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Abstract—Developing accurate and computationally effi-
cient models for underwater sound propagation in the uncer-
tain, dynamic ocean environment is inherently challenging.
In this work, we evaluate the potential of dynamic reduced-
order modeling for stochastic ray tracing. We obtain and
implement the stochastic dynamically-orthogonal (DO) dif-
ferential equations for Ray Tracing (DO-Ray). With stochas-
tic DO-Ray, we can start from non-Gaussian environmental
uncertainties and compute the stochastic acoustic ray fields
in a dynamic reduced order fashion, all while preserving
the dominant complex statistics of the ocean environment
and the nonlinear relations with ray dynamics. We develop
varied algorithms and discuss implementation challenges
and solutions, using direct Monte Carlo for comparison.
We showcase results in an uncertain deep-sound channel
example and observe the ability to represent the stochastic
ray trace fields in a dynamic reduced-order fashion.

Index Terms—Underwater acoustics, probabilistic ray
tracing, stochastic ODEs, ocean forecasting, tomography,
travel time, data assimilation

I. INTRODUCTION

Developing accurate and computationally efficient
models for ocean acoustics is inherently challenging
due to several factors including the complex physical
processes and the need to provide results on a large
range of scales [1-4]. Furthermore, the ocean itself is
an inherently dynamic environment within the multiple
scales [5, 6]. Even if we could measure the exact prop-
erties at a specific instant, the ocean will continue to
change in the smallest temporal scales, ever increasing the
uncertainty in the ocean prediction and affecting acoustic
performance prediction [7, 8].

In this work, we evaluate the potential of Reduced-
Order Models for stochastic ocean acoustics prediction.
We derive and implement the stochastic DO differential
equations for Ray Tracing (DO-Ray), starting from the
differential equations of Ray theory. With a stochastic
DO-Ray implementation, we can start from non-Gaussian
environmental uncertainties and compute the stochastic
acoustic ray fields in a reduced order fashion, all while
preserving the complex statistics of the ocean environ-
ment and the nonlinear relations with stochastic ray
tracing. We present the stochastic DO-Ray methodol-
ogy, develop varied algorithms, and discuss implemen-
tation challenges and solutions, using direct Monte Carlo
for comparison. We apply the DO-Ray methodology

to stochastic sound-speed profiles (SSPs), an idealized
uncertain deep-sound channel. Our results confirm the
ability to represent the stochastic ray trace field in a
reduced order fashion, including non-Gaussian statistics.

The present work in stochastic DO-Ray follows contri-
butions in stochastic modeling for underwater acoustics in
an uncertain ocean environment [8—10]. Related progress
in stochastic underwater acoustics includes Monte Carlo
sampling [11-14], Error Subspace Statistical Estimation
with ensemble schemes [15-19], and Polynomial Chaos
equations [20-24] techniques. However, large number
of realizations and expansion coefficients are typically
required to capture the multi-dimensional environmental
uncertainties making these techniques computationally
infeasible [25]. More recently, DO-based techniques have
been proposed to efficiently capture the environmental
uncertainties and predict the resulting acoustic fields
and their probability distributions. These include the DO
parabolic equations [26, 27], the DO wave equations
[28], and the reduced-order deterministic 3D parabolic
equations [28].

II. PROBLEM STATEMENT

The governing equations for acoustic ray tracing are
[2, 5]:

d§(s) 1
s = —ch(x) (1
) _ ewels) @

where &(s) and x(s) determine the ray trajectories
parametrized by the arc length s, and ¢(x) is the sound
speed along the ray trajectory. Equations (1) and (2) are a
coupled system of first-order ODEs. The initial condition
for x is self-evident as we consider a ray starting at
Xo = (z1 = 0,2 = depth) given an initial launch
angle 6, in an acoustic medium described by ¢(x), taking
a step of length ds. The direction a ray travels as it
marches along its arc length is % We can thus rearrange
equation (2) to establish the following initial conditions

for an individual ray’s components x and &:

cos 0g 0
— Q(Xo) . —
&0 = [?& f‘)’] > Xo {Source Depth} ‘ @)

97 8-MBBTRBReERDI68 1irde®RO M TEBRries. Downloaded on December 22,2022 at 20:54:22 UTC from IEEE Xplore. Restrictions apply.



