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Abstract y
We address the problem of finding the closest matrix U to a given U under the con-

straint that a prescribed second-moment matrix P must be matched, i.e. U Tf] = P.
We obtain a closed-form formula for the unique global optimizer U for the full-rank
case, that is related to U by an SPD (symmetric positive definite) linear transform.
This result is generalized to rank-deficient cases as well as to infinite dimensions.
We highlight the geometric intuition behind the theory and study the problem’s rich
connections to minimum congruence transform, generalized polar decomposition,
optimal transport, and rank-deficient data assimilation. In the special case of P=1,
minimum-correction second-moment matching reduces to the well-studied optimal
orthonormalization problem. We investigate the general strategies for numerically
computing the optimizer and analyze existing polar decomposition and matrix square
root algorithms. We modify and stabilize two Newton iterations previously deemed
unstable for computing the matrix square root, such that they can now be used to
efficiently compute both the orthogonal polar factor and the SPD square root. We
then verify the higher performance of the various new algorithms using benchmark
cases with randomly generated matrices. Lastly, we complete two applications for
the stochastic Lorenz-96 dynamical system in a chaotic regime. In reduced subspace
tracking using dynamically orthogonal equations, we maintain the numerical orthonor-
mality and continuity of time-varying base vectors. In ensemble square root filtering
for data assimilation, the prior samples are transformed into posterior ones by match-
ing the covariance given by the Kalman update while also minimizing the corrections
to the prior samples.
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1 Introduction

The second-moment matrix of U € My, (R)! defined as P = UTT,,U € M, x,,
contains all the pairwise inner products of U’s columns weighted by I',,. When we
view U’s columns as vectors in an inner product space, P is called the Gram matrix.
When the U’s rows are samples of a zero-mean random vector, P becomes the sam-
ple covariance matrix with I';, = (1/m)I. Here we unify them as second-moment
matrices. In many computational problems, we encounter the task of correcting a
given matrix U to some U that matches a prescribed second-moment matrix P,

ie. P = U I',,U. However, such a U is not unique. When there is no physical
information that favors one choice over another, a natural approach is to aim for a
minimal correction U — U to avoid introducing numerical artifacts.

Precisely, given a target symmetric positive definite (SPD) second-moment matrix
P, as well as an inner product on R” and on R” defined by the SPD weight matrix
I, € Myxm and ', € M,,%,, respectively, we want to solve the optimization

: r 2
arg min WU —-Ulgr,.r, (1)
UeMyn: U' T,y U=P

where || - |lr,r,,.r, 1s the Frobenius norm weighted by I',, and I'};:

T
IVlg.r,.r, 2 o(/T,V T VYT,)
T

:tr(\/ FmVFnVT\/ Fm ) = ”VT”F,FnsFm‘

Here v/ A denotes a matrix square root of an SPD matrix A, viewed as a self-adjoint

@)

positive operator, i.e. \/ZT\/Z = A. Throughout this paper, “matrix square root” will
refer to this definition (rather than «/Kz = A), unless otherwise mentioned. Such a
square root is not unique and is subject to the unitary freedom, i.e. if R is a square
root of A, the set {QR : QT Q = I} contains all square roots of A. The choice of
V/A can be arbitrary but must be consistent. Moreover, we denote by A'/? the unique
SPD square root of A.

For the optimization problem (1), we can always eliminate the inner product’s
weights I'y, and I, by variable substitution. If we take W = /T ,,U mT and

W = «/I"me./I',,T, then (1) reduces to

arg min ||W — W||]2:, 3)
WeMyxn: W' W=yT, PVT,"

where |V = tr(VTV) is the unweighted Frobenius norm and «/I‘,,i’«/F,,T
becomes the new target second-moment matrix. Therefore, without loss of generality,
we will restrict ourselves to the simplified problem

1 Since we will exclusively focus on real matrices in this paper, the explicit specification “(R)” of the field
of matrix elements will be dropped hereafter.
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arg min 10— U|3. )
UeMypyn: U U=P

Note that we can also scale U to make P = I, butthen I'), # I in general. We choose
tohave I', = I and P arbitrary because it renders the problem’s structure symmetric
and leads to more insightful interpretations as will be seen in Sect. 2. How the two
ways of scaling are connected will be mentioned in Sect. 2.3. Besides P being SPD,
we further assume that m > n and U has full column rank, so P = UTU is SPD. The
rank-deficiency complications due to the violation of these conditions are addressed
in Sect. 2.4.

