0.81. As would normally be
expected, the root mean squared error is also lower for the
DMD prediction (0.80 °C) compared to persistence (1.54 °C).

D. 3D Forecasting

The DMD architecture allows for three-dimensional (3D)
prediction provided that the 3D snapshots are arranged into
column vectors x; and xj1. In the following example, we

TABLE II: Pattern correlation coefficients (PCC) of zonal velocity
prediction vs. forecast time (from Aug 22, 2006 07Z to Aug 24, 2006
07Z) for the AWACS/SWO06 experiment, at PE levels 1, 5, 15, and 20.
DMD prediction was made using 3D zonal velocities and Streaming
DMD method with 100 training snapshots.

E. Ensemble Mean and Variance

We have shown some results from deterministic predictions
using DMD methods. We now consider stochastic PE forecasts
(consisting of 300 ensemble members) from the POSYDON-
POINT experiment. Variations among the ensemble members
are due to perturbations applied to the initial conditions
(ICs) but also due to different tidal forcing parameters and
atmospheric forcing fields used to force the different ensemble
members [8].

We compare three DMD approaches to make probabilistic
forecasts. For evaluation, we use the true mean and standard

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2021 at 21:31:00 UTC from IEEE Xplore. Restrictions apply.



deviation of all POSYDON-POINT experiment PE ensembles
at each grid-point at the specified times.

The first approach is a brute force Monte-Carlo method
where we perform DMD on each ensemble member indi-
vidually to make DMD predictions. The mean and standard
deviation of the DMD forecasts is then computed at each
grid point. With this approach, our probabilistic forecast is
the statistics (mean, variance, etc.) of the ensemble of DMD
forecasts, i.e. the statistics of the DMD forecasts.

In order to improve over the cost of performing DMD
on each ensemble, the second approach is a batch ensemble
forecast [26], [44]. Here, we first compute the DMD prediction
of ensemble member 1 at time ¢ and the DMD prediction of
member 2 at the same time. We then take the mean of these
two predictions at each grid point. We then compute the DMD
prediction of member 3 at the same time and determined the
mean of the predictions of members 1, 2 , and 3. We repeat
this for member 4 and so on, until the running mean of the
DMD prediction converged. This resulted in an estimate of the
mean DMD prediction at each grid point. For the variance field
forecast, we used Welford’s online variance algorithm [45] to
compute the sample variance at each grid point. The cost of
this method is much smaller than performing DMD on each
ensemble individually (for the POSYDON-POINT SST PE
ensemble this resulted in 41 of 300 ensemble members used).

The third approach first determines the mean and variance
of the ensemble members at each grid-point and training time
ti. We then employ the DMD algorithm twice, once for the
mean field and once for the variance fields. In this approach,
our probabilistic forecast is the DMD forecast of the mean,
variance, etc., i.e. the DMD forecast of the statistics.

We illustrate the above three approaches using 85 training
snapshots to predict the statistics of the SST field. We made
a 12 hour forecast of the SST mean and SST variance. The
SST mean error results are shown for August 27, 2018 00Z on
Fig. 4. The resultant SST PCC values when compared to the
true SST field mean are 0.51 for persistence and i) 0.75 for
the mean of Total DMD forecasts of all members, ii) 0.71 for
the mean of Total DMD forecasts using 41 members, and iii)
0.39 for the Total DMD forecast using the mean field as the
input. Due to nonlinearities, these results show that the DMD
prediction using the mean field as input performed the worse
followed by the mean persistence field. The mean SST Total
DMD forecasts using all members and 41 members, however,
performed similarly well (with the more expensive forecast
using all members logically having a slight edge).

In Fig. 5, we show 12 hour future SST standard deviation
fields for the truth (left), the Total DMD prediction using
all members individually with a PCC of 0.80 (second from
left), the 41 ensemble members Total DMD SST forecast
with a PCC of 0.62 (second from right), and the Total DMD
prediction using SST variance as the input with PCC of 0.82
(right). At first glance, the standard deviation fields appear
similar. Upon further inspection, we see some areas (e.g. near
the eastern most corner) where the 41 ensemble members
Total DMD SST forecast underestimates the standard deviation

SST Error
Mean of Total DMD Mean Total DMD
Predictions of All Predictions of 41

Total DMD of the
Mean

Mean of Persistence

Fig. 4: SST error from the true SST mean of 12 hour forecast for
persistence (left), mean of Total DMD forecasts of all ensembles
(second from left), mean of Total DMD forecasts of 41 ensembles
(second from right), and Total DMD forecast using mean field (right)
on Aug 27, 2018 00Z, for the POSYDON-POINT experiment.

while the other two forecasts tend to slightly overestimate.
DMD with the mean of the ensemble as input performed
poorly for the mean prediction compared to persistence but
performed reasonably well for predicting the variance. The
mean of DMD forecasts performed considerably better than
the persistence mean but would require a high number of DMD
forecasts to accurately predict the variance of the members.

SST Standard Deviation Field
Total DMD Prediction | Total DMD Prediction of
of All bl 41
=

ccose st poc:062
for ZAug 2018

Truth Variance Input for

Total DMD

ta Dovistion

True SST Fia st
for Z7Aug 2018 or 2R 2018

o 27-Aug 2018

Fig. 5: Standard deviation fields for true SST, the Total DMD SST
forecasts of all ensemble members (PCC of 0.80), the 41 ensemble
members Total DMD SST forecasts (PCC of 0.62), and the Total
DMD forecast using variance as the input (PCC of 0.82) on August
27, 2018 00Z for the POSYDON-POINT experiment.

