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A B S T R A C T

Autonomous underwater vehicles (AUVs) operate in the three-dimensional and time-dependent marine environ-
ment with strong and dynamic currents. Our goal is to predict the time history of the optimal three-dimensional
headings of these vehicles such that they reach the given destination location in the least amount of time,
starting from a known initial position. We employ the exact differential equations for time-optimal path
planning and develop theory and numerical schemes to accurately predict three-dimensional optimal paths
for several classes of marine vehicles, respecting their specific propulsion constraints. We further show that
the three-dimensional path planning problem can be reduced to a two-dimensional one if the motion of the
vehicle is partially known, e.g. if the vertical component of the motion is forced. This reduces the computational
cost. We then apply the developed theory in three-dimensional analytically known flow fields to verify the
schemes, benchmark the accuracy, and demonstrate capabilities. Finally, we showcase time-optimal path
planning in realistic data-assimilative ocean simulations for the Middle Atlantic Bight region, integrating the
primitive-equation of the Multidisciplinary Simulation Estimation and Assimilation System (MSEAS) with the
three-dimensional path planning equations for three common marine vehicles, namely propelled AUVs (with
unrestricted motion), floats (that only propel vertically), and gliders (that often perform sinusoidal yo-yo
motions in vertical planes). These results highlight the effects of dynamic three-dimensional multiscale ocean
currents on the optimal paths, including the Gulf Stream, shelfbreak front jet, upper-layer jets, eddies, and
wind-driven and tidal currents. They also showcase the need to utilize data-assimilative ocean forecasts for
planning efficient autonomous missions, from optimal deployment and pick-up, to monitoring and adaptive
data collection.

1. Introduction

The problem of planning feasible, safe, and optimal paths in com-
plex and dynamic environments has received much attention from
many branches of science and engineering. In the most general sense,
‘optimal path planning’ refers to a set of rules provided to an au-
tonomous robot such that the robot can navigate from some initial con-
figuration to the desired configuration in an optimal fashion. Typically,
such optimality is governed by some objective function. Autonomous
robotic platforms are becoming ubiquitous day by day, and are used
to perform a variety of tasks with different levels of complexity. This
leads to a wide range of objective functions. Principled path planning
theories that apply to several situations are thus not common.

Optimal navigation of autonomous underwater vehicles (AUVs) is
crucial for many applications, including security, search and rescue,
monitoring, and data collection. Underwater gliders and floats are ideal
for ocean sampling due to their long-range endurance and significant
autonomy. However, these vehicles typically travel at relatively slow
speeds, in many cases comparable to that of the local ocean cur-
rents (Schmidt et al., 1996; Elisseeff et al., 1999; Yan et al., 2014).
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Hence, the effect of currents on their net motion cannot be neglected
and should be modeled accurately. The ocean environment in which
these vehicles operate is however a highly dynamic system with high
spatio-temporal variability (Cushman-Roisin and Beckers, 2011). It is
therefore challenging to develop accurate and efficient methodolo-
gies to predict paths that optimize a desired objective function while
modeling both the dynamic environment and the vehicle constraints.
Achieving such principled path planning in three dimensions, integrat-
ing data-assimilative ocean modeling with model predictive control, is
the motivation of the present work.

Existing works in underwater path planning have mostly stud-
ied two-dimensional (2D) or quasi-two-dimensional scenarios (Kulka-
rni, 2017). However, ocean currents often differ greatly with depth
(Cushman-Roisin and Beckers, 2011). In order to reach the destination
in optimal time, underwater vehicles need to utilize favorable currents
and also avoid adverse currents by diving or rising to appropriate
depths. Underwater path planning in fully three-dimensional (3D) real
ocean domains is thus of great importance. Predicting ocean cur-
rents over real domains is needed for such planning but numerically
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challenging. Oceans are complex dynamical systems, with multiple
time-scales from seconds to years, and length-scales from millimeters
to hundreds of kilometers (Cushman-Roisin and Beckers, 2011). Ro-
bust and accurate numerical schemes, and data assimilative models,
are thus needed (Lermusiaux et al., 2006b; Lermusiaux et al., 2006;
Pinardi et al., 2017). Further, there are different types of marine
vehicles with specific degrees of freedom and propulsion constraints.
Typical marine gliders used for sampling data commonly perform a
sinusoidal motion (Rudnick et al., 2004; Testor et al., 2010; Javaid
et al., 2014) whereas floats that drift with ocean currents are only able
to perform vertical motion by adjusting their buoyancy (Roemmich
et al., 2009; Kobayashi et al., 2012). In order to plan feasible, safe,
and optimal trajectories for such vehicles, one needs to respect these
specific propulsion constraints. The desired attributes listed above are
crucial to optimal path planning in real ocean scenarios.

In the present work, we start from the governing path planning
equations (Lolla et al., 2012, 2014a,b; Lermusiaux et al., 2016). They
account for the effects of the dynamic environmental flow field on
the net vehicle motion. They predict exact globally optimal paths
without heuristics (Lolla and Lermusiaux, 2020), are computationally
efficient (Lolla et al., 2012), and can account for unsafe/forbidden
regions and stationary or moving obstacles (Lolla et al., 2015). The
effectiveness of the algorithms was experimentally demonstrated in
multiple sea-trials (Subramani et al., 2017b; Edwards et al., 2017;
Mirabito et al., 2017). Results were extended to predict the paths
that minimize the energy usage (Subramani and Lermusiaux, 2016;
Subramani et al., 2017a) or maximize the quality of data collected
by the vehicles (Lolla, 2016; Lermusiaux et al., 2017). Presently, for
the first time, we address both fully 3D realistic ocean setups and 3D
propulsion constraints. We develop the theory and numerical methods
to handle the complexities of dynamic 3D flow fields and motion
constraints on realistic marine vehicles. We verify the schemes in
benchmark flows. We then analyze results in the Middle Atlantic Bight
region. We describe the regional dynamics and our data-assimilative
ocean modeling system. We finally showcase the impact of the dynamic
3D circulation features on the evolution of the reachability fronts and
time-optimal paths for several common types of marine vehicles.

The paper is organized as follows. We first briefly review prior
results on 3D path planning in static and dynamic environments. In
Section 2, we state the problem and provide the equations that gov-
ern the optimal trajectories. Extensions to motion-constrained marine
vehicles in 3D domains are derived in Section 3. In Section 4, we
develop numerical schemes to achieve high accuracy in real ocean
domains. In Section 5, we verify the path planning in 3D analytical
benchmark flows. In Section 6, we describe the dynamics and modeling
of the Middle Atlantic Bight region, and complete realistic simulations
to compare and contrast path planning for common types of marine
vehicles. The summary and conclusions are in Section 7.

1.1. Prior progress in optimal path planning in three-dimensional and real-
istic domains

Optimal path planning in 3D domains is a complex and challenging
problem, and hence algorithms for the same have not been stud-
ied extensively. However, utilizing environmental flows and planning
feasible (although sub-optimal) paths in three-dimensions has been
elaborately studied by several researchers from a wide variety of areas.
For example, Kiraly et al. (2004) compute feasible 3D trajectories for a
bronchoscope in various airways inside the human body while Siddon
(1985) plans paths for 3D computed tomography in radiology.

Nature also serves as a motivation for optimal planning problems.
For example, Richardson (2012) and Sachs et al. (2013) mimic the
dynamic soaring of the Albatross for autonomous aerial vehicles in
order to optimize energy consumption. The Albatross utilizes the lee
eddies located downwind of sharp-crested waves to increase its speed.
Such a maneuver requires minor adjustments to the trajectory but saves

significant energy. Other similar dynamic soaring patterns to minimize
the energy spent during travel are also studied by Bonnin (2016) and
Zhao (2004).

Planning feasible and collision-free trajectories for aerial vehicles is
an active field, with many established approaches. Lozano-Pérez and
Wesley (1979) use a network-based scheme to plan paths in domains
with forbidden regions and obstacles. Mittal and Deb (2007) attempt
to plan feasible paths offline using evolutionary algorithms. Wong
and Fu (1986) utilize a network-based scheme on two-dimensional
sections of the 3D domain for computational efficiency. This idea of
planning collision-free paths is also extended to larger aircraft and
congested airports, for which most results rely on optimization tech-
niques such as integer programming. For example, Richards and How
(2002) use mixed integer linear programming to plan collision-free
aircraft trajectories, whereas Frazzoli et al. (2001) utilize semi-definite
programming. Prete and Mitchell (2004) and Krozel et al. (2006)
employ network-based approaches to compute safe aircraft trajectories
that minimize travel in time-varying 3D hazardous weather regions.

In the ocean domain, Pereira et al. (2013) provide an algorithm to
compute 3D underwater vehicle paths that minimize the risk of colli-
sion with ships and land. They use the Regional Ocean Modeling System
for oceanic flow fields and a Markov-decision-process-based approach
and expectation–minimization to decrease the risk of collision. Smith
et al. (2010) further extend this methodology to tracking a dynamically
evolving ocean feature while minimizing the risk of collision with ships
and other possible obstacles. Petillot et al. (2001) utilize data from an
onboard sonar sensor to plan paths that minimize the risk of collisions
with objects and obstacles in the ocean.

A common approach towards optimal path planning is to use a
myopic optimization, where the vehicle chooses the short-term optimal
option among other options. Global optimality is then not guaranteed,
but the approach is nonetheless useful. For example, Zamuda and Sosa
(2014) consider a glider that gathers data while following a path to-
wards some set destination where a short-term opportunistic sampling
algorithm is used to maximize the quality of the data collected. A
continuum viewpoint has also been used for 3D robotic path planning
such as the potential field method, eliminating the need for network-
based models (Connolly et al., 1990; Wang and Chirikjian, 2000). All
obstacles are then assumed to exert a repelling force whereas the target
position exerts an attractive force on a potential function. Heuristics are
needed to account for the effect of external flow fields on the computed
path.

Finally, to plan glider paths in 3D ocean environments, Garau et al.
(2014) used the A⋆ algorithm (Hart et al., 1968) with examples in the
western Mediterranean sea. Even though the A⋆ algorithm is efficient,
its use of heuristics does not guarantee global optimality. Witt and
Dunbabin (2008) build upon Kruger et al. (2007) to find paths that min-
imize the energy spent by an autonomous vehicle in 3D ocean domains.
This is achieved by using the present current to the greatest advantage.
This local method efficiently chooses an energy optimal path amongst
the considered candidate paths. However, as all the possible paths
are not considered, strict global optimality is not ensured. For more
extensive reviews, we refer to Kulkarni (2017).

2. Optimal path planning using the level set method: Theory

In what follows, we formally describe the problem statement and
introduce the exact time-optimal path planning equations that establish
the theoretical foundation. Further details can be found in Lolla et al.
(2014b), Lolla (2016) and Lolla and Lermusiaux (2020).

2.1. Problem statement

Consider the motion of a vehicle from the start point (𝐱𝑠) to the
destination (𝐱𝑓 ) in the domain 𝛺 ⊆ R3. Let the trajectory of the
vehicle be given by 𝐗(𝑡). Fig. 1 illustrates the velocity components of
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Fig. 1. The vehicle, at position 𝐱 at some time 𝑡, experiences the external velocity
𝐕(𝐱, 𝑡), e.g. the ocean currents (cyan arrow), and steers itself along chosen heading 𝐡̂(𝑡)
with speed 𝐹𝑣(𝐡̂, 𝑡) (red arrow). The net effective velocity 𝑉𝑒 of the vehicle is the vector
sum of the advective velocity field (𝐕) and the steering propulsion of the vehicle (𝐹𝑣𝐡̂).

the vehicle as it moves from the start point to the target. The first
component is the vehicle propulsion in the direction of the heading 𝐡̂
with a speed 𝐹𝑣, that is bounded by zero and a maximum speed, i.e.
0 ≤ 𝐹𝑣 ≤ 𝐹 (𝐡̂,𝐗, 𝑡). This latter maximum nominal propulsion speed
of the vehicle, denoted by 𝐹 (𝐡̂, 𝐱, 𝑡), is in general a given function of
the heading direction (𝐡̂), spatial location (𝐱), and present time (𝑡).
The vehicle is also forced by a dynamic external velocity field 𝐕(𝐱, 𝑡) ∶
𝛺 × [0,∞) → R3. The second velocity component of vehicle is thus the
advection by the velocity field 𝐕(𝐗(𝑡), 𝑡), i.e. the ocean currents.

The effective velocity experienced by the vehicle is given by,

𝐕𝑒(𝐗(𝑡), 𝑡) =
𝑑𝐗(𝑡)
𝑑𝑡

= (𝐹𝑣𝐡̂ + 𝐕(𝐗(𝑡), 𝑡)). (1)

In nautical jargon, the magnitude of the horizontal component of the
effective velocity (𝐕𝑒) is often referred to as ‘speed over ground’ and the
vehicle speed 𝐹𝑣 as ‘speed through water’. We denote the ‘first arrival
time’ function by 𝑇 (𝐱 ∶ 𝐱0, 𝑡0): it is the time at which the vehicle reaches
any specified point 𝐱 for the first time, given that it started from 𝐱0 at
time 𝑡0. Clearly, we have,

𝑇 (𝐱𝑠 ∶ 𝐱𝑠, 0) = 0 and 𝐗(𝑇 (𝐱𝑓 ∶ 𝐱𝑠, 0)) = 𝐱𝑓 . (2)

It is proven that in order for the vehicle to reach the desired destination
in the minimum amount of time, it must travel at the maximum
allowable speed (Lolla and Lermusiaux, 2020; Lolla, 2016). We thus
wish to compute the vehicle heading (𝐡̂) as a function of time that yield
minimum travel time for the vehicle between 𝐱𝑠 and 𝐱𝑓 , subject to the
constraints imposed by Eqs. (1) and (2). Hence, we search for 𝐡̂(𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙
defined by,

𝐡̂(𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = argmin
𝐡̂,𝐹𝑣

𝑇 (𝐱𝑓 ∶ 𝐱𝑠, 0). (3)

Note that in the above formulation, the optimal heading choice
𝐡̂(𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is also a function of the position of the vehicle along the
optimal trajectory, i.e. 𝐗(𝑡). However, as this position itself is func-
tion of time (once the optimal path is known), we drop this implicit
dependency of 𝐡̂(𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 on 𝐗(𝑡).

2.2. Approach

Exact time-optimal path planning hinges upon the concept of reach-
ability (Lolla, 2016). The reachable set is the set of all the points that
can be visited by the vehicle by the considered time, given the starting
point of the vehicle. At any time, all the points that lie on the boundary
of the reachable set, i.e. the reachability front, have been reached for
the first time: the value of their first arrival time function is the present
time.