Furthermore, the boundary conditions for equations (1)
and (2) are discussed in [5].

We now combine Ray Tracing with Dynamically Or-
thogonal (DO) Equations [29-32] for stochastic acoustic
computation. We start by explaining the intuition provided
by Figure 1.

(a) Single Ocean Wavefront

[T}

Realization at step “s.

(b) Multiple Ocean Wavefront
Realizations at step “s.”

Fig. 1: (a) Depiction of how for a single ocean, the wavefront

at a given step along all of the rays “s” can be represented by

2 vectors, each of length 2 X (#rays). (b) Depiction at the same

step along the rays “s,” for multiple ocean realizations, X and

= represent a field of wavefronts for which we can obtain a
reduced order representation.

For the reduced-order DO representation (in Einstein
notation) of the stochastic ocean acoustics fields, X and
=, we proceed as follows. We characterize each individual
ocean realization, essentially a sound speed field realiza-
tion, as the sum of the mean of the ocean fields with a
linear combination of the number of modes determined
necessary to capture the variability in the fields multiplied
by their respective stochastic coefficients [26, 33].

Due to the stochastic sound-speed field, the underwa-
ter sound propagation field will also be stochastic. We
decompose the acoustic rays state variables using a DO
decomposition, specifically:

x(s;m) = X(s) + %i(s)Bi(s:7) 4)
E(s;m) = €(s) + &;(s)vi(s3m) Q)

[

The subscript “7” pertain to the DO modes and “n”
pertains to a particular ocean realization event, and the
summation over all “” is implied.

The most straightforward and simplest method to ob-
tain wavefront realizations is through a Monte Carlo
implementation, hence solving for each ocean realization
in series or parallel. A DO-Ray methodology allows for
computing these realizations using a reduced representa-
tion of the stochastic field by solving governing ODEs for
the stochastic mean (X(s), £(s)), DO modes (X;(s), & (s)),
and DO coefficients (5;(s; 1), v:(s;1)).

Up to this point, we have discussed why stochastic
acoustic computation is relevant and why a Monte Carlo

approach could present computational challenges. We

are hinging the ability of our algorithm’s computational
accuracy on the presumption that we can represent the
variation of a field of ray traces, each corresponding
to a specific ocean realization, with a reduced-order
representation of DO modes and coefficients. Such an
approach and corresponding results have been shown to
be very efficient for acoustic parabolic PDEs [26, 27, 34].
For the present novel DO-ray approach, an empirical
assessment to evaluate if the stochastic ray trace field
can be reduced using a dynamic reduced-order approach
is completed in [35], along with a convergence study with
the number of DO modes.

In what follows, we derive the DO equations for ray
tracing, and summarize the DO-Ray algorithms discussed
in [35]. We also study some of the new computational
intricacies that we introduce with a DO-Ray implementa-
tion. We examine the opportunities for further reduction
in our representation, as well as some of the inherent
challenges of the implementation. Lastly we analyze the
computational cost of our DO-Ray implementation.

III. METHODOLOGY

The DO-Ray differential equations can be obtained by
inserting the truncated decompositions from equations
(4) and (5) in the governing ray equations (1) and (2).
For simplicity, when annotating state variables or ocean
realizations, we do not always include the dependent
variable. It is useful to introduce the following concepts:

¢ When we use the term stochastic fields (X and E),
we consider multiple realizations, typically O(103—
10*) and possibly much more, with each realization
characterized by an (x, &) pair forming a column of
the matrices X and =. After subtracting the mean of
all realizations, we perform a singular value decom-
position to obtain the DO modes and coefficients.
- For example, USVT = svd(X — E"[X]), where

the DO modes x are the columns of U, and
the DO coefficients, corresponding to a particular
realization, are the rows of V7.