Minimum-correction second-moment matching has many applications. In the spe-
cial case of P = I, the task reduces to orthonormalization. Many algorithms involve
tracking a varying orthogonal matrix [14,45], such as in optimization [1] or solv-
ing matrix differential equations with orthogonality constraints [22, sec. IV.9]. There
does exist orthogonality-preserving algorithms for some applications. For example,
[56] studies an orthogonality-preserving curvilinear search algorithm for optimization
on a Stiefel manifold [14]. For time integration, [11,24] investigates orthogonality-
preserving Gauss—Legendre Runge—Kutta schemes. However, such algorithms are
typically constrained and the choices limited. Most matrix update algorithms priori-
tize other goals such as steepest descent optimization [50] or accurate time integration
[10,30,39,46,53]. In such cases, after an orthogonal matrix is updated, a deviation
from orthogonality is usually incurred by the numerical discretization of the matrix’s
continuous evolution. Therefore, we need to orthonormalize the matrix in such a way
that this entry-wise continuous evolution is preserved [18,21]. A natural idea is thus
to find the closest point to the updated matrix on the Stiefel manifold [2,11,25]. We
will see a test case of this kind in Sect. 5.

In the general case with P £ I, one application is minimum-correction covariance
matching. For example, in an ensemble Kalman filter (EnKF) [16] for data assimilation,
given the prior samples of a random vector in the rows of U and some observation
data, the goal is to obtain posterior samples U such that their empirical mean and
covariance match those of the posterior distribution obtained by the Kalman update. A
variant proposed by [41] consists of updating the mean in the same way as EnKF but
making the posterior sample variation U (with mean removed) as close as possible to

the prior counterpart U under the constraint that the empirical covariance (1/m)U Tf]
must match the one obtained by the Kalman update. We will use such a test case in
Sect. 6.

Although the minimum-correction orthonormalization is relatively well understood
with efficient algorithms developed, its general second-moment matching counterpart
has not yet been studied and analyzed in a unified and systematic way. We aim to fill
this gap in the present paper.

In Sect. 2, we solve the optimization (4) analytically with a constructive proof
(Sect. 2.1 and “Appendix A”), provide geometric intuition, solve rank deficient cases
(2.4), and discuss the connections to other topics including minimum congruence trans-
form (Sect. 2.2) and generalized polar decomposition (Sect. 2.3). We also address the
generalization to infinite dimensions in “Appendix B and connect to optimal trans-
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614 J.Lin, P. F. J. Lermusiaux

port in “Appendix C”. In Sect. 3, we obtain numerical strategies for computing the
optimal solution and review existing algorithms for polar decomposition and matrix
square root that play an essential role in minimum-correction second-moment match-
ing. We then modify and stabilize two Newton iterations deemed unstable previously,
that can now be used to efficiently compute both the orthogonal polar factor and the
SPD square root. We compare algorithms in terms of accuracy, cost and robustness.
Results are benchmarked using randomly generated matrices in Sect. 4. In Sect. 5, we
show that these algorithms can be used in a subspace tracking method for stochastic
ODEs and PDEs, the dynamically orthogonal equations [17,46], to maintain both the
orthonormality and the time continuity of the base vectors. Furthermore, we show in
Sect. 6 how the algorithms for the general case can be applied to an ensemble-based
filter for data assimilation, as introduced in [41]. Lastly, we conclude in Sect. 7.

2 Theory of minimum-correction second-moment matching
2.1 Analytic expression of the global optimizer

The constrained optimization (4) has a compact feasible region and a smooth objective
function, so a global optimizer exists and is a critical point of the Lagrangian. Hence,
we employ the approach of Lagrangian multipliers as in [41]. We complete a different
proof, adopt more compact matrix notations, and provide new extensive discussions.
The results are summarized in the following theorem with the proof in “Appendix A”.

Theorem 2.1 (Minimum-correction second-moment matching) The global optimum
of (4), assuming that m > n and U has full column rank, is achieved by applying the
unique n X n SPD linear transform to U that matches the second-moment matrix of
the result U to the target P. More precisely,

arg min IU-U|} =UA,. 5)

UeMpn: U 0=P

. — —T\ 172 - 172
IIUA*—UII%:tr[P+P—2(\/FPﬁ ) } :tr[P—l—P—Z(PP) ! ] (6)
2 with the SPD linear transform A, being

A, =V (ﬁpﬁT)‘” JB
_ VP (ﬁﬁﬁT)” Nl

(N

2 For square A diagonalizable with nonnegative eigenvalues and EVD A = VA V1, we define A1/2 £
- =1 = =T = = =T -

VAY2y—! Since PP = \/; (\/;P\/; ) \/;is similar to \/;P\/; , P P, though not symmetric

in general, is diagonalizable with positive eigenvaluesand EVD PP = VAV —1 Therefore, tr((P P)1/2) =

S Jh = (VPP )2),
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“‘Note that when P = P, wehave A, = I, which correctly gives the null correction
in this trivial case. Moreover, U, = UA, implies Col(U*) = Col(U), which is
particularly important for covariance matching because a zero-mean U (i.e.e U = 0,
where eT = [1, ..., 1]) will yield a zero-mean l7*

Since M, can be equipped with the inner product (U, V)g £ tr(UTV) which
induces the Frobenius norm || - ||g, Theorem 2.1 indeed characterizes the orthogonal
projection Pj of any U € M« onto the (mn — tn(n + 1)) dimensional sub-

) - ~ T
manifold Sp = {U € Myyxp : U
that maps U into the sub-manifold.