By keeping track of the reachability front at all times one can
determine the time when this front reaches the target for the first time,
which is the minimum travel time between the start position and the
target. A path traced by a point that always travels on the reachability

Fig. 2. Evolution of the reachability front in 3 dimensions. Two sample positions (𝐱1
and 𝐱2) and headings at these positions are illustrated (tangent planes to the reachability
front at these positions shown for reference). The dashed lines sketch the trajectories
(within the reachable set) that optimal particles follow to reach 𝐱1 and 𝐱2.

front and reaches the target is exactly an optimal path we wish to
compute (note that there can be multiple optimal paths). This broadly
divides the problem in two sub-parts: (i) first, the forward evolution of
the reachable set and front, and (ii) second, once the reachability front
reaches the destination, the optimal trajectory traced backwards in
time. We refer to these sub-parts as ‘forward evolution of the reachable
set’ and ‘backward tracing of the optimal path’, respectively. Fig. 2
pictorially depicts the reachability front (analogous to a first wave
front), and the possible heading choices at two different positions. This
two step approach involving the forward evolution of the reachability
front followed by backward tracing of the optimal trajectory (which is a
characteristic passing through the destination of the PDE governing the
reachability front evolution) has been proven to be exact, even when
the external flow speed is larger than the vehicle speed (i.e. the vehicle
is not fully controllable) (Lolla, 2016; Lolla and Lermusiaux, 2020).

2.3. Forward evolution of the reachable set and backward tracing of the
optimal path

We use the level set method to predict the propagation of the
reachability front. The front is then embedded as the zero level set of
a signed distance function (henceforth denoted by 𝝓). The zero level
set of a function is simply the set of points at which the function value
is zero. It is evolved until the target lies on it. Once this is achieved,
we compute the optimal path by tracing the trajectory of the particle
that always traveled on the reachability front and reached the target at
the first arrival time. This is done by solving the particle motion ODE
Eq. (1) backward in time starting from the destination, and by utilizing
the optimal heading information from the reachable set evolution.

In general, we have two free control parameters, namely the vehicle
speed (𝐹𝑣) and the vehicle heading (𝐡̂). We would like to predict the
optimal values of these control parameters (as a function of time) such
that the first arrival time function for the target point 𝑇 (𝐱𝑓 ∶ 𝐱𝑠, 𝑡0)
is minimized. It is proven that, for the vehicle to reach the desired
destination in the minimum amount of time, it must travel at the
maximum allowable speed (Lolla and Lermusiaux, 2020; Lolla, 2016).
This implies that the only control parameter is the heading of the
vehicle. We now simply state the significant results that express the
solution of this minimization problem. More details regarding the same
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may be found in Appendix A and Lolla and Lermusiaux (2020), Lolla
(2016).

We assume that the possible vehicle trajectories 𝐗(𝑡) are governed
by Eq. (1), with initial condition 𝐗(0) = 𝐱𝑠. Then, the evolution of the
reachability front is given by the zero level set of the function 𝝓, where
𝝓(𝐱, 𝑡) is the unique viscosity solution (Osher and Fedkiw, 2006; Lolla
and Lermusiaux, 2020) of the following the Hamilton–Jacobi level set
equation,
𝜕𝝓(𝐱, 𝑡)

𝜕𝑡
+ max

𝐡̂(𝐱,𝑡)

(

𝐹 (𝐡̂, 𝐱, 𝑡) 𝐡̂(𝐱, 𝑡) ⋅ ∇𝝓
)

+ 𝐕(𝐱, 𝑡) ⋅ ∇𝝓(𝐱, 𝑡) = 0 , (4)

with the initial conditions,

𝝓(𝐱, 0) = |𝐱 − 𝐱𝑠|. (5)

The second term on the left hand side of Eq. (4) incorporates the
propulsion of vehicles, and is referred to as the ‘optimal propulsion
term’. The last term on the left hand side of Eq. (4) is referred to as the
‘advection term’, as it accounts for the transport of the vehicle by the
background external velocity field, i.e. the predicted ocean currents.
In what follows, for clarity, we do not explicitly retain the functional
dependencies of 𝝓, 𝐡̂, and 𝐕 on (𝐱, 𝑡), and of 𝐹 on (𝐡̂, 𝐱, 𝑡), unless there
is a specific need to clearly denote these dependencies or when it helps
in understanding.

In the special case when the vehicle speed 𝐹 (𝐡̂, 𝐱, 𝑡) is independent
of the heading 𝐡̂ of the vehicle (isotropic speed), the maximization
can be performed analytically. The resulting Hamilton–Jacobi level set
equation for this case is given by Eq. (6):
𝜕𝝓
𝜕𝑡

+ 𝐹 (𝐱, 𝑡) |∇𝝓| + 𝐕 ⋅ ∇𝝓 = 0 , (6)

We solve Eq. (4) until the target (𝐱𝑓 ) lies on or just inside the reach-
ability front (i.e. until 𝝓(𝐱𝑓 , 𝑡) ≤ 0). Once this is achieved, the optimal
trajectory (or trajectories) 𝐗(𝑡) is given by the characteristic lines of Eq.
(4). That is, 𝐗(𝑡) satisfies the following equation,
𝑑𝐗(𝑡)
𝑑𝑡

= 𝐹 (𝐡̂,𝐗, 𝑡)𝐡̂(𝑡) + 𝐕(𝐗, 𝑡) where

𝐡̂(𝑡) = arg max
𝐡̂(𝐗,𝑡)

(

𝐹 (𝐡̂,𝐗, 𝑡) 𝐡̂(𝐗, 𝑡) ⋅ ∇𝝓(𝐗, 𝑡)
)

. (7)

These 3D governing path planning equations are exact. It is only
when they are numerically integrated that truncation/round-off errors
are made, and with fine enough resolutions, these errors go to zero.
This is a major advantage when compared to planning schemes that are
inexact due to heuristics or simplifications, or that are too expensive.
Of course, all these schemes also make numerical errors once imple-
mented on a computer (e.g. for graph methods, errors depend on graph
resolution, connectivity, time-step, etc., see Mannarini et al. (2020)).

3. Modeling of realistic marine vehicles

We now extend the theory to motion-constrained vehicles in 3D
domains, capturing the behavior of commonly used marine vehicles.
First, we treat vehicles whose speed depends on their heading direction.
Such vehicles are referred to as ‘vehicles with anisotropic speeds’.
Vehicles that are constrained to move only along certain directions may
also be included in this category, as it can be assumed that the vehicle
speed is non-zero only along the permitted direction(s) of travel. The
second class considers vehicles whose motion is known partially. In
general, this motion is assumed to be known along a specific direction
(which itself could be a function of time). We refer to such vehicles as
‘vehicles with partially known motion’.

3.1. Vehicles with anisotropic speeds

The reachability front is governed by Eq. (4), where it is embedded
as the zero level set of the level set function 𝝓. If the propulsion speed of
the vehicle is dependent on its heading direction, a maximization over

all the heading directions is required to be performed at each point of
the front (or domain) at all times to evaluate the optimal propulsion
term. Details of the same are discussed in Appendix B.

If the expression for vehicle speed 𝐹 is known in terms of the
heading 𝐡̂ (and the time 𝑡), then the maximization may be performed
analytically. As an example, we consider the case of an oceanic float.
These vehicles can only propel in the vertical direction by adjusting
their buoyancy (Rudnick et al., 2004), and are advected by the envi-
ronmental flow, mostly in the horizontal due to the commonly smaller
ocean vertical currents. We model this by enforcing the following:

𝐡̂ ∈ 𝑧 = {𝐧̂𝑧,−𝐧̂𝑧, 0} (8)

where 𝑧 is a subset of R3 and 𝐧̂𝑧 = (0, 0, 1) is the unit vector along
the vertical (𝑍) direction. Eq. (8) implies that the only directions that
the vehicle can be steered in are vertically up or vertically down. Using
this in the maximization term, we obtain,

max
𝐡̂(𝐱,𝑡)

(

𝐹 (𝐡̂, 𝐱, 𝑡) 𝐡̂(𝐱, 𝑡) ⋅ ∇𝝓(𝐱, 𝑡)
)

= 𝐹
(

max
(

(0, 0,±1) ⋅
(

𝝓𝑥,𝝓𝑦,𝝓𝑧
)))

= 𝐹
(

max
(

±𝝓𝑧
))

= 𝐹
|

|

|

|

𝜕𝝓(𝐱, 𝑡)
𝜕𝑧

|

|

|

|

.

(9)

Substituting this result in Eq. (4), the final Hamilton–Jacobi equation
to be solved for the motion of a float is given by,
𝜕𝝓
𝜕𝑡

+ 𝐹
|

|

|

|

𝜕𝝓
𝜕𝑧

|

|

|

|

+ 𝐕 ⋅ ∇𝝓 = 0 , (10)

with all the possible optimal headings on the reachability front given
by,

𝐡̂(𝐱, 𝑡) = 𝑠𝑖𝑔𝑛(
𝜕𝝓(𝐱, 𝑡)

𝜕𝑧
)𝐧̂𝑧. (11)

The optimal floats headings thus depend on the flow field implicitly
through 𝝓(𝐱, 𝑡). A float that first reaches the target 𝐱𝑓 will thus alter
its upward or downward motion according to the sign of the vertical
gradient of 𝝓(𝐱, 𝑡) along the optimal trajectory governed by Eq. (7).

3.2. Vehicles with partially known motion

We now examine vehicles whose motion is known along some (time-
dependent) direction. We prove that in such cases, the 3D problem
can be decomposed into a two-dimensional problem with a ‘hybrid’
velocity field, yielding significant computational savings (as will be
seen in Sections 4, 5, and 6).

Let us assume that the motion of the vehicle at a location 𝐱 and
time 𝑡 is known along some direction 𝐧̂(𝐱, 𝑡). Let the maximum propul-
sion speed of the vehicle along 𝐧̂(𝐱, 𝑡) be 𝐹𝑛(𝐱, 𝑡), also assumed to be
known. Let the heading of the vehicle in the plane orthogonal to
𝐧̂(𝐱, 𝑡) at position 𝐱 and time 𝑡 be 𝐡̂

⟂
(𝐱, 𝑡) with speed 𝐹

⟂
(𝐡̂

⟂
, 𝐱, 𝑡) =

(

𝐹 (𝐡̂, 𝐱, 𝑡)2 − 𝐹𝑛(𝐱, 𝑡)2
)

1
2 . In what follows, for clarity, we drop the de-

pendencies of 𝝓, 𝐕, 𝐧̂, and 𝐹𝑛 on (𝐱, 𝑡) and of 𝐹
⟂

on (𝐡̂
⟂
, 𝐱, 𝑡). Note that

𝐹𝑛 cannot be a function of 𝐡̂
⟂

as that implies that the component sub-
problems cannot be decoupled, as will be seen. However, as 𝐹 depends
on 𝐡̂, the resulting 𝐹

⟂
is also a function of 𝐡̂. Since 𝐡̂ is the unit vector

in the direction 𝐡̂
⟂
+ 𝐧̂, where 𝐧̂ is known at all locations at all times

and cannot be optimized, we can nonetheless reduce the dependency
of 𝐹

⟂
on 𝐡̂ to a dependency on 𝐡̂

⟂
only. The Hamilton–Jacobi equation

(4) can thus be written as,
𝜕𝝓
𝜕𝑡

+ max
𝐡̂⟂

((

𝐹𝑛𝐧̂ + 𝐹
⟂
𝐡̂
⟂

)

⋅ ∇𝝓
)

+ 𝐕 ⋅ ∇𝝓 = 0 ,

⇔
𝜕𝝓
𝜕𝑡

+ max
𝐡̂⟂

(

𝐹
⟂
𝐡̂
⟂
⋅ ∇𝝓

)

+
(

𝐕 + 𝐹𝑛𝐧̂
)

⋅ ∇𝝓 = 0 . (12)

The advective velocity field itself can be written in terms of compo-
nent along 𝐧̂(𝑡) and components orthogonal to 𝐧̂(𝑡). Let us denote this
decomposition of the velocity field as,

𝐕(𝐱, 𝑡) = 𝑉𝑛(𝐱, 𝑡) 𝐧̂(𝐱, 𝑡) + 𝑉
⟂
(𝐱, 𝑡) 𝐧̂

⟂
(𝐱, 𝑡) , (13)
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Table 1
Scales for non-dimensionalization.

Variable Scale

𝑥 𝑥𝑐 = 𝐿𝑥 (Characteristic length in the 𝑋 direction)
𝑦 𝑦𝑐 = 𝐿𝑦 (Characteristic length in the 𝑌 direction)
𝑧 𝑧𝑐 = 𝐿𝑧 (Characteristic length in the 𝑍 direction)
𝑉𝑥 𝑉 𝑐

𝑥 = meanx,𝑡(𝑉𝑥(x, 𝑡))
𝑉𝑦 𝑉 𝑐

𝑦 = meanx,𝑡(𝑉𝑦(x, 𝑡))
𝑉𝑧 𝑉 𝑐

𝑧 = meanx,𝑡(𝑉𝑧(x, 𝑡))

𝑡 𝑡𝑐 = max
(

|𝑥𝑓−𝑥𝑠 |
max(𝑉 𝑐

𝑥 ,𝐹max
𝑥 )

, |𝑦𝑓−𝑦𝑠 |
max(𝑉 𝑐

𝑦 ,𝐹max
𝑦 )

, |𝑧𝑓−𝑧𝑠 |
max(𝑉 𝑐

𝑧 ,𝐹max
𝑧 )

)

where 𝐧̂
⟂
(𝐱, 𝑡) denotes the basis of the plane orthogonal to 𝐧̂(𝐱, 𝑡) and

𝐕
⟂
(𝐱, 𝑡) = 𝑉

⟂
(𝐱, 𝑡) 𝐧̂

⟂
(𝐱, 𝑡) is the corresponding velocity component.

Substituting this in Eq. (12), we obtain,
𝜕𝝓
𝜕𝑡

+ max
𝐡̂⟂

(

𝐹
⟂
𝐡̂
⟂
⋅ ∇𝝓

)

+
(

𝑉
⟂
𝐧̂
⟂
+
(

𝑉𝑛 + 𝐹𝑛
)

𝐧̂
)

⋅ ∇𝝓 = 0 . (14)

We will next use a 1st order operator splitting (fractional step) method
(Wheeler and Dawson, 1987; Ferziger et al., 2020) to split Eq. (14) into
two constituent equations. The first equation describes the evolution of
the projection of 𝝓 onto 𝐧̂

⟂
, 𝝓

⟂
, and the second describes the evolution

of 𝝓 along 𝐧̂, 𝝓𝑛. Together, the sum of these two contributions yields
the evolution of 𝝓 in 𝛺 if their full coupling is maintained, as is seen
in the following:
𝜕𝝓

⟂

𝜕𝑡
+ max

𝐡̂⟂

(

𝐹
⟂
𝐡̂
⟂
⋅ ∇𝝓

)

+ 𝑉
⟂
𝐧̂
⟂
⋅ ∇𝝓 = 0 , (15a)

𝜕𝝓𝑛
𝜕𝑡

+
(

𝑉𝑛 + 𝐹𝑛
)

𝐧̂ ⋅ ∇𝝓 = 0 , (15b)

⇒
𝜕𝝓
𝜕𝑡

=
𝜕𝝓

⟂

𝜕𝑡
+

𝜕𝝓𝑛
𝜕𝑡

. (15c)

Eq. (15a) represents the evolution of the reachable set in the plane
orthogonal to 𝐧̂(𝑡), whereas Eq. (15b) represents the contribution due to
the advective and vehicle motion along 𝐧̂(𝑡), which does not require any
optimization. Hence, in this case, the only optimal control problem to
be solved is represented by Eq. (15a), which is a reachable set evolution
in two dimensions. The contribution due to Eq. (15b) is then locally
added in order to obtain the final value of 𝜕𝝓∕𝜕𝑡 by summation. The
initial conditions are, for Eq. (15a), 𝝓

⟂
(𝐱, 0) = |(𝐱)

⟂
− (𝐱𝑠)⟂ |, and for

Eq. (15b), 𝝓𝑛(𝐱, 0) = |(𝐱)𝑛 − (𝐱𝑠)𝑛|, where the subscripts ⟂ and 𝑛 then
indicate projection orthogonal to and along 𝐧̂(0), respectively.