« Realizations of stochastic state variables &(s;7) and
x(s; 1) dependent on “s” and correspond to a particu-
lar ocean realization. They also have their stochastic

6, 9,

representations for a par}icular realization “n”:
E(sim) =€ =€+ &
X(S;T]) =X=X+ izﬁl
e The stochastic means and DO modes are only a
function of “s: ~ ~
&i(s) =& and §(s) =&,
X(s) =X and X;(s) = X;
e« The DO coefficients are dependent on *“n”
correspond to a particular ocean realization:
Yi(sim) =i
Bi(s;n) = B

and
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o The sound speed along a stochastic ray depends on
position x(s;7) and on the ocean realization:

c(x(s3m);n) = c(x)

A. Evolution of the Stochastic Mean (dgd(ss), dfl(:))

We begin with the stochastic versions of (1) and (2).
Inserting the decompositions (4) and (5), we obtain:

d - = 1
?(5 +&vi) = —@VC(X) ©

g(i + ilﬂl) = C(X)S

We then take the expectation (E”) over all ocean realiza-
tions, and obtain:

_ B { _ C(i)QVc(x)}

erfin

g _
ds
pu
ds

to describe how the stochastic mean of the acoustic ray
trace field propagates.

B. Evolution of the DO Coefficients (w, W)

S

Starting again with (6), we subtract (7) and take the
projection onto &, (s) and X;(s), respectively, to obtain:

d’% <€Z7€j> <Cff;aé]> =
<— 1 Vc(x)—E”[—IVc(x)},é->,

c(x)? c(x)? J )
ag; . . ax; .
= X %j) +Bz-<ds,xj>

Applying the DO condition, we obtain:

dp;

D~ (etoe - 7[ee -5}

to describe the evolution of the DO coefficients.

C. Evolution of the DO Modes(dg g ), dxdgs))

Starting again with (6), we project onto the stochastic
space by multiplying with the stochastic DO coefficients

€))

(v&,Pk) and take the expectation. We then use the prior
equations to obtain:

Cf; - [E”[— ngzvc(x)]—

2|~ ap

N [a(x)&ﬁk} -

E" [<c(x)§ —E" [c(x)g] ,ij>ﬁk} %

to describe the evolution of the DO modes.

Ve(x)—

(10)

E" [ﬁlﬁk]_l 5

D. Stochastic DO-Ray Algorithms and Reduced-Order
Representations

We now first write the previously derived DO equations
in a realization matrix form.

1) Matrix Representations: Prior to computing and
evolving the stochastic field, we select two computational
parameters from which we will construct a reduced
representation:

« the number of rays, R, used to form the ray trace,

« the number of DO modes, M, necessary to capture
the variation between the H (# of oceans) different
traces.

Here we define the matrices used in the DO-Ray equa-
tions and specify the dimensions of each:

« X is comprised of all ray positions for all realizations
at a particular range-step s. X,. and X correspond
to range and depth components respectively. Both
X, and Xy are R x H size matrices. Similarly = is
comprised of all £ for all realizations at a particular
step along the ray. =, and =, correspond to range
and depth components respectively. Both E,. and E,
are R x H size matrices.

« Both X and = can be decomposed into their respec-
tive means, DO modes, and DO coefficients for a
particular range-step “s”

Xrd=Xrd+ Xr,dB
Er,d = £r’d + Er,dr

o The range and depth components of Er,d and X, g
are vectors of length R.