Moreover, if we invert the first expression in (7), we obtain

U = P} as the unique 1 x n SPD linear transform

A =VE ERVE YR

*

which is nothing but the second expression in (7) with P and P switched. This implies
that UA ' = U projects U orthogonally onto Sp, i.e.

arg min U — l~]||% = f]A;l (8)
UeMysn: UTU=P

with A, given by (7). Therefore, the orthogonal projection Pp and Pp specify a
bijection between Sp and Sj, such that

PPOPi’|Sp = Id|3P, PPOPP|SP = Id|81_). 9)

In addition, since A, depends on P and P only, both Pi’ | Sp and Pp| S are charac-
terized by a constant SPD linear transform on R”.

Furthermore, the simple case of n = 1 helps us build a geometric intuition of the
above results, as illustrated in Fig. 1. Whenn = 1, P and P reduce to a positive real
number, while Sp and Sj, reduce to two concentric (m — 1)-spheres (or two (m — 1)-
ellipsoids with the same eccentricity if I';, # AI). Hence, it is straightforward to
see that the rays from the origin provide a bijection between the two spheres. This
mapping is equivalent to scaling one sphere by a constant ratio. As Fig. 1 shows, the
points on the two manifolds can be paired up such that in each point pair, the blue
point is the closet point on the blue manifold to the red one and vice versa.

However, the case of n = 1 also over-simplifies some aspects of the problem and
could be misleading. For example, Fig. 1 could create the illusion that the projection
operator is transitive, i.e. projecting from Sp, to Sp, is equivalent to first projecting
from Sp, to some intermediate Sp, and then from Sp, to Sp,. We thus emphasize
that in general,

PP3 o PPZ}SP] # PP3|SP1 y Ai"zAi%:’) # Al—)?ﬁ’ (]O)
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—— Manifold 1
—— Manifold 2

2 1 0 1 2 -2 1 0 1 2
X X
(a) r,, =diag(1,1) (b) I, = diag(1,4)

Fig. 1 A geometric picture of Theorem 2.1 form =2 and n = 1

since A1~3 is symmetric but A1~2A4273 is not in general. This is especially clear

when P, = I, which implies A1~? = Pl_l/2 and A273 = P;/z according to (7).

Hence, whenever P and P3 are not commutative, A1 24273 is not symmetric.
Finally, with (3), we obtain the global optimizer for the general setting (1).

Corollary 2.1 (General setting with inner product weighted by I'y, and I',)

. ~ T -T
arg min U — U||12;’rm’1~” =UKT, AT, ) (1
UeMysn: fJTrme:P
|U. — Uz = a[Pr + Pr —2(PrPr)'/?] (12)

~ T ~ ~ T ~
Ax =\ Pr (JPrPr\Pr )2/ Pr
—1 ~ T —T
=VPr (JPrPryPr)'?/Pr . (13)
Pr=T,PJT,. Pr=T,PJT,. (14)

We have shown previously that the choice of square root +/ Pr and /Pr in (13)
is irrelevant. Here we can show that the choice of square root /I, is also irrelevant.
Under the unitary freedom /I, — Q+«/I', and thus P — QPr QT, we can

choose / QP QT tobe Q+/P QT. Therefore, the Qs will pair up with the Q™’s

and cancel each other, which renders the linear transform /T, A,v/T, © invariant.
However, the choice of the inner product weights I';, and I',, themselves does affect
the optimum, although they play quite different roles.

I',, defines the inner product on R™ for computing the second-moment matrices.
This inner product usually has physical meaning and is commonly determined by the
underlying problem. For example, if each column of U is a discrete representation
of a function f(x) over some domain £2, then ™I, v could approximate the inner
product f o u(x)v(x)dx. If each row of U is a sample of a zero-mean random vector,
then I';,, = %diag(l, ..., 1) will make # " I',,,v the empirical covariance matrix. Note
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that A, does not depend on I',,, explicitly, but only through how P and P are computed
basedon I',,.

In contrast, I';, is more of a tunable numerical parameter. It controls how we want
to weight the columns of U differently so that when we evaluate the closeness between
U and U, we give priority to some columns over others. Such differentiation could
be advantageous if, for example, some of the columns of U contain more reliable
information (e.g. due to smaller numerical errors) than others, or the columns are
different by several orders of magnitude and the small columns barely contribute to
the closeness metric. If the magnitude is of concern, a natural choice of a scaling
matrix is either ', = Pt or T, = P 1.