As for the forward evolution, the backward trajectory of the vehicle
also consists of two parts: (i) the motion in the orthogonal plane 𝐧̂

⟂
(𝑡)

and (ii) the component along 𝐧̂(𝑡). Thus the ODE defining the optimal
trajectory also consists of the sum of two corresponding components,
𝑑𝐗⟂
𝑑𝑡

= 𝐹
⟂
𝐡̂
⟂
+ 𝐕

⟂
, (16a)

𝑑𝐗𝑛
𝑑𝑡

= 𝐹𝑛𝐧̂ , (16b)

𝑑𝐗
𝑑𝑡

=
𝑑𝐗⟂
𝑑𝑡

+
𝑑𝐗𝑛
𝑑𝑡

. (16c)

where 𝐡̂
⟂
(𝑡) = argmax𝐡̂⟂ (𝐗,𝑡)

(

𝐹
⟂
(𝐡̂

⟂
,𝐗, 𝑡) 𝐡̂

⟂
(𝐗, 𝑡) ⋅ ∇𝝓(𝐗, 𝑡)

)

. Eq. (16a)
represents the optimal trajectory orthogonal to 𝐧̂(𝑡) while Eq. (16b)
governs the path along 𝐧̂(𝑡). As with Eq. (7), Eq. (16c) is solved in
backward time, starting from 𝐗

(

𝑇
(

𝐱𝑓 ∶ 𝐱𝑠, 0
))

= 𝐱𝑓 to compute the
optimal trajectory.

Numerically, if Eqs. (15a) and (15b) are integrated separately over
𝛥𝑡 without coupling between them, splitting errors are made. The same
can be said about the split backward tracing equations (16). These
numerical issues are discussed in Section 4.5.

4. Numerical schemes for realistic ocean domains

We now develop accurate, consistent, and efficient numerical
schemes for the path planning equations. We first present challenges

in realistic 3D ocean scenarios and obtain the non-dimensional form
of the Hamilton–Jacobi level set equation which is crucial in solving
underwater path planning problems. We then emphasize the advan-
tages of numerical consistency between the discrete forward evolution
of the reachable set and discrete backward tracing of the optimal path.
Finally, we develop high-order spatial and temporal numerical schemes
for the forward evolution of the zero level set function and novel
implicit schemes for the backward tracing of the optimal path.

4.1. Challenges in real ocean domains and non-dimensionalization of the
Hamilton–Jacobi equation

Most stratified geophysical fluid flows are extremely anisotropic
in terms of length and/or velocity scales, with orders of magnitude
difference between the horizontal and vertical scales (Cushman-Roisin
and Beckers, 2011). Such disparity in the length scales (e.g. horizontal
scales of kilometers and vertical scales of meters) significantly affects
simulations of 3D oceanic domains, where even small deviations in
some direction may cause large changes in the other directions. In
many ocean prediction models, the vertical velocity is obtained as a
diagnostic variable. For example, in hydrostatic models, one com-
putes the vertical flow velocity by enforcing the divergence-free con-
dition and accounting for the free surface motion (Haley Jr. and
Lermusiaux, 2010). These vertical velocities, e.g., (10−3 cm/s to
10−1 cm/s), are typically much smaller in magnitude than horizontal
ones, e.g., (1 cm/s to 1 m/s). This implies that the vertical advective
fluxes may be severely altered even by small relative errors in the
fluxes in other directions, thus impacting the accuracy of the zero
level set evolution in three dimensions. To ensure that such a dis-
crepancy in scales does not affect the fidelity of the computation, we
non-dimensionalize the Hamilton–Jacobi level set equation (4),

To non-dimensionalize, a reference scale needs to be set up for
each of the variables. For each of the spatial dimensions and each
of the corresponding velocity components, one commonly utilizes a
characteristic length (e.g. domain length) and velocity magnitude. The
other variables that remain are the level set function 𝝓 and the time
𝑡. The non-dimensionalizing scales that we propose are summarized in
Table 1. The characteristic scales for the velocities are averages over
the entire spatial and temporal domain of interest, and are computed
only once per simulation. Another suitable scale for velocities could
also be the maximum velocity in that direction over the entire temporal
domain of interest. Although an acceptable choice, the maximum veloc-
ity can be much larger than the typical expected velocity magnitudes,
and the non-dimensionalization would then not be very effective in
such cases. If the velocities in different regions vary greatly, then the
domain can be divided into appropriate sub-domains and a separate
non-dimensional scale for the velocities can also be chosen in each
of the domains. The characteristic time scale used is an estimate for
the travel time assuming that the vehicle either travels only at its own
speed or is only advected with the flow, whichever is the faster choice.
Specifically, we look at the maximum of the travel times along each of
the basis directions (that is, along the 𝑋, 𝑌 and 𝑌 directions) when the
vehicle optimally chooses to either travel with the flow, or travel on
its own, but not both. It must be stated that these choices are far from
unique, and appropriate characteristic scales should be chosen based
on the specifics of the problem. No scale for 𝝓 is required as the partial
differential equation (PDE) is linear in 𝝓 and independent of the scaling
of 𝝓.

The numerically well-conditioned non-dimensional form of Eq. (4)
is given by Eq. (17), where the superscript (∙∗) refers to the non-
dimensional quantity corresponding to (∙),

1
𝑡𝑐

𝜕𝝓∗

𝜕𝑡∗
+ max

ℎ̂𝑥 ,ℎ̂𝑦 ,ℎ̂𝑧

(

𝐹

(

ℎ̂𝑥(𝑡)
𝐿𝑥

𝜕𝝓∗

𝜕𝑥∗
+

ℎ̂𝑦(𝑡)
𝐿𝑦

𝜕𝝓∗

𝜕𝑦∗
+

ℎ̂𝑧(𝑡)
𝐿𝑧

𝜕𝝓∗

𝜕𝑧∗

))

+

(

𝑉 𝑐
𝑥

𝐿𝑥
𝑉 ∗
𝑥
𝜕𝝓∗

𝜕𝑥∗
+

𝑉 𝑐
𝑦

𝐿𝑦
𝑉 ∗
𝑦
𝜕𝝓∗

𝜕𝑦∗
+

𝑉 𝑐
𝑧

𝐿𝑧
𝑉 ∗
𝑧
𝜕𝝓∗

𝜕𝑧∗

) = 0 . (17)

5



C.S. Kulkarni and P.F.J. Lermusiaux Ocean Modelling 152 (2020) 101644

For the case of isotropic propulsion, this Eq. (17) reduces to

1
𝑡𝑐

𝜕𝝓∗

𝜕𝑡∗
+𝐹

√

√

√

√
1

(𝐿𝑥)2

(

𝜕𝝓∗

𝜕𝑥∗

)2
+ 1

(𝐿𝑦)2

(

𝜕𝝓∗

𝜕𝑦∗

)2
+ 1

(𝐿𝑧)2

(

𝜕𝝓∗

𝜕𝑧∗

)2

+

(

𝑉 𝑐
𝑥

𝐿𝑥
𝑉 ∗
𝑥
𝜕𝝓∗

𝜕𝑥∗
+

𝑉 𝑐
𝑦

𝐿𝑦
𝑉 ∗
𝑦
𝜕𝝓∗

𝜕𝑦∗
+

𝑉 𝑐
𝑧

𝐿𝑧
𝑉 ∗
𝑧
𝜕𝝓∗

𝜕𝑧∗

)

= 0 .

(18)

The advective fluxes in each direction scale with the ratio 𝑉
𝐿 in the

corresponding direction. As is well known from mass conservation,
even though both 𝑉𝑧 and 𝐿𝑧 are much smaller than either of 𝑉𝑥 and
𝐿𝑥 or 𝑉𝑦 and 𝐿𝑦, the ratio 𝑉𝑧

𝐿𝑧
can easily be comparable to 𝑉𝑥

𝐿𝑥
and

𝑉𝑦
𝐿𝑦

. This means that even though the length and the velocity in the
𝑍 direction are small, the advection contribution in this direction may
not be negligible. The contributions due to each of the directional terms
in the optimal propulsion term scale as 1

𝐿𝑥
, 1
𝐿𝑦

, and 1
𝐿𝑧

in Eq. (17). This
again implies that even though length of the domain in the 𝑍 direction
is much smaller, the contribution to the optimal propulsion term in this
direction can be substantial, even if the vertical propulsion speed is
smaller than the horizontal one (anisotropic propulsion). Hence, ignor-
ing or not completely resolving the motion in the vertical direction may
cause large errors, as its contributions to both the optimal propulsion
and advection are comparable to the other horizontal terms.

4.2. Numerical consistency between the forward evolution and backward
tracking

A consideration in the computation of the optimal path is the
numerical consistency between the discrete forward evolution and
backward tracing. The forward reachability evolution is governed by
the PDE (4). It represents the motion of all hypothetical ‘optimal’ points
that could reach the destination through a functional representation
of the reachability front in space. This PDE is often solved using
explicit numerical time integration. Backward tracing of the optimal
involves an ODE (7) that governs the spatial motion of an optimal point
over time. For consistent (minimal) numerical errors, during discrete
backtracking, we should match the discrete forward reachability front,
i.e. exactly reverse the steps of the discrete forward time-integration.
We then ensure that the optimal point numerically gets back to the
start point. Specifically, we should maintain three numerical consis-
tencies: forward/backward explicit/implicit time consistency, type of
time-integration consistency, and spatial discretization consistency. For
example, if the forward temporal evolution is explicit, then the back-
ward temporal evolution should be implicit, and vice versa. The exact
type of the forward evolution scheme also needs to be ‘mimicked’ by
the backtracking scheme. For example, if the forward evolution uses
the forward Euler time marching, then the backward tracing should
use the backward Euler scheme. Finally, numerical consistency in space
should also be maintained between the PDE and ODE, e.g. for the
normals to the level set. If these consistencies are not maintained,
the discrete local forward front and backward path integration do not
exactly reverse numerically: with compounding of errors during the
backtracking, we can then not guarantee getting back to the start point.
Fig. 3 schematically represents the discrepancy arising during one time-
step if numerical consistencies are not maintained. As it is much easier
to solve a PDE through explicit time marching, we use implicit time
marching for the backward tracing of optimal path, and hence an
iterative solver is necessary for the ODE.

4.3. Numerical schemes: Forward evolution

The main interest is the accuracy of motion of the zero level of
the level set function 𝝓. Small deviations from the truth may not
change the arrival times much, but could severely alter the computation

Fig. 3. Discrepancy over one time-step (not to scale) in the ODE backward tracing due
to numerical inconsistency with the PDE forward reachability. In the ODE backward
tracing (dashed), the external velocity (cyan arrow) and optimal heading direction (red
arrow) are chosen to be explicit, i.e. those at point 𝐗𝑡 (normal to the zero level set
at this point), which leads the vehicle to 𝐗̃𝑡−1. However, the PDE forward evolution
(solid) was explicit; that is the external velocity and optimal heading values at 𝐗𝑡−1 had
been used in order to move from 𝐗𝑡−1 to 𝐗𝑡 (dashed cyan and red lines, respectively).
For consistency, this should have been the path taken by the backward ODE, hence,
the ODE should have been solved implicitly. If the inconsistency is kept, the computed
position of the vehicle 𝐗̃𝑡−1 differs from the numerically consistent position 𝐗𝑡−1. With
compounding, these errors may add up over time.

of the optimal path. Further, due to the entropy condition, 𝝓(𝐱, 𝑡)
may be non-differentiable at the zero level set (Sethian, 1994). As is
well known, finite difference and finite volume numerical schemes are
diffusive of shocks and discontinuities, and these errors are amplified
with time, mainly due to compounding of errors. For marine vehicles
whose speed strongly depends on the heading or which can only travel
in a few permissible directions, slight errors in the level set function
computation can easily cause the computed heading direction to be
vastly different from the optimal one. Hence, we employ high-order
spatial and temporal schemes for the forward evolution of the level set
function equation (17).

In our present case, for a simpler implementation of higher order
schemes, the PDE is solved on a 3D structured grid, using the finite
volume (FV) method. The optimal propulsion and advection terms are
computed independently of each other. The boundary conditions do
not have a direct impact on the growth of the reachability front, as it
does not depend on the values of the level set function (𝝓) away from
itself. To this end, we use radiation boundary conditions on 𝝓 at all the
boundaries.

We employ Essentially Non-Oscillatory (ENO) and Weighted Essen-
tially Non-Oscillatory (WENO) schemes with up to 5th order
accuracy (Shu and Osher, 1988; Jiang and Shu, 1996). The opti-
mal propulsion term needs to be treated differently depending upon
whether the vehicle exhibits isotropic motion or not. If the vehicle
has isotropic speed, then the optimal propulsion term from Eq. (6) is
solved using the Godunov scheme (Osher and Fedkiw, 2006). When the
vehicle speed depends on its direction of travel, a maximization needs
to be carried out. Appendix B presents the details of the numerical
schemes as well as the maximization methods required for the optimal
propulsion term. In conjunction with these spatial schemes, we utilize
Total Variation Diminishing Runge–Kutta (TVD-RK) schemes of up
to 3rd order accuracy for time marching (Osher and Fedkiw, 2006).
The combination of ENO/WENO schemes with TVD-RK time marching
ensures that the solution is Total Variation Bounded (TVB) (Osher and
Fedkiw, 2006).
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Fig. 4. Implicit backtracking scheme. A fixed-point iteration with the forward Euler
backtracking scheme is schematized as an example. First, the optimal heading and the
external velocity at point 𝐗𝑡 and at time 𝑡 (faint red and cyan arrows respectively) are
used to reach the point 𝐗⟨1⟩

𝑡−1. The normal to the zero level set at 𝐗⟨1⟩
𝑡−1 at time 𝑡−1 is then

computed (dotted gray line at 𝐗⟨1⟩
𝑡−1), and this is used as the new optimal heading to

move from 𝐗𝑡 to 𝐗⟨2⟩
𝑡−1. This process is repeated until the required convergence criterion

is met.

4.4. Numerical schemes: Backward tracing

The optimal path is obtained by solving Eq. (7) backward in time,
with 𝑋(𝐓(𝐱𝑓 ∶ 𝐱𝑠, 0)) = 𝐱𝑓 . As all the time marching schemes that we
utilize for Eq. (17) are explicit, i.e. explicit time integration is used,
the consistent schemes for the optimal path computation must be im-
plicit, which implies that iterative solvers are required, see Section 4.2.
Further, the specifics of the scheme used for the characteristic com-
putation must mimic the temporal scheme from the forward evolution
computation.