¢ DO mode matrices:
dim(E,.4) = R x M.

dim(X,q) = R x M;

o DO coefficient matrices: dim(B) = dim(T") = M x
H
« C= Cn:l:H(X) (C) R x H.
o« Cp= 1, dzm(Cx) =RxH.
ey _1.q(X)’
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e V,.4C = V, 4C(X), where V, and V, represent
the range and depth components of the gradients
respectively. dim(V, 4C) = R x H

2) Evolution of the DO Means: From Equation (7) we

can put the equation in matrix form:

d%, .
Xrd _ g {C. £ (& 4+ Endl“)} (11)
ds ’
and
i
Ard _ g [C. . vr,dC:| (12)
ds

3) Evolution of the DO Coefficients: From Equation
9):
dx;
ds
4% (13)

+X§(C.*5+C.* (B4T) — a)

[B] =X, (C.& +C. (E,T) —

and
D ir) = &7 (~E1[C,. # V,C] - C,. + V,C) .
+ & (—E"[C,. # VaC] — Cy. # V4C)

4) Evolution of the DO Modes: From Equation (10):

X, [1 -
s ;}Cw « (€, +2,I)BT
—Xr(1<cfZBBT)) COU{BT} !
dX 77'1 ) (15
Do [re, @+ 2mp7-
_ (1(dB
Xd(n<dsBT> Cov{BT}™"
and

=, 1

5 = |7 (Cax V:OTY)

. (1 /dl

ET<H(dSFT>)]CO {rry

P (16)
= | ((Cox VaOTT)

[1,

d<; (C(?;FT>):|CO’U{FT}_1

5) Reduced Order Representation of the Nonlinear
Stochastic SSP along Stochastic Acoustic Rays: Now
that we see the discrete matrix-form DO-Ray evolution
equations, it is apparent that though we have reduced
representations of the acoustic field, the computational
cost can be higher with a DO-Ray computation as com-
pared to a Monte Carlo approach. Hence, we now delve
into why our present DO-Ray implementation can be less
efficient than a direct Monte-Carlo scheme. Later, we
provide ideas on how this can be remedied.

At each step in the evolution, we presently compute
the sound-speed for each individual ray, for all ocean
realizations, at every step (H x R computations). This
inefficiency exists for both Monte-Carlo and DO im-
plementations; however, where we gained efficiency in
reducing our representation of the stochastic field, in the
above implementation, we lose some efficiency in having
to reconstitute all realizations in order to evaluate the
sound speeds for the next step along each advancing ray.
It is important to understand why we cannot obtain the
additional reduction in the sound-speed distribution with
the above equations, in order to provide guidance on how
one may be able to increase efficiency in future work.

Consider an arbitrary distribution of SSP measurements
for which we can form functions ci.p(X). As we de-
compose the stochastic fields of the acoustic ray state
variables, we could decompose c into its mean, DO modes
and coefficients:

c(x(s;m);n) = e(x(s;n)) + &;(x(s;m))e(n) - (17)
where our stochastic location field x along a stochastic
ray is both a function of the step along the ray and of the
ocean realization. Presently, the sound speed profiles are
frozen in time and are only dependent on the realization
selected and spatial location. Inserting the stochastic
representations of x in (17), we have:

c(X+x;8i(n);n) =¢(X + x;5:(n))+
¢ (X +x;8i(n)) () -

To exemplify the computational issues involved with
the nonlinear evaluation of the stochastic sound-speed
along stochastic rays, we discuss the evolution of the
stochastic mean (7) with the added reduced order in
c1.g(x). We start by inserting (18) into (6) and take
the expectations over all ocean realizations to obtain the
revised RHS of (7):

(18)

LHSe =
1

E"| — ;
Q@+&&m»+@@+&&m»%m0

V<C(X+ii6i(n)) +6j(x+5zi5i(n))aj(n))] , (19)

LHSy =
| (a4 53600) + 5 5+ 5k ) ) )|

Consider the latter equation of (19). Without going into
the details of computing the RHS, we need to compute
E7[(2(X 4+ %;8(n)) + &; (X + %;8;(n)) o (1)) €] or more
simply E"[c(x(s;7);n)€&]. Unless we have an equation
that describes the functional relationship between the
position and the sound speed along a particular ray, it
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is challenging to compute this expectation over all real-
izations. There are a few approximations that we discuss
next, with an increasing level of stochastic accuracy.