I, =P = VI, AT, =P WP PP RYP
- _ —1 =T 1 _
r,=~»p I T“nTA*\/ITn T_Jp (\/; VP )—1/2\/;.

Surprisingly, as [41] points out, these two choices of I';, lead to the same optimal
mapping. By the properties (8) and (9) of the projection operators, we can quickly
show the equivalence between these two expressions by noticing that either one can
be obtained by inverting the other and switching P with P. Last but not least, note
that the optimal mapping /T Ax/T,, " explicitly depends on I', and when Iy, is
not a scalar matrix, the optimal mapping is in general not symmetric.

2.2 Minimum congruence transform

In the optimization problem (4), the candidate U can come from all of Muxn, but
the global optimizer U A, turns out to share the column space of U. This implies
that if we restrict the candidate set to the n?-dimensional subspace {U € Muyxn :
Im(U) c Im(U)} = {U = UA : A € M,yx,} of the mn-dimensional M,, .,
the global optimizer is still given by (7). This is equivalent to requiring the second-
moment matching to be achieved by an n-by-n linear transform. With this restriction,
the objective function in (4) becomes

10U =1UA-UlR=u(A-D"PA-D)=A=TI%p. (15

where the minimum correction of U translates to the minimum operation of A, quan-
tified by being the closest linear transform to the identity mapping. Besides, the
second-moment matching constraint is now on A

~ ~T ~

=U U=A"U"UA=ATPA.

Therefore, Theorem 2.1 implies the following corollary.

Corollary 2.2 (Minimum congruence transform)

arg min IA —IlIE p = As (16)
AeM,n: ATPA=P
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618 J.Lin, P. F. J. Lermusiaux

with Ay, given by (7) for any SPD P and P in My, xp.

Note that this optimization problem is related to U only through its second-moment
matrix P. We can indeed interpret it in a way that does not involve U. Since ATPA =
P indicates that P is congruent with P through the congruence transform A, (16) can
be viewed as finding the minimum congruence transform between two SPD matrices.
Here “minimum” again refers to the minimum action of an operator.

2.3 Generalized polar decomposition

An important and familiar special case of the problem (4) is when P = I and the task
reduces to minimum-correction orthonormalization, i.e. finding the closest orthogonal
matrix U to an arbitrary U € M,, «,, with full column rank. In this case, the candidate
solutions form the Stiefel manifold S; = {V € Myxn : VTV = I}. Therefore,
Theorem 2.1 reduces to the well-known fact that a matrix can be orthogonally projected
onto the Stiefel manifold through its polar decomposition [2], summarized in the
following corollary.

Corollary 2.3 (Orthogonal projection onto the Stiefel manifold by polar decomposi-
tion) Given U € M, «, with full column rank and P = U TU, we have

U, =argmin |U - U|Z=UP'/?, (17)
f]GSI

where U = U, P'/? gives the unique polar decomposition of U.

Note that Corollary 2.1 implies that the above result readily generalizes to the
case with a Frobenius norm weighted by I';, and I',;; the polar decomposition then
becomes the weighted polar decomposition investigated in [57]. However, our results
with P # I in Theorem 2.1 indeed generalize the polar decomposition even further.

Corollary 2.4 Given U € M, with full column rank and P € M, x, that is SPD,
we have a unique polar-like decomposition

U=UA (18)
such that U € My, l7Tl7 =P and A € M, xn is SPD. Moreover, this decompo-
sition orthogonally projects U onto U in the sub-manifold Sp.

This corollary enriches the polar decomposition with the symmetry between U
and U. Note that this symmetry is preserved by our choice of scaling that simplifies
(1)=(4). Should we scale P rather than I',, to I, we would instead obtain the weighted
polar decomposition in [57].

2.4 Complications due to degeneracy

In Sect. 2.1, we have restricted ourselves to the nice full-rank case with m > n =
rank(P) = rank(U). In practice, sometimes this is not satisfied, such as in some
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scenarios of data assimilation where the number m of samples of a random vector is
smaller than the dimension n of the random vector itself (see Sect. 6). Hence, here we
will reveal the implications of degeneracy due to any of these full-rank assumptions
being violated. Before moving on, we introduce the notations » = rank(U) and 7 =
rank(P).

Step 1 First of all, since 7 < n, when m < n, it is possible that m < 7, in which case
rank(f] Tf] ) < m < F, so there exists no Ue M xn Whose second-moment matrix
can match P due to rank deficiency. If m < 7, an easiest fix is to find a best rank-m
proxy to P. For example, the leading rank-m truncation of the SVD of P (which is
also the EVD here since P is semi-SPD) serves as the closest rank-m approximation
under any unitarily invariant norm [28]. See [28, sec. 6] for a review on other variants
of a nearest lower-rank approximation. With P replaced by such a proxy whenm < 7,
we can always ensure m > r for the modified problem.