Fig. 4 illustrates the underlying ideas behind the implicit backward
tracing. For a fixed-point iteration, improved values are iteratively
obtained by computing the predicted future position of the vehicle
using the currently available heading and advective velocity values,
and then using the values of these parameters from this position. To
determine the optimal heading at any time, the normal direction to the
local reachability front needs to be computed. This normal direction is
then either directly used as the optimal heading direction, or is passed
as an argument to the maximization described in Appendix B to obtain
the optimal heading direction. The novel algorithm used for the compu-
tation of the normals in 3D is detailed in Appendix C. Appendix C also
describes the implicit backward tracing schemes for time marching with
forward Euler (TVD-RK 1), Heun’s method (TVD-RK 2), and TVD-RK 3.

4.5. Numerical schemes: Vehicles with partially known motion

We now discuss numerical schemes for computing the optimal
trajectory of vehicles with partially known motion, specifically due to
the operator splitting approach used to solve Eqs. (15) and (16).

Forward evolution. As operator splitting is utilized to solve Eqs. (15),
splitting errors are made. The order of the splitting error depends on
the specifics of the splitting method utilized. Two popular operator
splitting techniques are Lie splitting (MacNamara and Strang, 2016)
and Strang splitting (Strang, 1968) which are at least 1st and 2nd order
accurate respectively. Lie splitting simply involves explicitly solving
Eq. (15a) followed by Eq. (15b) over one numerical time step each, and
then adding the respective contributions. Strang splitting on the other
hand involves solving Eq. (15a) over half a numerical time step and

updating the field 𝝓(𝐱, 𝑡) with the outcome. Then Eq. (15b) is solved
over one numerical time step using the updated field 𝝓(𝐱, 𝑡), and the
results are updated. Finally, this new field is used to solve Eq. (15a)
another half numerical time step to arrive at the final evolution. Under
certain constraints on the external velocity and known component of
the vehicle motion, these splitting methods can achieve higher orders
of accuracy. For example, Lie splitting is 2nd order accurate whereas
Strang splitting is exact for a vehicle following known motion along a
fixed direction in a steady flow field. More numerical details includ-
ing sufficient conditions for these splittings to yield tighter accuracy
bounds can be found in Lanser and Verwer (1999) and Kulkarni and
Lermusiaux (2019). In general, as long as the splitting error is of the
same or higher order of accuracy as the numerical schemes employed
for time marching, for resolved numerics, the accuracy of the complete
numerical scheme is not affected by the splitting error.

Backward tracing. The implicit–explicit nature of the forward schemes
along with the order of the operator splitting must be mimicked in
backward tracing. The in-plane (in 𝐧̂

⟂
(𝑡)) motion can be computed by

the backtracking algorithm in a consistent way to the forward time-
marching used for the level set field. The trajectory point obtained (i.e.
𝐗∗
𝑡 ) is actually the projection of the exact point onto the 𝐧̂

⟂
(𝑡) plane. The

actual position is then computed by adding the displacement along 𝐧̂(𝑡)
due to the vehicle velocity and the local flow velocity. This contribution
can be either explicit or implicit, as shown by Eqs. (19) and (20),
𝐗∗
𝑡 − 𝐗𝑡+𝛥𝑡

𝛥𝑡
= 𝐹

⟂
(𝐡̂

⟂
,𝐗𝑡+𝛥𝑡, 𝑡 + 𝛥𝑡) 𝐡̂

⟂
(𝑡 + 𝛥𝑡) + 𝐕

⟂
(𝐗𝑡+𝛥𝑡, 𝑡 + 𝛥𝑡) ,

where 𝐡̂
⟂
(𝑡 + 𝛥𝑡) = arg max

𝐡̂⟂ (𝐗𝑡+𝛥𝑡 ,𝑡+𝛥𝑡)

(

𝐹
⟂
(𝐡̂

⟂
,𝐗𝑡+𝛥𝑡, 𝑡 + 𝛥𝑡)

𝐡̂
⟂
(𝐗𝑡+𝛥𝑡, 𝑡 + 𝛥𝑡) ⋅ ∇𝝓(𝐗𝑡+𝛥𝑡, 𝑡 + 𝛥𝑡)

)

.

(19)

𝐗⟨𝑘+1⟩∗
𝑡 − 𝐗𝑡+𝛥𝑡

𝛥𝑡
= 𝐹

⟂
(𝐡̂

⟂
,𝐗⟨𝑘⟩∗

𝑡 , 𝑡) 𝐡̂
⟂
(𝑡) + 𝐕

⟂
(𝐗⟨𝑘⟩∗

𝑡 , 𝑡) ,

where 𝐡̂
⟂
(𝑡) = arg max

𝐡̂⟂ (𝐗⟨𝑘⟩∗
𝑡 ,𝑡)

(

𝐹
⟂
(𝐡̂

⟂
,𝐗⟨𝑘⟩∗

𝑡 , 𝑡) 𝐡̂
⟂
(𝐗⟨𝑘⟩∗

𝑡 , 𝑡) ⋅ ∇𝝓(𝐗⟨𝑘⟩∗
𝑡 , 𝑡)

)

with 𝐗⟨0⟩
𝑡 = 𝐗𝑡+𝛥𝑡 .

(20)

where 𝐗∗
𝑡 is the auxiliary position at time 𝑡 when only the horizon-

tal motion is accounted for. The effective velocity along 𝐧̂(𝑡) can be
computed either explicitly (Eq. (21)) or implicitly (Eq. (22)),

𝐗𝑡 − 𝐗∗
𝑡

𝛥𝑡
= −

(

𝑉𝑧(𝐗∗
𝑡 , 𝑡) + 𝐹𝑛(𝐗∗

𝑡 , 𝑡) 𝐧̂(𝐗
∗
𝑡 , 𝑡)

)

, (21)

𝐗⟨𝑘+1⟩
𝑡 − 𝐗∗

𝑡
𝛥𝑡

= −
(

𝑉𝑧(𝐗
⟨𝑘⟩
𝑡 , 𝑡) + 𝐹𝑛(𝐗

⟨𝑘⟩
𝑡 , 𝑡) 𝐧̂(𝐗⟨𝑘⟩

𝑡 , 𝑡)
)

with 𝐗⟨0⟩
𝑡 = 𝐗∗

𝑡 .

(22)

4.6. Computational cost

We now look at the asymptotic computational complexity for the
level set based time-optimal path planning in 3D environments. In all
the considered examples, we numerically solve the forward evolution
of the reachability front (either Eqs. (6) or (4)) using the finite volume
method. The asymptotic computational complexity is a function of the
grid size. In this analysis, we assume that there are approximately 𝑛
grid points in each direction, and thus the total number of grid points
in the domain (denoted by 𝑁) is about 𝑁 ≈ 

(

𝑛3
)

.
Cost of solving the forward evolution of the reachable set in 3D. To solve

the forward evolution of the reachability front, the level set equation
is solved in the entire domain. The computational cost per time step
for this is (𝑛3) (Adalsteinsson and Sethian, 1995). The number of
numerical time steps (𝐾) that the solver runs for is directly related
to the optimal travel time of the vehicle: 𝐾 = 𝑇 (𝐱 ∶ 𝐱0, 0)∕𝛥𝑡. As
the optimal travel time of the vehicle is not known a priori, it is not
possible to estimate the total number of time steps (𝐾) to begin with.

7
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Further, as we use explicit time marching to solve the level set PDE,
the numerical time step 𝛥𝑡 is inversely related to the number of grid
points 𝑁 , which makes 𝐾 directly proportional to 𝑁 . Instead of solving
the PDE over the entire domain, one can use the narrow-band level
set method (Adalsteinsson and Sethian, 1995) and solve the PDE only
around the zero level set, reducing the computational cost from 

(

𝑛3
)

to 
(

𝑑𝑛2
)

≈ 
(

𝑛2
)

, where 𝑑 (≪ 𝑛) is the bandwidth.
Cost of performing the maximization of the optimal propulsion term. If

solving Eq. (4) with an analytical maximization is not possible, one can
construct a look-up table prior to the forward evolution that contains
the optimal heading direction for every direction of the outward normal
(see Appendix B). This look-up table needs to only be constructed once,
and its cost is directly proportional to the resolution used to discretize
the optimal heading and outward normal directions. Specifically, if the
optimal heading space is discretized in 

(

𝑁2
ℎ
)

points (both the polar
and the azimuthal directions contain 

(

𝑁ℎ
)

points) and similarly the
outward normal space is discretized in 𝑁2

𝑛 points, then the construction
cost of the maximization look-up table is 

(

𝑁2
ℎ𝑁

2
𝑛
)

.
Cost of solving the forward evolution of the reachable set for vehicles

with partially known motion. For vehicles with partially known motion,
the level set PDE only needs to be solved in 2 dimensions, and hence
the computational cost per time step now becomes (𝑛2) (Adalsteinsson
and Sethian, 1995). Further, if analytical maximization is not possible,
then the cost of constructing the look up table is 

(

𝑁ℎ𝑁𝑛
)

, as the
maximization is only performed in 2D (and not in 3D). Finally, the
equation describing the vertical component of the reachable set growth
is simply solved in 1D, and hence its cost is  (𝑛). Thus the net cost of
computing the forward evolution of the reachable set for vehicles with
partially known motion is 

(

𝑛2 + 𝑛
)

instead of 
(

𝑛3
)

. Similarly to the
3D case, if the level set PDE is solved using the narrow-band level set
method, the computational cost reduces to  (𝑛𝑑 + 𝑛) ≈  (𝑛).

Cost of backward tracing of the optimal path. The backward tracing
of the optimal path is simply done by solving an ODE, and hence the
cost of this operation per time step is simply  (1), given the optimal
heading direction is available. In order to obtain this optimal heading
direction, one may need to construct the local outward normal to the
reachability front and refer to the look-up table. However, these costs
are assumed constant, and are much smaller than the forward evolution
PDE solve costs.

Computational infrastructure used. All the analytical and realistic sim-
ulations presented in Sections 5 and 6 respectively were performed in
MATLAB on a single quad-core Intel i7-4790 CPU clocked at 3.60 GHz.
MATLAB’s internal vectorization/parallelization for matrix–vector op-
erations was enabled for all computations. The computational times
required for the forward evolution of the reachable set and backward
tracing of the optimal path for these applications are mentioned in their
respective analyses.

5. Applications in benchmark three-dimensional analytically
known flow fields

To verify schemes and benchmark accuracy, we now apply the exact
time-optimal path planning in three 3D analytical flow fields. First, we
study optimal path planning in a uniform advective flow. Analytical
solution for the travel time are obtained, which allows quantifying
errors in our algorithm. Second, a pulsating 3D vortical flow is used to
benchmark the accuracy of our path planning in 3D dynamic flows with
semi-analytical optimal trajectories and duration. Third, path planning
in an analytical 3D double gyre–shear flow is studied. We effectively
depict the ability to account for velocity fields that are spatially and
temporally variable and also the ability to handle path planning for
swarms of vehicles starting from the same location, where only a single
forward PDE computation is required — this reduces the computational
cost as compared to heuristic schemes with independent computations
for each of the vehicles.

5.1. Validation in uniform velocity field

A theoretical value of the optimal travel time between a given
pair of start and end points can be obtained for vehicles moving with
isotropic speed in a uniform advective flow field. Let this advective flow
be denoted as 𝐕(𝐱, 𝑡) = 𝐕0 = (𝑢0, 𝑣0, 𝑤0) for all 𝐱 and 𝑡.

To derive the optimal travel time, we consider the inertial reference
frame moving with velocity 𝐕𝑓𝑟𝑎𝑚𝑒 = 𝐕0. The advective velocity field is
absent in this frame. However, the effective target position will now be
𝐱∗𝑓 = 𝐱𝑓 − 𝑇 ⋅ 𝐕0, if 𝑇 is the sought optimal travel time. In the absence
of any advective velocity field, the optimal path between 𝐱𝑠 and 𝐱∗𝑓 is a
straight line joining these points, and the required travel time is given
by |𝐱∗𝑓 − 𝐱𝑠|∕𝐹 , which must be equal to 𝑇 . We thus have

𝑇 =
|𝐱∗𝑓 − 𝐱𝑠|

𝐹
=

|𝐱𝑓 − 𝐱𝑠 − 𝑇 ⋅ 𝐕0|

𝐹
. (23)

Defining 𝐱𝑓 −𝐱𝑠 = 𝜹 = (𝛿𝑥, 𝛿𝑦, 𝛿𝑧), Eq. (23) leads to a quadratic equation
for 𝑇 , with at most one non-negative root,

𝑇 =
−
(

𝜹 ⋅ 𝐕0
)

+
√

(

𝜹 ⋅ 𝐕0
)2 +

(

𝐹 2 − |𝐕0|
2)

|𝜹|2
(

𝐹 2 − |𝐕0|
2)

. (24)

For 𝐹 = |𝐕0|, Eq. (24) fails to hold. However Eq. (23) then reduces to
a linear equation, with:

𝑇 =
|𝜹|2

2𝜹 ⋅ 𝐕0
. (25)

For 𝐹 ≥ |𝐕0|, 𝑇 is always real. This implies that, in such cases all
points in the domain can be reached in a finite time. This is a direct
consequence of the fact that Eq. (6) can be reduced to a modified
Eikonal equation when 𝐹 ≥ |𝐕0| (Lolla and Lermusiaux, 2020).

For the purposes of the simulation, we consider a unit domain.
The start and the target positions are 𝐱𝑠 = (0.25, 0.30, 0.40) and 𝐱𝑓 =
(0.70, 0.65, 0.80), with the vehicle traveling at a non-dimensional speed
of 0.1 units. The external velocity field is given by: 𝐕0 = (0.050, 0.075,
0.065). Hence, |𝐕0| = 0.11 > 𝐹 , and the PDE is not Eikonal. The
theoretical optimal time, computed using Eq. (24) for this setup is
3.377. Our discretization for this benchmarking example consists of
a 100 × 100 × 100 grid and a time step of 5 × 10−3. We use the
finite volume method with the 5th order WENO scheme for spatial
gradients and TVD RK3 scheme for time marching (see Appendix B).
The computed optimal time is 3.375, which is only off from the
true value by 0.059 %. This amount is extremely small, and due to
small truncation errors (resolution in time and space) and common
computational inaccuracies (round-off errors, etc.). The computational
times required for the forward evolution and the backward tracing of
the optimal path were 24 s and 1.03 s respectively.

For uniform advective velocities, the zero level set grows as a sphere
with radius 𝑟 = 𝐹 ⋅ 𝑡, and is also advected along the velocity direction.
That is, the center of this sphere lies at 𝐱𝑐 = 𝑡 ⋅ 𝐕0. This is clearly seen
from Fig. 5, where the zero level set evolves as a sphere, and moves
along the direction of the velocity. It can be shown that the optimal
path is a straight line joining 𝐱𝑠 and 𝐱𝑓 , as is observed.