Local sound-speed mean approximation. First, we
could make an approximation for the stochastic ray traces,
with the most simple being X + X;/3; ~ X. With this
approximation we arrive at:

e(x(s;m)im) = o®) + 5 ®ag(n)  Q0)
and thus E"[c(x(s;n); n)] ~ E7[¢(X) +¢;(X)a;(n)]. This
zeroth-order stochastic approximation is similar to the
assumption we made with the example application of
EOFs in tomography in that we are assuming that per-
turbation in the rays across all realizations are relatively
small. Therefore the sound-speed for all realizations is
approximated as the sound speed for the mean profile plus
a DO decomposition. Consider a distribution of constant
positive sound speed profiles for which we have computed
the mean profile. When considering the ray paths after
some significant number of range steps the mean ray
position may be a decent approximation and the sound-
speed gradient exact as it is constant and positive.

Let’s discuss this zeroth-order approximation of the
sound-speed and imagine the situation where the sound
speed has a probability distribution of constant both
positive and negative sound speed gradients. Even though
we have a better approximation to account for the ray path
error in the different realizations, the effect of the sound
speed gradients on the ray path, where the mean is no
longer an accurate approximation, will result in inaccurate
representations of how the ray will bend. Using the mean
sound-speed gradient as an approximation results in an
altered ray path as the gradients may have opposite signs.

It is feasible to construct scenarios under which this
methodology could make the approximations above and
reduce the computational cost of the DO-Ray methodol-
ogy; however these could be overly specific and therefore
are not considered in this thesis.

This illustrates an important point when considering
the DO-Ray computational method based on the mean
ocean only. The mean ray propagation in a non-Gaussian
distribution could be nonphysical and is unlikely to ap-
proximate all of the realizations. We also note that the
dynamics of the DO modes are only basis functions that
describe the most variance and do not always correspond
to specific acoustic physical process. They are inter-
mediate computational quantities from which physical
realizations can be reconstructed by linear combinations
of the DO modes multiplied by the DO coefficients.

Local sound-speed Taylor-Series approximation.
Second, if we were to deem that the error in ray position
after the requisite number of steps would result in too
large an error in sound-speed computation, we could
consider consider first-order Taylor series expansion of

the sound-speed functions around X to better account for
the difference in ray position:

c(x) = c(X) + Ve(X) (x — X) (1)

We can then apply such a first-order relation to the mean
sound speed function and the DO modes function. This
appears promising in that we have a representation of the
x — X term: x;(;. Hence, applying a first-order Taylor
series expansion to both he sound-speed mean and the
DO modes, our first-order stochastic approximation is:

c(x) = (2(X) + VeX)x:8;) + (¢;(X)a; + V&, (X)a;X8;)
(22)
This is the first-order stochastic approximation. Similar
relations can be derived for the other terms in the DO
equations. Higher-order Taylor series can also be con-
sidered for additional accuracy in the stochastic space,
but the computational costs of using such approxima-
tion quickly become large. In general, first-order and
sometimes higher-order Taylor approximations have been
very useful and efficient for stochastic DO energy-optimal
and time-optimal path planning [36-40] as well as in
stochastic biogeochemical modeling and inference [41].
We can expect that they would be also very useful for
stochastic DO rays and this should be investigated.
Local sound-speed function. A third additional way to
achieve the desired reduction to through other stochastic
function approximation. However, it also results in a
significant loss of generality and assumes knowledge of
how the sound speed changes as a function of position
on the ray as opposed to depth or position in the water
column. Since the crux of the problem in evaluating the
nonlinear ¢(x(s;n); ) is not knowing the analytical func-
tional relationship and a simple (linear) representation, we
could create an accurate but easy-to-deal with functional
relationship with a stochastic dependency.
For instance, consider dfi(;) = constant, but assume
the best approximation of the stochastic slope of the
sound speed is to be determined (m = m + «;). Instead
of representing the stochastic sound-speed as c(x;n) =
¢(x) + ¢;(x)a;(n), we could represent it as:

c(X+x;8i5m) = (M + ) * (X+X;8:) + o
Thus, considering the mean as an example,
E"c(x(s;n);n)] = E"[(M + o) * (X + X 8;) + co]