Step 2 Next, given m > r, if ¥ < n, a variable substitution by a projection from
R" onto Row(P) will eliminate the rank deficiency in P. If we construct Z with
its columns formlng an orthonormal basis of ROW(P) We have P = Z P Z such

that P; = Z PZ € M i has full rank. To have U U = P, we must require
Row(U ) = Row(P), so U can be uniquely represented by S e M, «7 such that

U= SZ . If we complete Z into an orthogonal [Z, ZL] € M, «n, since
IU-UIE =10 -UIZ Z I} = IS UZIE+ IUZL|}
the original optimization problem (4) can be equivalently formulated as

arg min IS — S|IZ (19)

SeM,, .5 8 5=72"P7

with § = UZ. Since we already have m > r, with this further marlipulation, we can
always reduce a degenerate problem into one with m > n = rank(P).

Step 3 Finally, givenm > n = rank (P), let’s consider the case of rank(U) = r < n.
If we construct Z with its columns forming an orthonormal basis of Row(U), U can
be uniquely represented by a full-column-rank W € M,,, such that U = WZT.
Moreover, since Z can be augmented to an orthogonal [Z,Z,] € M, xn, U can be
uniquely representedby W = UZ and W, = UZ, whichyieldU = WZT+W | ZT
and

U —UlE =10 —-OIZ, Z g =W —W|;:+ WL

Note that |W LII]Z: = tr(ZEi’ZD is a constant thanks to the second-moment con-
straint. Therefore, the original problem (4) can be reduced to

argmin  [|W — W2, (20)
WW. 0 O=P
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=
=
[¢]
=
Qz
"cz
.
=
[~}
=
o
o
=
=
«
—-
=

W=2z"Pz, WW,=2z"Pz,, W,W.=2z"Pz,.. ()

Note the subtlety that although the objective function depends on w only, it is not
obvious whether we can decouple the optimization over W and that over W | , because
it is possible that for the optimizer W, to

arg min W — W32, (22)
WeMper: W W=2TPZ

there exists no W 1 such that the second and third constraint in (21) are satisfied. These
two matrix constraints consist of r (n —r) linear scalar equations and (n—r)(n—r+1)/2
quadratic ones, which amount to (n — r)(n 4+ r + 1) /2 independent scalar constraints.
On the other hand, we have (n — r)m degrees of freedom in w . Therefore, under our
assumptionof m > n > (r+1),wehave (n—r)(n+r+1)/2 <(n—ryn < (n—r)m
so there should be enough degrees of freedom to ensure the existence of a valid W |
if all the constraints are compatible with each other. In the following, we will show
that indeed for any W satisfying the first constraint in (21), there exists a valid W
satisfying the other two. Moreover, we will characterize the set of all feasible W | ’s.
This justifies reducing (20)—(22), which is of exactly the same form as (4) and does
satisfy all the full-rank assumptions we have made for (4).

To identify all the solutions satisfying the last two constraints in (21), first we
introduce the notation

~ T
Bii B A | W N zZT7 -

p— = Z Z .
50 5] [W}] [ .] = 1| Plz.2.

The general solution to the linear constraint WTW 1 = B3 can be written as w 1=
(WT)+312 + WCV with “*” denoting the Moore-Penrose pseudo-inverse (a.k.a. the
generalized inverse), the columns of W € M, ¢n—r) forming an orthonormal basis
of COI(W)J‘, and V € Muu—r)yxn—r) arbitrary Since B11 has full rank r, W has full
column rank r and thus W' = (W' W)~'W' = B'W" and (W')* = (W T =

W B 1711. Hence, w L= WB(I] B, + WCV. Now the quadratic constraint W N w L=
By isequivalent to VIV = By, — BT, B} B12, where the right hand side is an SPD
Schur complement. A valid V exists if and only if (m —r) > (n —r) > 1. Therefore,
the above analysis confirms our previous speculation based on comparing the number
of degrees of freedom with the number of constraints. Besides, when a valid V exists,
it is not unique.

We summarize the above three steps in the following theorem.