5.2. Validation in spherical vortical flow

We now consider a pulsating vortical flow to benchmark the accu-
racy of the optimal trajectory and travel time of our path planning.
The flow field is a sinusoidally pulsating version of the velocity field
generated from the stream function for the Rossby–Haurwitz bench-
mark problem for the shallow water wave equations (Williamson et al.,
1992), as reported in Townsend et al. (2016). It is defined in spherical
coordinates by Eq. (26), where 𝑟 is the radial coordinate with unit
vector 𝐫̂, 𝜆 ∈ [−𝜋, 𝜋] is the azimuthal angle with unit vector 𝝀̂, 𝜃 ∈ [0, 𝜋]
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Fig. 5. Zero level set evolution and optimal path for a constant and uniform advective velocity field. The zero level sets at multiple intermediate times are plotted. The start
position is represented by a black circle and the target position by a black star. The optimal path between the start and end positions, shown in red, is the straight line joining
these two points. The external velocity field 𝐕0 and the vehicle velocity 𝐹 𝐡̂ are displayed by black and blue vectors, respectively.

Fig. 6. The spherical vortical velocity field defined by Eq. (26) at 𝑡 = 0 on a
sphere of radius 𝑟 = 1. Velocity vectors indicating the magnitude and direction of
the velocity are overlaid on the vorticity field. This velocity field is generated from
a stream function for the Rossby–Haurwitz benchmark problem for the shallow water
wave equations (Williamson et al., 1992; Townsend et al., 2016), and has no radial
component.

is the polar angle with unit vector 𝜽̂, and ∇


is the gradient in spherical
coordinates,

𝐕(𝑟, 𝜆, 𝜃, 𝑡) = 𝐫̂ × ∇

𝝍(𝑟, 𝜆, 𝜃, 𝑡) ,

where 𝝍(𝑟, 𝜆, 𝜃, 𝑡) = cos( 2𝜋𝑡
𝑇̃

)
[

cos(𝜃) + sin4(𝜃) cos(𝜃) cos(4𝜆)
]

.
(26)

Fig. 6 shows this flow field plotted at 𝑡 = 0 on a sphere of 𝑟 = 1. The
velocity field is 𝐕(𝑟, 𝜆, 𝜃, 𝑡) = 𝑉𝜆(𝑟, 𝜆, 𝜃, 𝑡)𝝀̂ + 𝑉𝜃(𝑟, 𝜆, 𝜃, 𝑡)𝜽̂. The flow field
has no component in the radial direction, and all the radial motions of
the vehicle are thus due to its own propulsion. We utilize this fact to
design a suitable test case to benchmark our 3D method. Specifically,
we choose the destination of the vehicle for a given start location and
travel time such that the analytical vehicle propulsion is always radially
outwards.

Let us assume that the vehicle starts at location 𝐱𝑠 =
(

𝑟𝑠, 𝜆𝑠, 𝜃𝑠
)

and requires a to-be-determined travel time of 𝑇̃ (fixed) to reach a
given destination 𝐱𝑓 =

(

𝑟𝑓 , 𝜆𝑓 , 𝜃𝑓
)

. We assume that the vehicle can
move isotropically and with a maximum speed 𝐹 . The to-be-optimized
velocity of the vehicle relative to the flow field is: 𝐹 (𝑡)𝐡̂(𝑡) = 𝐹𝑟(𝑡)𝐫̂ +
𝐹𝜆(𝑡)𝝀̂ + 𝐹𝜃(𝑡)𝜽̂ with 𝐹𝑟(𝑡)2 + 𝐹𝜆(𝑡)2 + 𝐹𝜃(𝑡)2 ≤ 𝐹 2. The trajectory ODE of
such a vehicle is thus:
𝑑𝐗(𝑡)
𝑑𝑡

= 𝐹𝑟(𝑡)𝐫̂ +
(

𝐹𝜆(𝑡) + 𝑉𝜆(𝑟, 𝜆, 𝜃, 𝑡)
)

𝝀̂ +
(

𝐹𝜃(𝑡) + 𝑉𝜃(𝑟, 𝜆, 𝜃, 𝑡)
)

𝜽̂ . (27)

Separating the components of Eq. (27), we have 𝑟̇ = 𝐹𝑟(𝑡), 𝑟 sin(𝜃)𝜆̇ =
𝐹𝜆(𝑡) + 𝑉𝜆(𝑟, 𝜆, 𝜃, 𝑡), and 𝑟𝜃̇ = 𝐹𝜃(𝑡) + 𝑉𝜃(𝑟, 𝜆, 𝜃, 𝑡). Upon integrating the
radial component, we obtain:

∫

𝑟𝑓

𝑟𝑠
𝑑𝑟 = ∫

𝑇̃

0
𝐹𝑟(𝑡)𝑑𝑡 ≤ ∫

𝑇̃

0
𝐹𝑑𝑡 ,

⟹ 𝑟𝑓 = 𝑟𝑠 + 𝐹𝑟(𝑡)𝑇̃ ≤ 𝑟𝑠 + 𝐹 𝑇̃ .

(28)

From Eq. (28), we can set 𝑟𝑓 = 𝑟𝑠+𝐹 𝑇̃ (𝜆𝑓 , 𝜃𝑓 still to be selected), which
implies that the optimal vehicle will have to move radially outwards
with speed 𝐹 at all times, as any other choice will yield a larger travel
time. As 𝐹𝑟(𝑡) = 𝐹 , this implies 𝐹𝜆(𝑡) = 𝐹𝜃(𝑡) = 0. The other two
components of the trajectory Eq. (27), the coordinates 𝜆𝑓 and 𝜃𝑓 , are
thus defined by:

𝜆̇ =
𝑉𝜆(𝑟, 𝜆, 𝜃, 𝑡)
𝑟 sin(𝜃)

=
𝑉𝜆(𝑟𝑠 + 𝐹 𝑡, 𝜆, 𝜃, 𝑡)
(

𝑟𝑠 + 𝐹 𝑡
)

sin(𝜃)
,

𝜃̇ =
𝑉𝜃(𝑟, 𝜆, 𝜃, 𝑡)

𝑟
=

𝑉𝜃(𝑟𝑠 + 𝐹 𝑡, 𝜆, 𝜃, 𝑡)
𝑟𝑠 + 𝐹 𝑡

.
(29)

As designed, the optimal travel time between the chosen start point
𝐱𝑠 and the destination 𝐱𝑓 is 𝑇̃ . The vehicle always travels radially
outwards with the maximum allowable speed 𝐹 . The optimal trajectory
𝐱(𝑡) = (𝑟(𝑡), 𝜆(𝑡), 𝜃(𝑡)) ∀ 𝑡 ∈ [0, 𝑇̃ ] can thus be semi-analytically computed
using Eq. (29) in

∫

𝐱(𝑡)

𝐱𝑠

⎡

⎢

⎢

⎣

𝑑𝑟
𝑑𝜆
𝑑𝜃

⎤

⎥

⎥

⎦

=∫

𝑇̃

0

⎡

⎢

⎢

⎣

𝐹
𝑉𝜆∕𝑟 sin(𝜃)

𝑉𝜃∕𝑟

⎤

⎥

⎥

⎦

𝑑𝑡 . (30)

This completes our benchmark problem definition. To be specific, we
choose the start location to be 𝐱𝑠 =

(

0.1, 0, 𝜋4
)

, the travel time 𝑇̃ = 0.9,
and the vehicle speed 𝐹 = 1. This implies that the exact destination 𝐱𝑓
has the radial coordinate 𝑟𝑓 = 1.0. Integrating Eq. (30), its azimuthal
and polar coordinates are found to be 𝜆𝑓 = −0.9754𝜋 and 𝜃𝑓 = 0.2277𝜋.

To evaluate our numerical integration of the forward level-set PDE
(6) and backward ODE (7), we now compare the computed optimal
travel time with its theoretical value 𝑇̃ and the computed optimal
trajectory with its exact optimal trajectory, obtained by the semi-
analytical integration of Eq. (30). The 3D path planning problem to be
solved using the level set methodology is thus to predict the optimal
trajectory for a vehicle with maximum speed 𝐹 = 1 that is traveling
from 𝐱𝑠 =

(

0.1, 0, 𝜋4
)

to 𝐱𝑓 = (1.0,−0.9754𝜋, 0.2277𝜋) under the external

dynamic velocity field 𝐕(𝑟, 𝜆, 𝜃, 𝑡) given by Eq. (26). We solve this
problem on a domain 𝛺 = [−2, 2] × [−2, 2] × [−2, 2], using the finite
volume method with 200 grid points in each direction, and a numerical
time step of 𝛥𝑡 = 0.001. A 5th order WENO scheme is used for spatial
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Fig. 7. Semi-analytical exact (solid) and numerically predicted (dashed) time-optimal paths for a vehicle traveling from 𝐱𝑠 =
(

0.1, 0, 𝜋
4

)

to 𝐱𝑓 = (1.0,−0.9754𝜋, 0.2277𝜋) with speed
𝐹 = 1. The computed optimal path is obtained by numerical integration of the forward Hamilton–Jacobi level set PDE up to 𝐱𝑓 followed by backward tracing the trajectory ODE
starting from 𝐱𝑓 . The semi-analytical optimal path is obtained by integrating Eq. (30) from 𝑡 = 0 to 𝑡 = 𝑇̃ .

gradients and a TVD RK3 scheme for time marching (see Appendix B).
As the external velocity field has no radial component, the reachability
front grows as a sphere with its rate of radius increase being 𝐹 = 1
(not shown). The computational time required is found to be 341.09 s
for this forward evolution of the reachability front and 1.34 s for
backtracking the time-optimal path.

The optimal time required for traveling from 𝐱𝑠 to 𝐱𝑓 is predicted
to be 𝑇 = 0.902, which is extremely close to the exact value of 𝑇̃ = 0.9,
with a relative error of 0.22%. Fig. 7 compares the semi-analytical
trajectory (integrating Eq. (30) using the forward Euler method and a
time step of 𝛥𝑡 = 0.001) to the level-set computed backtracked trajectory
in 3D and their components along the 𝑋, 𝑌 , and 𝑍 axes. We find that
the computed trajectory is also extremely close to the semi-analytical
trajectory at all times, in all the coordinates.

5.3. Application in three-dimensional analytical double Gyre–Shear flow

We now verify schemes with the analytical double gyre flow, that is
a periodic, unsteady, and divergence-free velocity field (Shadden et al.,
2005; Froyland and Padberg, 2009). Note that, this model is not a
real fluid flow, in that it is not obtained as a solution to the Navier–
Stokes’ PDEs, but is a simplification of the double gyre pattern that
frequently occurs in geophysical flows (Coulliette and Wiggins, 2001;
Lolla et al., 2014b; Subramani and Lermusiaux, 2016). We consider this

flow in the domain (0, 2) × (0, 1) × (0, 1). The classic double gyre is a
two-dimensional flow in space whose non-dimensional velocity field is
analytically described by

𝑣𝑥 = −𝜋𝐴 sin (𝜋𝑓 (𝑥)) cos(𝜋𝑦) 𝑣𝑦 = 𝜋𝐴 cos (𝜋𝑓 (𝑥)) sin(𝜋𝑦)
𝑑𝑓
𝑑𝑥

, (31)

where,

𝑓 (𝑥) = 𝑎(𝑡)𝑥2 + 𝑏(𝑡)𝑥 (32)

𝑎(𝑡) = 𝜖 sin(𝜔𝑡) (33)

𝑏(𝑡) = 1 − 2𝜖 sin(𝜔𝑡) . (34)

To create a 3D flow field from Eq. (31), we add an unsteady parabolic
velocity profile for the 𝑍 direction that bears positive values in the
region of the first gyre and negative values within the other gyre.
Specifically, the 𝑍 velocity is given by:

𝑣𝑧 = 𝑥𝑦(2 − 𝑥)(1 − 𝑦) (1 + 𝜖 sin(𝜔𝑡) − 𝑥) . (35)

The velocity field is depicted in Fig. 8. The parameters used are:
𝐴 = 0.1, 𝜖 = 0.1, 𝜔 = 𝜋∕5. The vehicle speed is set to 0.05 and
a 200 × 100 × 100 grid with a time step of 5 × 10−3 is used in
a finite volume setup with the 5th order WENO scheme for spatial
gradients and TVD RK3 scheme for time marching (see Appendix B).
This example demonstrates a one-to-all broadcast, where multiple

vehicles leave from the same start point in order to travel to different
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Fig. 8. Three-dimensional analytical double gyre–shear flow velocity field. The classic
analytical double gyre flow exists in the 𝑋–𝑌 plane, and its streamlines are overlaid
on a vorticity plot for the same flow field. The 𝑍 direction has a double-parabolic
velocity profile, whose projection is shown over the 𝑋–𝑍 and the 𝑌 –𝑍 planes.

target locations. With our PDE approach, such a broadcast only requires
one level set evolution per start point, and hence it is computationally
advantageous. The zero level set is evolved from the start point until
all the destination positions lie on or inside it. The time at which the
reachability front crosses a particular destination position is noted, and
the optimal path is backtracked from this stored time until the start
time. Hence, increasing the number of target positions only increases

the cost of the backtracking ODE computation, which is much less than
that of the forward evolution PDE. Specifically, the forward evolution
of the reachability front required 82.33 s, whereas the backward tracing
of the three optimal paths required 0.87 s (green), 1.41 s (orange) and
1.56 s (red), respectively.

Fig. 9 shows the predicted optimal paths to be followed by the
vehicles to reach the respective destinations in shortest time. It is clear
that the vehicles utilize the background flow field to their advantage.
Even though they travel much longer distances (as compared to straight
line paths), they do so at a higher effective speed, thus reaching in
shortest time.

6. Applications in three-dimensional realistic oceanic flow fields

This section integrates realistic ocean modeling and time-optimal
path prediction for common types of marine vehicles. Operations are
planned for the complex four-dimensional (time–space) ocean flow
fields of the Middle Atlantic Bight region. Three types of marine
vehicles are considered: (i) vehicles with isotropic propulsion, (ii)
vehicles with anisotropic speeds, specifically oceanic floats that can
propel vertically by adjusting buoyancy, but are advected in the hor-
izontal (Rudnick et al., 2004), and (iii) typical marine gliders that
perform a vertical sinusoidal (yo-yo) motion, which reduces the path
planning problem to a two-dimensional one as shown in Section 3. We
first describe the 3D regional dynamics, our data-assimilative multi-
resolution ocean modeling, and our computational time-optimal path
planning setup. We then describe the evolution of the reachability
front for these vehicles, highlighting how the underlying dynamic flow
features affect this evolution. Finally, we analyze the actual time-
optimal paths and show how each type of optimal vehicle intelligently
utilizes the currents most beneficial and avoids the most adverse, in
accord with its type.

Fig. 9. Predicted time-optimal paths for vehicles traveling to different target locations in a 3D double gyre–shear flow. The dotted sections of the path represent the part of the
trajectory where the external flow field is in the negative 𝑍 direction.
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Fig. 10. Open domain (white rectangle) for realistic path planning missions in the
Middle Atlantic Bight region, overlaid on bathymetry. The circle is the start position
and the star is the target position of the mission, just north of the Hudson Canyon.