= mx + xE" [Oéjﬂi}

(23)

(24)
The above equations could be optimized locally by least-
squares (variance as for DO) or by clustering [42]. For
equation (23), the result would remain a first-order ap-
proximation and be similar to the above first-order Taylor
series approximation which was an expansion around the
local range-dependent mean sound speed field.
Given an approximation for ¢(s), we could extend this
approach to any (higher-order) function that approximates
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¢(s) locally and incorporate a stochastic term. Legendre
polynomials can be used to approximate functions for
sound speed; however, the computational expense and
complexity increase with the increase of the order of
polynomials required to accurately represent the SSPs. All
all these approaches are related to local polynomial chaos
expansion [43, 44], which can become very expensive if
the order is increased and not so accurate if the stochastic
fields to be approximated are dynamic and variable [43].
6) DO-Ray Computational Cost vs Monte Carlo:
Consider a matrix form of governing ODEs (1) and (2):

dX,
4 Cox By (25)
ds
and
dET d
> = C$ * vndc . (26)
ds

For a paralleled Monte Carlo approach, the number
of floating point operations (FLOPS) to compute the
RHS of any of the range or depth component matrices
is R x H FLOPS. This is the exact same number of
FLOPS in computing the value inside the expectation
of (11) and (12), with the added number of FLOPS to
recombine the mean, DO modes, and DO coefficients.
Without even considering the cost of (13) through (16),
since our present DO implementation does not use the
efficient approximation of section III-D, the implemen-
tation is less efficient than Monte Carlo. To understand
why, we start with an ODE of a form where where a DO
implementation offers computational savings.

Consider an ODE of the form:

dX
— = AX
ds

as opposed to using the hadamard product (.x) as in our
computations, with A being a R X R matrix. The number
of FLOPS to compute the RHS of (27) is RH(R—1). If
we represented X in a reduced form the computation of
AX and AX are 2R? — R and 2R?M — RM respectively.
Therefore computational savings is achievable if we can
represent X with less than % modes.

This appears to be a moot point, but we still consider
why we cannot represent (26) and (27) in the form of
(27). Consider X,.(s;n) consisting of R rays:

ax,
ds

27)

=c(X)E,;

c1(s)
coX) =

(28)

cr(s)
In this case we could modify the equation to remove the
hadamard product making c¢(x) a diagonal matrix with
the rays sound speed at step s along the diagonal for each
ray. Observing the ODE:s in this form illustrates why our
present implementation will not provide computational

savings, the computations do not rely on mutual infor-
mation between rays.

Our use of a characteristic or Lagrangian approach
when we discretized the wave-front to discrete rays
traveling perpendicular to the wave, our derivation re-
moved any correlation in space between the rays. Since
each ray is computed independently without concern for
its neighbors, we cannot directly achieve computational
savings with the DO-Ray equations as implemented.

Based on the preceding paragraphs, it follows to ask,
“Why is a DO-Ray approach is worth implementing?”
Though in deriving the equations that would govern ray
trajectories we removed the opportunity to capture ray
inter-dependencies, that does not mean they are no longer
present. As each ocean SSP will govern how a group
of rays evolves, a Lagrangian approach allows us to see
how the energy propagates with a certain number of rays
to represent the field. We should be able to capture the
majority of the information about our wavefront with a
reduced representation of the rays. First, we could use the
reductions discussed in section III-D. Second, we could
utilize the wavefront information itself. We will indeed
show that a low rank representation of the discretized
wavefront can be marched in the ray domain (“s”) and
produce accurate representations of the stochastic field,
even if more expensive in our present implementation.
With this being possible, if we implement a DO wavefront
or a modified DO-Ray scheme, we could use reduce the
computational cost below that of Monte-Carlo.

7) Specific Stochastic DO-Ray Implementation: We
now outline the specifics of how we implemented the
stochastic DO-Ray equations. This outline will also fur-
ther crystallize the above computational discussion. Since
ultimately DO-Ray is compared to a Monte-Carlo imple-
mentation of the deterministic model, we list both.