Theorem 2.2 (Degenerate counterpart of Theorem 2.1 Given U € Myscn with
rank(U) = r and P € M, «,, withrank(P) =7 < m, we have
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argmin = U -U2=0,=8,2 =W, 2T +W..zZD)Z', (23)
UeMpn: U U=P

where S* = W*ZT + WL*ZI € M, «7. Moreover, the columns on € M, «; form
an orthonormal basis of Row(P) and the columns of Z € My, forman orthonormal

basis of Row(U Z) with

/
r

7 — dim(Row(P) NRow(U)™) = r — dim(Row(U) NRow(P)). (24)

Finally, W and W |, are given by

W, = arg min \W—-UZZ|% (25)
WeM,, - W W=21Z"PZz

and WL* = W*BfllBlz + WC*V* € My x G-y With the columns of Wc* IS

Mo m—ry forming an orthonormal basis of Col(W,)L and V, € Mm=ryx F—r")

arbitrary as long as VIV* = By — BEB;II B13. The B;j blocks are defined as:

~ T
By B2 A | W . ZT) =T - ~
= . W, W, |= Z PZ\Z,Z,|.
o} 5 [Wﬂ (7.1 = |7 |2'p2(z. 2.
Besides, the global minimum can be expressed in exactly the same way as in (6):
|U, —Ul: =[P+ P —2(PP)/?]. (26)

Proof Everything other than (26) ensues readily from knitting into one piece step 2
and step 3 shown right before we state this theorem. To prove (26), notice that

|0, —U|E —tr(P) —tr(P) = 20(UTU,) = 2t0(UZ)"S,) = —2e(UZZ)"W,,).

Since Theorem 2.1 applies to (25), the last expression in the above can be com-
puted by (6) to yield ||U, — U||% = tr(P) + tr(P) — 2tr[(P,/P,/)1/2], where

P, = ZTZTPZZ and P, = ZTZTi’ZZ. Hence, what remains to be shown is
tr[(P, P,)'/?] = tr[(P P)"/?] and it suffices to show that P, P,» and P P share the
same nonzero eigenvalues with the same algebraic multiplicity. To demonstrate this,
first compute

PP, =27 P72(27"7 ' P)72=7"7" P27 P72 =27 PP7Z

using the property of the orthogonal projections ZZT and Z ZT. Next, notice that
( ZTZT P) (P 77 ) and (I~’ 77 )( ZTZT P) have identical nonzero eigenvalues with the
same algebraic multiplicity. Since~(i’Z Z)(ZT Z~T P)=PZ ZT P = PP, weconclude
that the nonzero spectrum of P, P,» and of P P coincide in terms of eigenvalues and
their algebraic multiplicity, which completes the proof. O
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622 J.Lin, P. F. J. Lermusiaux

Remark 1 U, is unique if and only if r’ = 7, i.e. Row(P) N Row(U)* = 0. In this
case, step 3 is not needed. Given r’ = F, the reverse problem seeking the closest
point to U « With second-moment matrix P will also have a unique solution if and
only if r’ = r, i.e. Row(U) N Row(i’)J- = 0. Therefore, the elements in Sp = {U €
Mousn : UTU = P} and thosein S p can be paired up bijectively and unambiguously
by this closest-point correspondence if and only if rank(P) = rank(P) = rank(P P).
In practice, one common special case of such is when Row(U) = Row(P), as will be
seen in Sect. 6. If this is true, besides fixing rank deficiency, step 2 also preserves the
value of the objective function, i.e. |S — S||2 = [UZ —UZ|% = |U - U|3.

Remark 2 One extreme case of rank deficiency is when Row(i’) 1 Row(U) and thus
r'=0. This renders the optimization (23) trivial because the objective function is now
constant: |U — Uz = tr(P + P), so all feasible U’s are equally good.

Remark 3 Although the degeneracy significantly complicates the characterization of
the optimizer U ., the minimum of the objective function (26) surprisingly shares the
same simple formula as (6) in the non-degenerate case.

3 Algorithms for minimum-correction second-moment matching
3.1 General computation strategies

To compute U « in Theorem 2.1, there are two routes. We can either compute U £ =
UA, using

A, =VP VEPVP )P = VP WPPYEDVE T @

or directly obtain U, without explicitly forming P or computing A,.

Computing U, through A, To take the A, route, we need a pre-processing step
P = U"U, a post-processing step U, = U A, and the key step (27). The drawback
is that forming P = UTU indeed squares the condition number, i.e. k (P) = Kk (U)2.
Therefore, if U is ill-conditioned, the non-A, route is preferred.

Computing U, without A, The non-A., route is based on directly computing the S P
polar factor U, of the generalized PD (polar decomposition) U = U, C introduced
in Corollary 2.4. First, we need to reduce the rectangular PD to a square one by
identifying an orthonormal basis of U’s columns, i.e. U = VR with VIV = I and
R € M, ;. This can be achieved by a Householder QR factorization [51, ch. 10]. Next
we reduce computing the S, factor R, of the generalized PD R = R..C to computing

the orthogonal polar factor Q of the PD RﬁT =08 = (Ih\/? 1)(\/§C\/;T).
Finally, we can assemble the desired U % as U = Vii* =V Q\/; .