FE. Ensemble DMD Modes

We utilized another approach to combine ensemble mem-
bers to make probabilistic DMD predictions [17]. With a total
of J ensemble members and m times, each snapshot can be
represented as x; where k is the snapshot time and j is the
Jj-th ensemble member. DMD can then be applied to matrices

X = {X} e Xp X X2 ceox] X;ﬂl} (42)

| \ \
X' = [X% ooxl x3 o x2  oxd XJ] (43)
|
This approach allows for extracting the DMD modes and
eigenvalues from the entire ensemble set (or a specified num-
ber of ensemble members) simultaneously. With the overall
DMD modes and eigenvalues, we can make prediction of a
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particular ensemble member using an initial condition (used
to calculate the DMD amplitudes).

Using 60 ensemble members and 85 hour training data from
the POSYDON-POINT experiment, we performed DMD on
SST values as discussed above. We then predicted SST values
for ensemble member 250 using the initial condition from
that ensemble. The PCC results are listed in Table III. The
PCC values are generally better for the SSTs predicted using
ensemble DMD modes compared to using exact DMD on the
individual ensemble member. For the 12 hour forecast, we can
see that persistence forecast of member 250 has a PCC of 0.48,
Exact DMD forecast of member 250 has a PCC of 0.57, and
Exact DMD forecast for member 250 using modes extracted
from 60 members is 0.67.

SST PCC

Exact DMD
Exact DMD
Using Only
Member 250/ DMD Modes

using
Ensemble
Time (hr) |Persistence

0 1.00 1.00 1.00
4 0.78 0.93 0.93
8 0.52 0.76 0.79
12 0.48 0.57 0.67

TABLE III: PCCs of SST prediction vs. forecast time (Aug 26, 2018
12Z to Aug 27, 2018 00Z) for the POSYDON-POINT experiment
ensemble member 250. Persistence forecast PCCs are consistently
lower than Exact DMD forecasts. The DMD forecasts were made
using DMD only on member 250 (center column) and using DMD
modes extracted using 60 members (right column). Using the DMD
modes extracted from multiple members provides better forecasts.

These results indicate that using multiple ensemble mem-
bers can capture the underlying DMD better than just using
a single member. Having the modes extracted using a portion
the ensemble reduces storage and computation costs compared
to using the full ensemble. This could prove advantageous for
unmanned vehicles. The DMD mode could be computed off
the vehicle, then a reduced number of DMD modes could be
sent to the vehicle for relatively inexpensive predictions with
reduced communication and storage needs.

G. Subspace Projections

We now illustrate the projections and compression of large
ocean forecasts into pre-defined or adaptive subspaces. The
projected forecasts, due to their much reduced dimension, can
be readily transmitted to platforms with limited bandwidth.
However, this reduction could affect accuracy. To show the
effectiveness of POD modes for such reduction, we used 85
hour sea surface zonal velocity training data from ensemble
member 150 of the POSYDON-POINT experiment for the
period 23-27 August 2018 to determine the “past” POD
modes. We then projected the subsequent 12 hour PE forecast
onto these past POD modes. The initial PE forecast was a
vector with 54960 entries (440 kB), the projected PE forecast
had just 22 entries (0.176 kB) using 90% variance-explained
criterion. The remote platform, pre-loaded with these 22 past
POD modes (less than 10 MB storage), would be able to

reconstruct the forecast. In Fig. 6, we show the error between
the truth full PE forecast and the 12 hour reconstructed POD-
projected forecast next to 12 hour persistence forecast error for
surface zonal velocity. PCC for the reconstructed projection is
0.81, while for persistence, it is 0.26. Results for a 24 hour
forecast using 73 hour training data (not shown), had a PCC
of 0.70 for reconstructed PE forecast onto past POD modes
and a PCC of 0.48 for persistence forecast.

Fig. 6: Surface Zonal Velocity errors for August 27, 2018 00Z for
the POSYDON-POINT experiment. The reconstructed 12 hour PE
forecast projection on past POD modes (left) with a PCC of 0.81
and the persistence forecast (right) with a PCC of 0.26.

IV. CONCLUSIONS

Several reduced order modeling schemes for regional ocean
forecasting onboard autonomous platforms at sea were de-
scribed, investigated, and evaluated. We evaluated Dynamic
Mode Decomposition (DMD) [3] methods for ocean PE
simulations by comparing several schemes including domain
splitting, adjusting training size, and utilizing 3D inputs. Three
different approaches that combine uncertainty with DMD were
also investigated and found to be practical, especially if we
employ either an ensemble of DMD forecasts or the DMD
of an ensemble of forecasts. Projecting/compressing high-
fidelity forecasts using schemes such as POD projection and
K-SVD for sparse representation also showed promise for
distributing forecasts to remote vehicles. Future work includes
improving and applying the discussed methods onboard ocean
platforms. The results indicates that augmenting the DO-
PE capability (that provides a best instantaneous stochastic
reduction) to a new DO-space-time dynamic reduction should
be useful, so as to provide the best reduction over a period of
time or for a specific forecast lead time.
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