For a Monte-Carlo integration of a determinisitc model
with uncertain initial conditions, we assume that each ray
is computed independently. The computation for all rays
in all ocean realizations can then be computed in parallel.
We refer to [35] for the algorithm.

Our present DO-Ray implementation for the stochastic
reduced-order model computes all rays and realizations in
parallel, but requires additional steps as outlined below:

o Perform Monte Carlo runs, create initial state matri-
ces X, and = and compute the reduced order repre-
sentations: mean, DO modes, and DO coefficients.

« Compute (or table look-up) c(s) and Ve(s) for all

rays in all realizations.

For s = 1:%?9“’

o Integrate the system of ODEs (Finite Differ-
ence or Runge-Kutta) to evolve mean, DO modes,
and DO coefficients, separately.

e Adjust DO modes and coefficients to ensure
orthonormal basis is maintained.
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o Identify reflections and modify DO modes,
and DO coefficients.

e Compute (or table look-up) c(s + 1) and
V(s + 1) for all rays in all realizations at the new
X(s+1).

o End.

The above two implementations are further discussed
and compared in [35]. Details about the computational
schemes and implementation of the DO-Ray algorithms
are also discussed in [35] including initialization, re-
orthonormalization, and treatment of the surface and
bottom boundary conditions.

IV. APPLICATIONS

We now evaluate the DO-Ray algorithm in an uncertain
deep sound channel sound speed field. We refer to [35]
for additional stochastic ray tracing examples in uncertain
ocean states.

Sound fixing and ranging (SOFAR) or deep sound
channels (DSCs) are the result of specific ocean sound
speed characteristics, principally a negative over a pos-
itive sound speed profile [45, 46]. Primarily observed
in the mid-latitudes, having a minimum sound speed
at deeper depths results in a condition where sound
propagates in a duct, not interacting with the surface
or bottom, making the only means of attenuation the
absorption in the seawater [2]. In a deep sound channel,
the acoustic energy of a source can be detected at ranges
of several tens to hundreds of kilometers.

Deep Sound Channel
SSP

1000
2000

3000 Deep Sound Channel Ray Propagation Example

Depth (m)

4000

5000

6000 L L L .
1500 1510 1520 1530 1540 1550 1560 1570

Sound Speed (m/s)

o 6 % ®
Range (km)

(b) Ray Trace

(a) SSP

Fig. 2: Example of acoustic rays propagating in a deep sound
channel with the acoustic source located at the deep sound
channel axis (depth of minimum sound speed). Ray traces
computed using 29 Rays evenly at evenly spaced angles between
+14°, 2nd-order Runge-Kutta with a Im step-size.

Consider a situation where the state of an upper column
is highly variable due to abnormal weather events or
abnormal seasonal variation. For underwater communi-
cation, detection and localization, it is of tactical signif-
icance to determine whether DSC propagation exists. A

simple way of examining the existence and extent of the
SOFAR channel would be to measure sound intensities at
the ranges where we would expect the energy to focus.
Here we consider that we have the means to measure
signals produced only from about 10 km distances.

SSP Distibution for
Deep Water Sound Propagation
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Fig. 3: From normal distribution of SSPs characterized by the
surface sound-speed with a mean at 1500m/s (b) from which
we can sample to obtain SSP realizations (a).
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Fig. 4: (a) From our SSP distribution, we sample 1000 SSPs. (b)
We computed the associated ray traces for the highlighted red
(mean), green and blue SSPs. Only the green SSP environment
of the three would result in a DSC. Ray traces computed using
11 Rays evenly at evenly spaced angles between +20°, 2nd-
order Runge-Kutta with a 1m step-size.