6.1. Ocean modeling and oceanography

The Middle Atlantic Bight region, off the coast of New Jersey, offers
a variety of flow features interacting on multiple scales (Linder and
Gawarkiewicz, 1998; Lozier and Gawarkiewicz, 2001; Lentz, 2008;
Wilkin et al., 2018; Kelly and Lermusiaux, 2016). They include the
Gulf Stream, shelf-break front, coastal jets, tidal currents, internal tides,
and also Hudson river outflow. Such conditions provide challenging
environments for autonomous missions. Fig. 10 shows the simula-
tion domain overlaid on bathymetry, from 37.56◦𝑁 to 40.99◦𝑁 , and
73.97◦𝑊 to 70.54◦𝑊 . The white circle and the star denote the start
(37.90◦𝑁, 72.22◦𝑊 ) and target positions (39.85◦𝑁, 72.30◦𝑊 ) for our
planning missions, respectively (both positions at the surface).

The multi-scale ocean dynamics in this region is simulated using the
MIT Multidisciplinary Simulation Estimation and Assimilation System
(MSEAS) (Haley Jr. and Lermusiaux, 2010; Haley Jr. et al., 2015).
MSEAS is used for fundamental research as well as realistic applications
such as monitoring (Lermusiaux et al., 2007), real-time ecosystem and
acoustic predictions (Beşiktepe et al., 2003; Xu et al., 2008; Lermusiaux
et al., 2011), and environmental management (Cossarini et al., 2009).

The specific currents used for path planning are from a data-
assimilative MSEAS re-analysis for August 28, 2006 up to September 9,
2006 (Haley Jr. et al., 2015; Subramani et al., 2017a). The data were
collected as a part of the Shallow Water ‘06 (SW06) initiative (WHOI,
2006; Lermusiaux et al., 2006a; Newhall et al., 2007; Tang et al.,
2007; Chapman and Lynch, 2010; Lin et al., 2010). MSEAS solves the
nonlinear free-surface hydrostatic primitive-equation (PE), configured
with generalized-level vertical-coordinates and implicit two-way nested
computational domains (Haley Jr. and Lermusiaux, 2010). In the
horizontal, the domains have a

3 km and 1 km grid resolution, respectively, and in the vertical,
they each employ 100 levels optimized to the thermocline and flow
structures. The tidal-to-mesoscale ocean re-analysis is initialized with
objectively-analyzed temperature, salinity, and velocity fields for
Aug 14, 2006. Two multiscale-in-space analyses (Lermusiaux, 1999,
2002), inshore and offshore of the expected shelfbreak front, are
combined using a shelfbreak-front feature model (Lermusiaux, 1999;
Gangopadhyay et al., 2003). The Gulf Stream is initialized using synop-
tic and historical CTD profiles as well as estimates of its position based
on SST and NAVOCEANO feature analyses. High-resolution barotropic
tides (Logutov and Lermusiaux, 2008) based on the TPXO7.2 surface-
tide velocities and elevation (Egbert and Erofeeva, 2002) for Aug 14
2006 are merged with the subtidal initial fields, following Haley Jr.

et al. (2015). The re-analysis free-surface PE simulation is then inte-
grated for 42 days. During integration, the ocean data collected during
the AWACS and SW06 exercises (Tang et al., 2007) as well as data of
opportunity (NMFS, etc.) are assimilated. Finally, the numerical and
sub-grid-scale parameters are tuned for the region by comparison of
many PE simulations with independent in situ SW06 measurements.

6.1.1. Ocean flows and regional dynamics
In the present period, we observe that the optimal paths for the AUV

(with isotropic speed) and the float go down to a maximum depth of
22 m (the float travels deeper, but for an extremely short duration),
and hence we focus on the top 20 m of the ocean flows over the
considered time of interest. Figs. 11, 12, and 13 plot the daily averaged
horizontal currents at 0 m, 10 m, and 20 m depth, respectively. Also
shown are the daily position of the (isotropic) AUV — pink circle
denotes the current position (i.e. position on the considered day at
00 UTC) whereas the gray circle(s) denote the horizontal position(s) of
the vehicle on the past day(s). Note that this is simply the horizontal
location of the vehicle (i.e. discarding depth); the vehicle may not
be at the particular depth at the considered instant. We also plot the
daily averaged horizontal currents, depth averaged over the first 90 m
in Fig. 14. This is effectively the flow field experienced by the glider
performing sinusoidal (yo-yo) motion. The daily position of the glider
and its history are denoted in pink and gray, similar to the previous
figures.

The Gulf Stream is clearly seen in the southeast corner of the
domain at all depths as well as the depth averaged fields, with velocities
reaching 2 m∕s. The meandering shelfbreak front jet, flowing to the
west-southwest and close to the 100 m isobath is also visible (Lermusi-
aux, 1999; Linder and Gawarkiewicz, 1998), especially in Fig. 14. On
August 28 (Figs. 11(a), 12(a), 13(a), 14(a)), there is a northeast-to-
southwest jet just north of the Gulf Stream with speeds up to 25 cm/s.
This flow is almost non-existent at the surface, but gets stronger with
depth. There is also a local northward flow (between the Gulf Stream
and the said jet) locally at the mission start point. On the shelf,
the surface flow reverses due to southwestward winds on August 29,
developing first along the coast of Long Island and intensifying to a
midshelf westward-southwestward flow by August 30, as especially
seen in the depth-averaged velocities (Fig. 14(b), (c)) and at the surface
(Fig. 11(b), (c)). We also find that the said northeast–southwest jet
strengthens at the surface and a bit deeper during this period, and a
cyclonic eddy feature develops north of the Gulf Stream (near 38.9◦𝑁 ,
71.9◦𝑊 ), at depths of 10 m onwards (Figs. 12(b), (c), 13(b), (c)), with
its northern side linked to the south-southwest shelfbreak front jet. Our
vehicles take advantage of this eddy, as will be shown in Section 6.4.

Tropical storm Ernesto passes over the domain during September
1–3. The operational region mostly sees the northeastern edge of the
storm as it proceeds northward. The ocean response is a northwestward
flow at the surface, 2–3 times stronger than on August 30 and shelf
wide with intensification near the coast (Fig. 11(e)–(g)). Due to 3D
downwelling, the flow changes direction with depth: it is reversed
to the south-southwest at 20 m (Figs. 13(e)–(g), 14(e)–(g)). After the
storm, the main flow on the shelf south of New Jersey is gener-
ally southwestward, parallel to the coast and shelfbreak. It reaches
a barotropic magnitude of 5–10 cm/s, with currents decaying with
depth. This midshelf flow is a remnant of the shelf response to Ernesto,
partly supported by a local cross-shelf density gradient (not shown) that
Ernesto established. On September 6, the shelfbreak front jet reaches a
barotropic strength of 10–20 cm/s (Fig. 11(j)), in part due to the minor
wind event between 00 to 17 UTC on that day. Finally, weak density-
driven eddies and currents occur on the shelf during the whole period
and affect the optimal paths.

6.2. Computational setup and simulation details

Our first example models AUVs that can more or less propel in any
direction at their operating speed. We assume here that the vehicle has
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Fig. 11. Daily ocean flow field at the surface (0 m depth) in the Middle Atlantic Bight shelfbreak front region, as re-analyzed by MSEAS. Flow patterns are illustrated by their
vectors, overlaid on flow magnitude (colored in m/s). The pink circles highlight the position of the isotropic AUV on the considered date (at 00 UTC), and the gray circles show
its locations from the past days (also at 00 UTC).

a maximum propulsion speed of 50 cm/s and a maximum allowable
depth of 100 m, which is well within the typical range of such vehi-
cles (Rudnick et al., 2004; Haley Jr. et al., 2009; Ramp et al., 2009).
The second example looks at path planning for vehicles with heading-
dependent propulsion speeds and constrained motion (Section 3.1).

Particularly, we consider a vehicle that can propel only in the vertical;
its motion in the horizontal plane is then only through flow advection.
Most oceanic floats are able to maneuver this way, wherein their ver-
tical propulsion is a result of changing their effective buoyancy (Gould
et al., 2004). We assume that the float can travel at 10 cm/s vertically
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Fig. 12. Daily ocean flow field at 10 m depth in the Middle Atlantic Bight shelfbreak front region, as re-analyzed by MSEAS. Flow patterns are illustrated by their vectors, overlaid
on flow magnitude (colored in m/s). The pink circles highlight the position of the isotropic AUV on the considered date (at 00 UTC), and the gray circles show its locations from
the past days (also at 00 UTC).

(but with no propulsion in the horizontal directions) and is allowed
to travel at a maximum depth of 100 m. We finally showcase an
underwater glider that performs a sinusoidal yo-yo motion, as typical
for ocean data collection (Fan and Woolsey, 2014; Ramp et al., 2009;
Haley Jr. et al., 2009; Leonard et al., 2010). In our example, we assume

typical operational parameters to be similar to a Seaglider (Rudnick
et al., 2004). The glider is assumed to slowly dive up to 90 meters in
depth, with subsequent up-and-down motions with a period of 4 h. The
average vertical speed is 1.25 cm/s. In the horizontal plane, the speed
is assumed to be 50 cm/s (Stokey et al., 2005).
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Fig. 13. Daily ocean flow field at 20 m depth in the Middle Atlantic Bight shelfbreak front region, as re-analyzed by MSEAS. Flow patterns are illustrated by their vectors, overlaid
on flow magnitude (colored in m/s). The pink circles highlight the position of the isotropic AUV on the considered date (at 00 UTC), and the gray circles show its locations from
the past days (also at 00 UTC).

Our 3D path planning numerically solves the exact non-dimensional
form of the forward Hamilton–Jacobi level set Eq. (18). We employ
the finite volume method on a grid of 128 × 128 × 50 elements in
the longitudinal, latitudinal, and vertical directions, respectively, where
each grid cell has an approximate size of 2.32 km × 2.98 km × 2 m.

A time step of 6 min (360 s) is used. We use the 5th order WENO
scheme for the spatial terms and the TVD RK3 for time marching.
In the case of partially known vehicle motion, the 3D path planning
problem reduces to a 2D one (Section 3.2). Hence, simulations are
carried out on a 2D grid of resolution 128 × 128 elements, with the rest
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Fig. 14. Daily ocean flow field averaged over the top 90 m in the Middle Atlantic Bight shelfbreak front region, as re-analyzed by MSEAS. Flow patterns are illustrated by their
vectors, overlaid on flow magnitude (colored in m/s). The pink circles highlight the position of the glider (performing a sinusoidal yo-yo motion) on the considered date (at 00
UTC), and the gray circles show its locations from the past days (also at 00 UTC).

of the computational setup being as above. All the vehicles start their
journey on August 28 at 00 UTC, from the same start location as stated
above (ref. Fig. 10). The reachability front defined as the zero level set
of 𝝓 is constructed by linear interpolation between grid points. Once

the forward evolution of the reachability front is complete, backward
tracing of the optimal trajectory is computed using the fully implicit
backward tracing schemes obtained in Section 4 and further detailed
in Appendix C. To compute this backtracked optimal path, we need
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Table 2
Operating characteristics and summary of results for time-optimal path planning in the Middle Atlantic Bight region.

Vehicle type Propulsion details Optimal duration Reachability front evolution Optimal path

Isotropic AUV 50 cm/s in any direction 3.84 days Fig. 15 Fig. 17
Float No propulsion in the horizontal plane; 10 cm/s in the vertical 9.53 days Fig. 16 Fig. 18
Glider 50 cm/s in the horizontal plane; sinusoidal dives (with a 4 h period) in the vertical 4.15 days Fig. 19

Fig. 15. Evolution of the zero level set (not to scale) in the Middle Atlantic Bight region for a vehicle with isotropic speed. The level set evolves as curtains due to the weak
depth-variability of the dominant horizontal velocity field. Further, the level set growth is halted whenever it is near the sea-floor. This leads to the jagged surfaces in sub-figures
(c) and (d). The level set evolution is shown from different viewpoints so as to better understand the global picture.

to compute the normal direction to the reachability front at certain
locations. Appendix C describes the algorithm used to compute such
normal directions at arbitrary locations on the reachability front.

Table 2 summarizes the considered operating characteristics, the op-
timal travel time results, and the relevant figure numbers that contain
the reachability front evolutions and optimal paths.

6.3. Evolution of the reachable sets

Isotropic AUV. Fig. 15 plots the growth of the zero level set (the
reachability front) for the AUV with isotropic propulsion. We observe
that the zero level set quickly reaches the deepest limit of the simula-
tion domain, and then evolves as a deforming and sloping curtain, with
clearly visible creases. These variations of the curtain along the vertical
happen due to the following reasons. First, the flow in this region is
mainly dominated by surface tides, wind-driven flows, and thermocline
intensified currents and eddies. This means that the variability of the
horizontal velocities along the vertical direction is much smaller than
the velocities themselves. Most horizontal motions have small and local
reversals in the first 100 m depth; there are only a few regions and times
where a flow reversal with depth is observed. These phenomena prompt
the zero level set to grow as curtains. Second, the small variations and
shifts of the zero level set with depth are further hidden by the skewed
plot scales. The 𝑋 and 𝑌 scales are in hundreds of kilometers, whereas
the 𝑍 scale is in tens of meters. In the deeper areas of the domain, the
evolving zero level set is abruptly halted and it forms a jagged surface
parallel to the bottom. This is because in these regions the zero level set

is close to the sea floor. We prohibit the zero level set from penetrating
the sea floor (as the vehicle cannot move inside land). This is done by
setting the advective velocity field 𝐕 as well as the vehicle speed 𝐹𝑣 to
zero at these depths, which ensures that the optimal path never crosses
through any land mass.

We observe that the initial reachable set for the AUV is quickly
advected northwards due to the local northward flow at the start point,
and hence fails to see the strong Gulf Stream currents. Over August 29
and 30, the reachability front grows due to the favorable flow on the
east side of the cyclonic eddy that develops to the north of the Gulf
Stream (especially beyond 40 m), but is held back on the west side of
this eddy. This causes a crease-like feature in the reachability front
as seen in Fig. 15(c). We can also see that the northeast–southwest
oriented jet north of the Gulf Stream pushes the reachability front out
of the domain in the southwest corner. Finally, the reachability front
reaches the destination on August 31, 2006 at 20:17:22 UTC and the
corresponding optimal travel time for this vehicle is 3.84 days.

Vertical-only Propulsion Float. Fig. 16 shows the evolution of the zero
level set for the float capable of slow vertical propulsion only. The
growth of the zero level set still locally stops at the sea floor (or just
before), ensuring that the optimal path does not go through any land
mass. The evolution of the level set is comparatively slower, and it takes
longer for the float to reach the destination. As the horizontal evolution
of the reachability front is only due to oceanic flows, it evolves faster
in the region of faster ocean currents.

We find that the reachable set of the float is initially pushed to
the northwest due to the local currents just north of the Gulf Stream.

17



C.S. Kulkarni and P.F.J. Lermusiaux Ocean Modelling 152 (2020) 101644

Fig. 16. Evolution of the zero level set (not to scale) in the Middle Atlantic Bight region for the float. This reachability front is observed to have greater variations with depth
than the isotropic vehicle motion case. Further, the evolution of the level set is comparatively slower, and it takes longer for the float to reach the destination. The level set
evolution is shown from different viewpoints in order to better understand the global picture.