To summarize, the A, route is eventually reduced to computing an SPD square root,
while the non-A, route is reduced to performing a polar decomposition. These two
tasks are indeed intimately related and an algorithm for one task usually corresponds
to one for the other, as will be seen in the next subsection.
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In the above, we have assumed the problem is non-degenerate, as required by
Theorem 2.1. If that is not the case, the constructive proof of Theorem 2.2 already
provides an algorithm to reduce a degenerate case to a non-degenerate one.

3.2 Algorithms for the SPD square root and polar decomposition

Given an invertible R € M,,«,, with polar decomposition R = QC, where Q and C
are the orthogonal and SPD polar factor, respectively, then C is the SPD square root
of RTR,i.e. C = (RTR)'/2. On the other hand, given an SPD P € M,,, with an
arbitrary square root /P, P!/ will also be the SPD polar factor of ~/P. Therefore,
computing an SPD square root and performing a polar decomposition can be reduced
to each other in exactly the same vein as how the Cholesky decomposition is related
to the QR factorization.

3.2.1 Algorithms based on SVD/EVD

For the polar decomposition of R € M,,«,, a straightforward SVD-based algorithm
stems from the fact that the SVD of R can be readily manipulated to yield the polar
decomposition:

R=03VvT =(vhHvzvT).

This SVD-based algorithm corresponds to using the EVD (eigenvalue decomposition)
to obtain the SPD square rootof an SPD P € M, by P = VA vT = (VAI/ZVT)Z.

Since we have efficient and numerically stable algorithms for SVD and EVD [20,
51], the above SVD/EVD-based algorithms are easy to implement and robust to use.
Despite this, there are cases where a non-SVD/EVD-based algorithm is desirable. It
might be because, for example, we have no access to an efficient SVD/EVD procedure,
we want to have more control over the accuracy of the result, or we want to utilize
some special features particular to a problem at hand to further boost the efficiency.
A non-SVD/EVD-based algorithm typically involves explicitly carrying out a matrix
fixed-point iteration, as will be discussed next.

3.2.2 Algorithms based on fixed-point iterations

For computing the SPD square root and polar decomposition, there are also non-
SVD/EVD-based algorithms that take the form of a matrix fixed-point iteration
Xiy1 = F(Xy) with F @ My, — M, involving only matrix addition, mul-
tiplication, and inversion.

If we view an iteration as a discrete dynamical system>, the minimal requirements
for a matrix iteration X1 = F (X)) to be usable in practice for seeking a target
matrix X, include:

1. X, is a neutrally stable fixed point of F.

3 See [48, sec. 5.1] for the definition of terms related to dynamical systems.
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2. A subset Ajp; of the attraction basin Af x, C M, «, an be identified.

Here by definition, the attraction basin contains all the points that will converge to X
under F,ie. X € Af x, if and only if X3 — X, with X¢o = X and X441 = F(X»).
If these two requirements are met, for any initial guess Xo € Ajni, we have X; —
X, analytically and the neutral stability of X, guarantees that any numerical errors
incurred in carrying out X1 = F(X}) will stay bounded once X approaches X,
i.e. entering some ¢-neighborhood of X .

As we shall see, usually we can find Ajp; as a stable manifold containing X, and
invariant under F. Sometimes .4;,; can even extend to infinity. However, this should
not be confused with global convergence and it does not even guarantee the numerical
stability of the algorithm because Ajp; as a submanifold of M, is a boundary set,
i.e. it has no interior point. Hence, the numerical errors (Xr —Xp), although typically
small in magnitude but in general unconstrained in structure, will drive the actual
iterates X¢’s away from Ajpi and might make them fail to converge to anything close
to X,. This is why we need the neutral stability of X, to ensure that if the iterates
manage to approach X, before the numerical errors accumulate significantly, these
errors will remain bounded hereafter.

Since the dynamical system Xy, = F(Xj) is n>-dimensional, we can reshape
each Xy into an R"*" vector and view F as an operator from R"*” to itself. Denote
the Jacobian matrix of F at X, by JF € M,2,,2*. Then a necessary condition for
X, to be neutrally stable is p(JF) < 1, where p(-) denotes the spectral radius, while
the strict inequality p(JF) < 1 is a sufficient one. However, viewing X as a vector
typically makes the expression of F awkwardly complicated and renders cumbersome
the analysis of J F'’s spectrum. [43] bypasses this difficulty elegantly by keeping X as
a matrix and taking a functional viewpoint of X1 = F(X}). From this perspective,
the counterpart of JF is the Fréchet derivative DF of the operator F at X,. Here
DF : M,x, — M,x, is a linear operator. Since JF and DF are essentially the
same linear operator, they share the same spectrum. It turns out that identifying all the
eigenvalues and eigenvectors of DF by direct observation can be made possible by
suitable linear transforms.