In this scenario, we characterize the uncertainty as
a Gaussian distribution of sound speed at the ocean
surface, with sound-speed characteristics becoming more
similar as depth increase (i.e. the SSP at deeper depths
is unperturbed by surface events). In Figures 2 and 3,
we show our sample distribution as well as computed ray
traces for the mean SSP and two profiles closer to the
edges of our Gaussian pdf. Only the SSP highlighted in
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green would result in a DSC propagation environment
where with the other two, over long distances the sound
is refracted back to the surface. The variability in the ray
propagation is still observed at shorter ranges, hence a
measurement at this range could confirm the existence or
non-existence of a DSC.

A. Capturing the Stochastic non-Gaussian Variability

Using the same computational schemes as those used
for the Constant gradient SSPs, we computed ray trace
ensembles with the stochastic DO-Ray equations and
algorithm, then computed specified realizations within
the ensemble using a deterministic implementation for
comparison. Figure 5 provides a qualitative representation
of the accuracy of the DO-Ray implementation. Again the
ray traces are nearly indiscernible at this range scale as
the DO-Ray overlays the deterministic solutions for all
of the selected ocean SSPs.

B. Convergence with Number of DO Modes

For this distribution of SSPs the variability in ray paths
result in positions ~1000 m apart; with just a few modes,
we can recreate realizations within 1 — 10 m accuracy.
In Figure 5, we showcase the first order convergence up
to about 200 of the available 2002 DO modes where
numerical errors begin to dominate the error.

V. CONCLUSIONS

Ocean acoustic computation is inherently challenging.
This is compounded when attempting to perform stochas-
tic computations with constrained resources. Innovative
computational techniques and reduced order models exist
with varying degrees of success. In this work, For the
first time, we combined the Ray Method for acoustic
computation with the stochastic Dynamically Orthogonal
Equations (DO-Ray). We derived the stochastic DO-
Ray differential equations, developed reduced-order algo-
rithms, and demonstrated the ability to predict stochastic
ray trace acoustics fields with the dynamically adaptive
reduced-rank DO representation. We also discussed the
use of local approximations to represent the nonlinear
ray to sound-speed function transformation, including
local sound-speed mean, sound-speed Taylor-Series, and
sound-speed function. We applied DO-Ray to an idealized
stochastic variable Deep Sound Channel and refer to [35]
for other examples. Based on these results, we find that
stochastic Ray-Trace field forecasting is feasible with
a reduced rank-representation. The use of level-sets to
capture all stochastic rays at once is also [47].

Future extensions of this work include applications in
realistic 3D ocean acoustic environments, in addition to
complementing this work with the use of level-sets to
capture all stochastic rays at once [47]. Since ray trajec-
tories are highly dependent on the ocean floor and surface
characteristics, the ability to capture these variations in a
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Fig. 5: Left panels: one ensemble member of sound speed
distribution. Upper right panels: the DO-Ray computed ray
trace (50 DO modes) overlaid with deterministic (Monte Carlo)
traces. All traces computed using with 1001 Rays (26 Plotted)
at evenly spaced angles between +20° with a 1m step-size. The
deterministic model uses 1st-order Forward Difference compu-
tational scheme. Lower right panels: convergence for selected
realizations of the DO-Ray methodology with the deterministic
solution. First order Convergence Line plotted for Reference.
Deterministic traces computed using our deterministic model
with 1001 Rays evenly at evenly spaced angles between +20°,
Ist-order Forward Difference with a 1m step-size.
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stochastic computation would advance the practical appli-
cation to stochastic shallow water and under-ice acoustic
predictions. Some potential approaches for incorporating
the bathymetry and seabed uncertainties are proposed in
[26, 27, 34], and adapting such approaches for the DO-
Rays equations is an active research area.

Lastly, this methodology could be coupled with
Bayesian data assimilation to improve the forecasting
of the ocean and acoustic [3, 8, 48-51]. This offers
advantages over classic tomography [45], matched field
processing [52, 53], by allowing for the richer dynamics-
based estimation of non-Gaussian statistics using stochas-
tic differential physical laws. The results will be a more
complete characterization of the coupled probability den-
sities and a more powerful joint estimation of the ocean
and acoustic states and their posterior uncertainties, com-
bining multivariate observations with dynamical models
based on principled information theory.
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