Fig. 17. Time-optimal path predicted for an AUV with isotropic propulsion in the Middle Atlantic Bight region. Panel (a) shows the isometric view of the optimal path. Panels
(b), (c), (d) depict the top, side, and front views of the path respectively. We also plot the surface velocity field on Aug. 31, 2006 at 20:17:22 UTC (i.e. the time at which the
vehicle reaches the destination) for reference in Panel (b), along with the vehicle location at 00 UTC on August 29, 30, 31. The vehicle initially utilizes the edge of the northern
wall of the Gulf Stream, and is later forced eastwards due to the flow from the Hudson Canyon. It also dives deeper in order to avoid the adverse currents at the ocean surface.
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Fig. 18. Time-optimal path predicted for a float operating in the Middle Atlantic Bight region, from August 28 to September 6, 2006. We find that the float initially dives to a
certain depth (about 20 m) in order to avoid the adverse flow at the surface. It then sails at this constant depth for a while. After this, it dives (down to 45 m) and rises sharply and
then concludes its journey by rising the ocean surface. Dives such as the one seen in Panel (c) could be eliminated by appropriately choosing a tolerance value, see Appendix B.
Finally, panel (e) shows the top view of the float path, overlaid on 20 m averaged velocity field on Sept. 6, 12:40:02 UTC (i.e. the time at which the float reaches the destination).

The reachability front does not reach the entire depth at all locations
as the float is slower than the isotropic AUV; ocean vertical velocities
may thus prohibit the float from reaching all depths of the domain.
We initially observe low variation in the reachability front in the
vertical, but between days 5 and 7.5 (Fig. 16(b), (c)), the reachability
front grows much faster at the surface due to the favorable currents
generated by tropical storm Ernesto. Ernesto’s impact is limited deeper.
The wind-driven response thus generates major vertical variation in
the reachability front growth (much larger than that for the isotrop-
ically propelled AUV) by the time the float reaches the destination
(Fig. 16(d)).

Glider. Finally, for a glider performing a sinusoidal motion in the
vertical, the projected reachable set evolution is solved as a 2D prob-
lem and the projected reachability front evolved as a 2D parametric

contour. If some of the points on this contour are within a tolerance
of the ocean floor (or surface) at some particular time, the propulsion
of the glider is then reversed only at these points. The vehicle can
continue to move in the same direction at all other points until it either
reaches the tolerance to the bottom or the maximum allowable depth
(or surface). The location and time data of points at which such reversal
of direction occurs are kept in memory and enforced while backtracking
the optimal path. While planning paths for such vehicles with known
vertical motion, it might happen that the vehicle reaches the horizontal
coordinates of the target, but at a different depth. In such cases, one
can assume that the vehicle can rise/sink locally to reach the exact
target depth. This is what is done in the present example, but one could
of course continue the level set computation until both the horizontal
coordinates and proper depth are reached.
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6.4. Three-dimensional time-optimal paths

We now examine the time-optimal paths for the three different
types of vehicles considered, their characteristic features, and how they
related to the ocean flows experienced by these vehicles.

6.4.1. Vehicles with isotropic speeds
Fig. 17 depicts the optimal path followed by the isotropically pro-

pelled AUV, which requires a total travel time of 3.84 days. To com-
pare, in the absence of currents, the vehicle would travel in a straight
line joining the start and target positions and would require 4.97 days.
Hence, it is clear that the optimal AUV can here make efficient use of
the oceanic velocities to reach the target in the shortest amount of time.

Initially, the optimal AUV is advected north by the local northward
currents at the start point. It then dives deeper as the northeast-to-
southwest jet to the north of the Gulf Stream is strong near the surface
on August 29 (surface currents are small on August 28, but increase
significantly by August 29, and hence the AUV starts to dive). It is
clear in Fig. 17(b) how the AUV navigates around the southwestward
currents north of the Gulf stream. By August 30 and 31, the AUV
sails northward, using the favorable flow on the eastern side of the
cyclonic eddy (Figs. 12(c), 13(c)) that develops to the north of the Gulf
Stream (beyond 10 m depth). Around August 31, the AUV starts rising
as the wind-driven currents around 10 m depth are northwestward
and favorable (Fig. 12(d)) while those at the surface and 20 m are
westward or southwestward and not favorable (Figs. 11(d), 13(d)).
Finally, the impact of the tropical storm Ernesto causes favorable
surface currents from September 1 onwards and hence the AUV rises
to utilize these flows and ultimately reach the destination. Another
interesting observation relates to the spacing between daily vehicle
positions (Figs. 11(a)–(d), 12(a)–(d), 13(a)–(d)). It shows that the AUV
travels more on the second day than on the first, and even more
on the third and fourth days. This is because on the first day and a
part of the second day, the AUV is traveling against southwestward
currents. However, once out of this adverse currents region, it utilizes
the favorable currents (eastern edge of the cyclonic eddy and those
driven by Ernesto) on days 3 and 4, and thus travels larger distances.

The computational time required for the forward evolution of the
reachability front for the isotropic AUV is 109.2 min for the numerical
schemes of Section 4, whereas the time required for backward tracing of
the optimal path is 38 s. As expected, the computational time required
for backward tracing is much less than that required for the forward
evolution, as one only solves an ODE in backtracking the optimal path,
whereas a PDE is solved on the entire 3D domain for the forward
evolution. Importantly, since the optimal travel time is 3.84 days, such
exact-PDE path planning can be completed in real-time.

6.4.2. Vehicles with anisotropic speeds
For vehicles with constrained motion, we resort to an offline maxi-

mization table to compute the optimal propulsion term, as described in
Appendix B. Fig. 18 shows the optimal path to be followed by the float
(propulsion only in the vertical direction). The float is much slower
than the isotropic propelled AUV, with a total travel time of 9.53 days.
This is expected, as the float does not have any horizontal propulsion
of its own. Further, we can tune a tolerance parameter of the vehicle
(ref. Appendix B) such that unless a major event happens, the float
tends to stay at the same depth.

The float initially dives to avoid adverse southwestward currents
at shallow depths, north of the Gulf Stream (see Fig. 11), and utilizes
west-northwestward currents around the start point at 20 m depth.
On August 29 and 30, it advects east-northeastward with a favorable
current that is present at 20 m depth, just to the north of the Gulf
Stream (see Fig. 13(b), (c)). However, this current changes direction
around Sept. 1 due to tropical storm Ernesto, and the float thus dives
deeper, down to about 45 m, to avoid the effect of this adverse change.

On September 2 and 3, tropical storm Ernesto induces favorable
velocities at the surface. Thus, the float quickly rises to the surface
to capture these currents (deeper velocities on these days are unfa-
vorable). Note that, such frequent dives can be eliminated to respect
the limits on the functional characteristics of the specific float by
setting the appropriate value of a tolerance parameter of the float
(ref. Appendix B). Finally, post Ernesto, the current magnitudes and
variations are typically small, and hence the float does not perform any
vertical motion and is simply advected to reach the target.

The computational time required for the forward evolution of
the reachable set and backtracking the optimal path for the float is
188.6 min and 32 s respectively. The forward evolution takes longer
than that of the isotropic AUV because even though the cost per
time step is comparable, the float simply takes longer to reach the
destination (9.53 days), leading to higher a computational expense.

6.4.3. Vehicles with partially known motion
For vehicles with partially known motion, we solve for the 2D

projection of the forward 3D reachable front. To backtrack the full 3D
optimal path, we thus add back the deterministic displacement due to
the vertical motion of the vehicle to the optimal projected path being
backtracked in 2D. Fig. 19 shows that 3D optimal path, as predicted for
a glider performing a sinusoidal yo-yo motion. The time for this journey
is 4.15 days (almost 25 dives), which is slower than for the AUV with
isotropic speed, but much faster than for the float. This is expected, as
we impose no constraints on the motion of the AUV in the first case,
whereas stricter constraints are enforced on the float motion. Note that
for the last dive, the glider is also close to the sea floor and hence it
terminates the dive earlier in order to not collide with the bottom.

The optimal path qualitatively follows a pattern similar to isotrop-
ically propelled AUV, but with larger deviations from horizontally
straight lines. From Fig. 19(b), we find that the glider initially uti-
lizes the northern edge of the Gulf Stream to move eastwards and so
avoid the large patch of southwestward currents just to the northwest.
From August 31 to September 1, it then advects north, to hop on the
moderately strong north to northwestward flow (part of the eddy).
Finally, when just to the south of the target, it leaves this flow (which
is now westward) early on September 2, and travels north to reach
the target. Similar to the isotropically propelled AUV, we can draw
interesting remarks by looking at the spacing between the daily glider
positions (Fig. 14(a)–(d)). The glider covers a large distance on the
first day but travels a smaller one on the second. This is because it
utilizes the favorable Gulf Stream to initially travel east, but then has
to cross the southwestward jet only using its own speed. It later travels
large distances again on the third day, this time by utilizing the north
to northwestward eddy. Finally, it covers a moderate distance on the
fourth day (i.e. more than day 2 but less than days 1 and 4) to finally
reach the destination.

For the glider with a sinusoidal motion in the vertical, it takes
4.9 min to solve the level set PDE to compute the forward evolution
of the reachability front, and 52 s to compute the time-optimal path by
backward tracing. When compared to the corresponding computational
times for the isotropic AUV (109.2 min for forward evolution, 38 s
for backward tracing), we can clearly see that the forward evolution
for the glider is much faster, because the level set PDE is now only
solved in 2D instead of 3D. However, the backward tracing for the
glider takes slightly longer as one needs to compute the contribution
in the horizontal and the vertical, and then combine them to yield the
optimal travel direction. Of course, the marginal cost increase in solving
the backtracking ODE is overshadowed by the significant gain in the
solving the forward evolution PDE.

Fig. 20 shows a top view of the optimal trajectories for the isotropic
AUV, float, and glider. We find that the glider, with its forced yo-yo
motion in the vertical between 0 and 90 m, makes the most use of the
Gulf Stream. The AUV and float (no such forced motion) remain mostly
at shallower depths and utilize favorable dynamic eddies, meanders,
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Fig. 19. Time-optimal path predicted for a glider from August 30 to September 2, 2006 in the Middle Atlantic Bight region. We also plot the top 90 m averaged velocity field
on Sept. 1, 3:35:52 UTC (i.e. the time at which the glider reaches the destination) for reference in Panel (a). The glider performs a yo-yo motion with dives up to 90 meters
deep, and completes approximately 25 dives while traveling to the destination, requiring 4.15 days for the journey. For the last dive, the glider does not dive to 90 m due to the
obstruction from sea floor.

and sub-surface currents to the north of the Gulf Stream to optimally
reach the destination. The float avoids the Gulf Stream, in part to
avoid challenges escaping it which would prevent reaching the target
in fastest time, if at all (since the float can only move up and down).

7. Conclusions

In this paper, we first developed the theoretical foundations and
practical aspects of exact time-optimal path planning in 3D realistic
ocean fields with strong and dynamic currents. Specifically, we pro-
vided new extensions for the exact and efficient computation of optimal
paths for commonly employed marine vehicles, respecting their motion
constraints. We considered three main classes of propulsion behaviors:
unconstrained isotropic, anisotropic, and partially imposed. For the lat-
ter two motions, we specialized the exact reachability PDE (Lolla et al.,
2012; Lolla, 2016; Lolla and Lermusiaux, 2020) to vehicles that can
propel only in certain directions (e.g. only vertical propulsion) or that
have partially known motions (e.g. forced yo-yo motions), respectively.
We showed that the 3D problem can be reduced to two dimensions if
the motion of the vehicle is partially known, such as gliders performing
deterministic oscillatory vertical motions or propelled AUVs forced to
use specific patterns in the horizontal. As a result, the computational
cost is reduced significantly.

Second, we obtained robust numerical schemes to solve the path
planning equations consistently and with high accuracy in realistic
3D ocean domains. Since these domains have length and velocity
scales that are much smaller in the vertical than the horizontal, even

Fig. 20. Time-optimal paths predicted for the isotropic AUV (pink), float (red), and
glider (colored according to depth, ref. Fig. 19) in the Middle Atlantic Bight region. We
find that the prescribed deeper-diving glider uses the Gulf Stream more to its advantage
than the isotropic AUV and the float that instead use shallower eddies and favorable
circulation patterns to the north of the Gulf Stream.

small numerical errors along a certain dimension may have dras-
tic consequences along the other dimensions. To overcome this ill-
scaling, we obtained the non-dimensional form of the Hamilton–Jacobi
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level set equation. We next emphasized the new concept of numerical
consistency between the discrete forward evolution of the reachable set
and discrete backward tracing of the optimal path. We discussed high-
order spatial and temporal numerical schemes for the forward evolution
of the zero level set function and developed novel consistent implicit
schemes for the backward tracing of the optimal path.

Third, we applied our schemes to analytical and realistic flows, inte-
grating ocean modeling with 3D path planning with motion constraints.
We validated the theory, verified schemes, and benchmarked accuracy
using three analytical 3D flows. Numerical discretization errors were
quantified by comparison to the analytically optimal paths and du-
rations. The capability of correctly handling dynamic 3D flows was
confirmed. Using the data-assimilative ocean currents of the MSEAS
primitive-equation modeling system in the Middle Atlantic Bight re-
gion, reachability fronts and optimal trajectories were predicted and
analyzed for three classes of marine vehicles, namely propelled AUVs,
floats, and gliders. We described the regional ocean dynamics and the
evolution of the reachability fronts in response to the instantaneous
dynamic currents and propulsion characteristic of each vehicle type.
We found that the effects of 3D multiscale ocean currents on the actual
optimal paths chosen by the vehicles were significant, and that the
vehicles tried to best utilize the favorable flow features, while avoiding
the adverse flows. For such paths, ocean forecasts should be employed
for real-time planning of efficient autonomous missions, from optimal
pick-up and deployment, to monitoring and adaptive data collection.

In the future, since the 3D path planning PDE and ODE are exact,
they can be employed in any regions and dynamics, e.g. low-order
flows such as in the Sargasso sea, vertically complex flows such as in
Equatorial regions, strong and complex 3D flows such as in estuaries,
or in regions with physical obstacles (Lolla et al., 2015; Subramani
et al., 2017b). Numerically, to further reduce the computational cost of
the reachable set evolution, the narrow band level set method (Adal-
steinsson and Sethian, 1995; Lolla, 2016; Lolla and Lermusiaux, 2020)
could be utilized in 3D. In that case, only the values of the level set
function that are strictly needed in the vicinity of the zero level set are
computed. Another possible future direction is to study energy optimal
paths or optimal paths in stochastic environments for such marine
vehicles (Subramani et al., 2017a, 2018; Subramani and Lermusiaux,
2019). Finally, onboard routing can be implemented using the devel-
oped theory and framework (Lermusiaux et al., 2016). Vehicle positions
could be assimilated to correct the predicted advective velocity field,
and a modified optimal trajectory could be computed online from the
real-time position of the vehicle.
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Appendix A. Theoretical results on the reachability set evolution

In what follows, we state the evolution of the reachability front
governed by a Hamilton–Jacobi equation. Specifically, the following
theorem provides the evolution of the reachable set by means of a PDE
and the optimal vehicle heading function that minimizes the total travel
time. The result is related to the principle of minimum action (here
time) of classical mechanics.

Theorem. Let 𝐕(𝐱, 𝑡) be a Lipschitz continuous and bounded velocity field
in all its arguments. Denote the set of permissible unit heading directions
by , which is a subset of R3. Let the maximum vehicle speed 𝐹 (𝐡̂, 𝑡) ∶
×[0,∞) → R+ be Lipschitz continuous in all of its arguments. We assume
that the possible vehicle trajectories 𝐗(𝑡) are governed by Eq. (1), with initial
condition 𝐗(0) = 𝐱𝑠. Then, the evolution of the reachability front is given by
the zero level set of the function 𝝓 ∶ R3 × [0,∞) → R, where 𝝓(𝐱, 𝑡) is the
unique viscosity solution of the following equation,
𝜕𝝓
𝜕𝑡

+ max
𝐡̂

(

𝐹 (𝐡̂, 𝑡)𝐡̂(𝑡) ⋅ ∇𝝓
)

+ 𝐕(𝐱, 𝑡) ⋅ ∇𝝓 = 0 , (A.1)

with the initial conditions,

𝝓(𝐱, 0) = |𝐱 − 𝐱𝑠| . (A.2)

The optimal arrival time 𝐓(𝐱𝑓 ∶ 𝐱𝑠, 0) satisfies

𝐓(𝐱𝑓 ∶ 𝐱𝑠, 0) = inf
𝑡≥0

{

𝑡 | 𝝓(𝐱𝑓 , 𝑡) = 0
}

. (A.3)

The optimal trajectory (or trajectories) 𝐗(𝑡) is given by the characteristic
lines of Eq. (A.1). That is, 𝐗(𝑡) satisfies the following equation,
𝑑𝐗
𝑑𝑡

= 𝐹 (𝐡̂, 𝑡)𝐡̂(𝑡) + 𝐕(𝐗, 𝑡) , (A.4)

where

𝐡̂(𝑡) = argmax
𝐡̂

(

𝐹 (𝐡̂, 𝑡)𝐡̂(𝑡) ⋅ ∇𝝓
)

. □ (A.5)

We refer to Lolla and Lermusiaux (2020) and Lolla (2016) for the
proof of this theorem.

Remarks.

• It is assumed that the external velocity field 𝐕(𝐱, 𝑡) is determin-
istic. In real ocean applications, the forecast fields are always
associated with some uncertainty (Lermusiaux, 2006; Lermusiaux
et al., 2006). However, the present results can be utilized to
predict a sample path for a specific velocity realization or the path
corresponding to the mean or the mode of the velocity field in
such cases. Recent results by Wei (2015), Subramani et al. (2018)
and Subramani and Lermusiaux (2019) are indeed build upon
such ideas to predict and study time-optimal paths in stochastic
flow environments.

• In this work, we only seek time-optimality. In many cases, op-
timality in some other objective function, such as energy spent,
quality of data collected, etc., may be desired. The present results
can be extended to optimize a general objective function that de-
pends on the travel time, followed trajectory, and possible other
parameters. We refer the reader to Subramani and Lermusiaux
(2016) for energy optimization and to Lolla (2016) for computing
optimal sampling locations. In Subramani et al. (2018) and Subra-
mani (2018) risk-optimal trajectory is studied, depending on the
whether the user is risk seeking, risk neutral, or risk averse.
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• For the case where the vehicle has a heading-independent
(isotropic) speed, we have 𝐹 = 𝐹 (𝐡̂,𝐗, 𝑡). This simplifies Eq. (A.1)
to yield Eq. (A.6).
𝜕𝝓
𝜕𝑡

+ 𝐹 |∇𝝓| + 𝐕(𝐱, 𝑡) ⋅ ∇𝝓 = 0 . (A.6)

Further, the optimal headings in this case are given by Eq. (A.7),
which are just the local outward normals to the reachability front,

𝐡̂(𝑡) = ∇𝝓
|∇𝝓|

. (A.7)

Appendix B. Numerical schemes for the forward reachable set
evolution

Advection term. The numerical schemes discretizing the advection term
utilize the given velocity field explicitly, and find suitable approxima-
tions for ∇𝝓 by using the sign of this known velocity field. Essen-
tially non-oscillatory (ENO) schemes and their extension to weighted
essentially non-oscillatory (WENO) schemes for Hamilton–Jacobi equa-
tions (Shu and Osher, 1988; Jiang and Shu, 1996) with up to 5th
order accuracy are used to in the present work. The general unsteady
Hamilton–Jacobi equation only contains at most the first derivatives of
the unknown function 𝝓 (Crandall and Lions, 1983; Osher and Fedkiw,
2006) and ENO and WENO schemes provide accurate estimates.

Handling of anisotropic speeds. If the propulsion speed of the vehicle
depends on the direction of travel, the optimal propulsion term is given
by:

max
𝐡̂(𝐱,𝑡)

(

𝐹 (𝐡̂, 𝑡)𝐡̂(𝐱, 𝑡) ⋅ ∇𝝓
)

(B.1)

This in general cannot be reduced further. In order to compute the
contribution of this term, a maximization is required to be performed
at each point in the domain, at all times. We discuss some approaches
to solve this maximization problem.

The most general way to solve the maximization is to construct a
look-up table prior to the forward evolution (Lolla, 2016; Lolla and
Lermusiaux, 2020). This table holds the optimal heading directions
for all possible reachability front gradient directions. That is, given
the local outward normal (∇𝝓(𝐱, 𝑡)∕|∇𝝓(𝐱, 𝑡)|), the table returns the
maximum value of the optimal propulsion term and the corresponding
𝐡̂(𝐱, 𝑡) (required for backward tracing of the optimal path). If the
vehicle is permitted to only travel along certain directions then the
maximum is calculated over all the directional derivatives along the
permitted directions. Care needs to be taken in making sure that the
discretization for computing the optimal heading is consistent with the
grid discretization, otherwise unfavorable errors may be introduced.

Such a maximization can also be performed after every time step
while the forward evolution of 𝝓 is being carried out. This is called
‘online maximization’. In this case, the optimal heading direction is
computed at each point and at each time by testing all permissible
heading directions and choosing the maximum.

Often, offline maximization is computationally favorable (especially
when the speed does not vary with time) as the propulsion term is only
required to be computed once per heading direction. If the maximum
speed varies with time, then the online maximization may prove to be
more efficient, as in such a case the offline table has to be separately
constructed for each time.

Tolerance Parameter for Discrete Anisotropic Speeds. For vehicles with
propulsion speeds that are only in specific discrete directions (e.g. only
up or down), a tolerance parameter to limit the frequency of direction
switch can be needed. This is to avoid an optimal path with too many
oscillations. This occurs if the optimal propulsion term is close to
zero or if it frequently flips signs. These oscillations may not always
be sufficiently accurate (sub-grid-scale process or numerical diffusion
effects) and an actual marine vehicle typically should avoid such quick
movements. If such oscillations occur, a simple approach to eliminate
them is to use a tolerance parameter. That is, we then only consider

the contribution due to the optimal propulsion term if its magnitude is
larger than some tolerance value 𝜏. The value of 𝜏 controls the amount
of switches in discrete propulsion direction in the optimal path. Of
course, setting this value to be too high can cause the path to deviate
from optimality.

Time marching. All the temporal schemes used are total variation di-
minishing Runge–Kutta (TVD RK) with up to 3rd order accuracy (Got-
tlieb and Shu, 1998; Osher and Fedkiw, 2006). TVD RK schemes
guarantee that no spurious oscillations are produced due to the tem-
poral discretization as long as no spurious oscillations in time are
produced with the forward Euler scheme, which is the building block
of these schemes. The first order accurate TVD RK scheme is just the
standard forward Euler time marching scheme, whereas the second
order TVD RK scheme is Heun’s method. The reader is referred to Osher
and Fedkiw (2006) for the details of the third order accurate TVD RK
time marching.

Appendix C. Numerical schemes for the backward tracing of the
optimal path

The optimal path is obtained by solving the ODE given by Eq. (C.1)
backward in time,
𝑑𝐗
𝑑𝑡

= 𝐕(𝐗, 𝑡) + 𝐹 𝐡̂(𝐗, 𝑡) , (C.1)

with the initial condition 𝐗(𝑡 = 𝐓(𝐱𝑓 ∶ 𝐱𝑠, 0)) = 𝐱𝑓 . For the case of
vehicles with isotropic speeds, the optimal heading 𝐡̂(𝐗, 𝑡) is given by
the local normal to the reachability front at the location 𝐗 at time 𝑡.
For vehicles with anisotropic speeds, the maximization table is used
wherein the local normal direction is given as an input to obtain the
optimal hading direction. Hence, in either cases, efficient computation
of the normal direction to the reachability front in three dimensions is
required.

Computation of normals. The reachability front is represented by mul-
tiple triangular surfaces (for curved surfaces, see Ueckermann and
Lermusiaux (2010)). The vertices of all these triangles along with
the corresponding connectivity matrix are stored. The procedure to
compute the normal direction to a general surface is as follows:

1. The triangle to which the given point belongs is found out.
2. The normal direction to the plane of this triangle is computed by

calculating the cross product of the edge vectors. This normal is
placed at the centroid of the triangle.

3. Normal directions at the vertices of this triangle are computed.
For each of the vertex points, the normals to all the triangles
that have the said point as a vertex are first computed. As
shown in Fig. C.21, the normal direction at this vertex is then
given by a weighted combination of the constituent triangle
normal directions, where the weights are proportional to the
angle subtended by the corresponding triangle at the concerned
vertex.

4. Once the normals at each of the vertices and the centroids
are computed, the normal at the given point is computed by
a weighted average of these 4 normals, where the weights are
proportional to the distance between the given point and the
location of the normal.

Backtracking schemes. We now derive various backtracking schemes
that are numerically consistent with the corresponding forward evolu-
tion schemes. We only discuss the schemes for vehicles with isotropic
speeds. The extension to vehicles with anisotropic speeds is straightfor-
ward through the use of the maximization table as mentioned before.
Since the forward evolution is explicit, all these backtracking schemes
of optimal paths are implicit, and iterative solves are required at each
time step. Our naming convention is such that the references to the
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Fig. C.21. Computation of normals at the vertices and at the required point. To
compute the normal direction at the vertex (𝐧̂), we consider the weighted average
of the normals of all the triangles that have the considered point as a vertex (𝐧̂𝑖),
where the weighting factor is the angle subtended by each of the triangles at this
vertex (𝛼𝑖). Once the normals at all the vertices are computed, these normals along
with the surface normal (situated at the centroid) are used to compute normal at the
required point (not shown).

backtracking schemes are made by the corresponding forward evo-
lution schemes. For example, the backtracking scheme corresponding
to the forward Euler temporal evolution of the PDE is referred to as
the forward Euler backtracking scheme. Hence, even though the name
of the backtracking scheme suggests explicit nature, they indeed are
implicit.

We use the superscript ⟨∙⟩ to represent the iteration number at a
specific temporal instant. The time is indicated in index form (indexed
with an interval of 𝛥𝑡) and denoted as a subscript. The stopping
criterion used for all the schemes is given by Eq. (C.2), where 𝜀 is a
small number, typically of the order of the smallest cell size,

Stop if |𝐗⟨𝑘+1⟩ − 𝐗⟨𝑘⟩
| ≤ 𝜀 . (C.2)

Forward Euler backtracking. This first backward tracing scheme mimics
the forward Euler scheme for the evolution of the level set function,
and serves as a building block for the higher-order schemes:

𝐗⟨𝑘+1⟩
𝑝 = 𝐗𝑝+1 − 𝛥𝑡 ⋅

(

𝐹 𝐡̂(𝐗⟨𝑘⟩
𝑝 , 𝑝𝛥𝑡) + 𝑉 (𝐗⟨𝑘⟩

𝑝 , 𝑝𝛥𝑡)
)

. (C.3)

As we are solving Eq. (C.3) backwards in time, the value of 𝐗𝑝+1 is
known a priori and the normal 𝐡̂(𝐗⟨𝑘⟩

𝑝 , 𝑡) is computed by the method
described above. Note that 𝐗⟨𝑘⟩

𝑝 may not in general lie on the zero level
set of 𝝓(𝐱, 𝑝𝛥𝑡). In such cases, the normal is computed by taking the
projection of this point onto the closest constituent triangle of the zero
level set surface. For convenience in the forthcoming parts, we define
an operator  as:

(𝐗⟨𝑘⟩
𝑝 , 𝑝𝛥𝑡) =

(

𝐹 𝐡̂(𝐗⟨𝑘⟩
𝑝 , 𝑝𝛥𝑡) + 𝑉 (𝐗⟨𝑘⟩

𝑝 , 𝑝𝛥𝑡)
)

. (C.4)

TVD RK2 backtracking. Eq. (C.5) describes the implicit backtracking
scheme mimicking the TVD RK2 scheme for forward evolution,

𝐗⟨𝑘+1⟩
𝑝 = 𝐗𝑝+1 − 𝛥𝑡 ⋅ 

(

𝐗⟨𝑘⟩
𝑝 + 1

2
𝛥𝑡 ⋅ 

(

𝐗⟨𝑘⟩
𝑝 , 𝑝𝛥𝑡

)

,
(

𝑝 + 1
2

)

𝛥𝑡
)

. (C.5)

This scheme may be initiated similarly to the forward Euler backtrack-
ing scheme, with 𝐗⟨0⟩

𝑝 = 𝐗𝑝+1. Note that  is the Euler building block,
and two computations of the forward Euler building block are required
per iteration, doubling the computational cost per iteration.

TVD RK3 backtracking. Finally, we obtain the backward tracing scheme
corresponding the TVD RK3 forward evolution scheme. Eqs. (C.7) and
(C.9) are the iterative equations of this TVD RK3 backward tracing. The

optimal trajectory backtracking equation corresponding to the present
step is:

𝐗𝑝+1 =
1
3
𝐗𝑝 +

2
3
𝐗𝑝+ 3

2
(C.6)

⟹ 𝐗𝑝 = 3𝐗𝑝+1 − 2𝐗𝑝+ 3
2

(C.7)

Even though we obtain 𝐗𝑝 without an iterative solve, we require the
value of 𝐗𝑝 at intermediate times, which requires an iterative solve.

From TVD RK3 (forward marching scheme), we know that,

𝐗𝑝+ 3
2
− 𝐗𝑝+ 1

2

𝛥𝑡
=
(

𝐹 𝐡̂
(

𝐗𝑝+ 1
2
,
(

𝑝 + 1
2

)

𝛥𝑡
)

+ 𝑉
(

𝐗𝑝+ 1
2
,
(

𝑝 + 1
2

)

𝛥𝑡
))

.

(C.8)

Hence,

𝐗⟨𝑘+1⟩
𝑝+ 1

2

= 𝐗𝑝+ 3
2
− 𝛥𝑡 ⋅ 

(

𝐗⟨𝑘⟩

𝑝+ 1
2

,
(

𝑝 + 1
2

)

𝛥𝑡
)

. (C.9)

In order to initialize this scheme, we set 𝐗⟨0⟩
𝑝+ 1

2

= 𝐗𝑝+ 3
2
, similar to the

earlier schemes. Eq. (C.7) is not iterative, and hence does not require
any initialization.
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