Next, we review the most common iterations for computing the i) SPD square root of
an SPD matrix and ii) orthogonal polar factor of a square matrix. To do so, we analyze
and compare iterations in a novel unified framework. We also obtain new insights into
their properties and propose a slight modification that surprisingly remedies some
iterations deemed numerically unstable previously.

(1) A unified framework for four SPD square root Iterations

Given an SPD P, the following four iterations can be used to compute the SPD

square root P12 and P~V/2 (see [27,43] and [20, sec. 9.4.2]):

Xis1 = Xi+ AXp, XiAXp+ AXi X =P — X7 (28)
X1 = (1/2)(Xy + X' P); (29)
Xiv1 = (/DX + YD), Yigr =1/ e+ X1 (30)
Xpr1 = Xi + (1/2) X (I — X PXp). 31)

4 The explicit dependence on X is omitted in the notation since it should be clear from context.
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Among these iterations, (28) stems from a direct application of the Newton’s method
to the matrix equation G(X) = X 2 _ P = 0 with the Fréchet derivative of G
at X being the linear operator DG x, X = X X + XX. (29) is a simplification
of (28) by making the assumption X;AXy = AXy Xy, which is true for certain
choices of X( as we shall see. (30) is an extension of (29) by coupling (29) with
a mirror iteration to compute P'/? and P~!/? simultaneously. Finally, (31) is quite
different from the others, as it comes from mimicking the Newton iteration for the
scalar equation g(x) = l/x2 — A =0143].

Lemma 3.1 The converging point and a corresponding Aini of feasible initial values
for iterations Egs. (28)—(31) are summarized as

(28),(29) : Xy — PY? forXoeCp 2{XSPD: XP = PX}; (32)
(30): Xy — P2, Yy > P72 forXgeCp, Yo=P 'Xo; (33)
Bl : Xy — P7'% forXge{X eCp:|Xl2 <3/IPl2}. (34)

Proof Observe that X; € Cp (and Y, € Cp for (30)) implies X;4+; € Cp (and
Yiy1 € Cp), so Cp is an invariant submanifold under these iterations. Therefore,
there exists an EVD P = QA Q7 that also diagonalizes the iterates Xy = Q Ay o7
(and Yy = QX4 Q") and the matrix iteration can be decoupled into n scalar ones of
the same form:

(28), (29) : kg1 = (/)M + A/ 2p) = A — v for Ao >0 (35)
(30) : Aky1 = (1/2) (g + Vo),  ok+1 = (1/2)(or + 1/2x) : (36)
M — Vro/oo, ox = Joo/ry for Ag,o0 >0

Gl dg+1 = A/2)2 (3 —A%)\) S — 1/ for 0 < ho < /3/x (37)
Here A > 0 is any diagonal entry of A, which is also an eigenvalue of P. O

Note that (36) can be reduced to two decoupled iterations of the same form as (35)
due to the observation that A; /ox = Ao/0p. Since (35) is nothing but the well-known
Newton square-root iteration that solves g(x) = x2 — A = 0 while (37) is the Newton
iteration for solving g(x) = 1/x> — A = 0 [43], we know both scalar iterations
converge quadratically. Furthermore, this implies that the matrix iterations Eqgs. (28)—
(31) also converge quadratically provided their initial values satisfy Eqgs. (32)—(34).
Lemma 3.1 only guarantees the analytic convergence when roundoff errors are
absent. To ensure the stability of an iteration X;4+1 = F(Xk), we require the Fréchet
derivative DF of the operator F at the limit X, to have spectral radius p(DF) < 1.

Lemma 3.2 The Fréchet derivatives for Egs. (28)—(31) are summarized as

(28) : DFX = 0; (38)
(29), 31) : DFX = (1/2)(X — A~'2XA'/?); (39)
(30) :DF(X,Y) = (1/2)(X — A'YPYAY2 )y — A712XA7V2). (40)
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These linear operators have eigenvectors Z;;’s and eigenvalues ji;;’s as below:

(39 : Zjj = Eij, wij = 1/2)(1 = /A;/xi); (41)
(40) : Zij = (Eij, 1/ irjEij),  pij =0,
Zi; = (Eij, =1/ 2idEij), gy = 1. (42)

Here E;j € M, x, is the matrix having its (i, j)-th entry equal to 1 as the only nonzero
entry.

Proof (38) is a standard result for an exact Newton iteration, which must have
F(X) = X — (DGx)"'G(X). Hence, (DFx,)X = X — (DGx,) '(DGx)X =
X — X = 0. (39) and (40) are obtained by diagonalizing P = QA QT with a lin-
ear variable substitution X’ = QTX Q. For example, for (39), originally we have
Y = DFX = (1/2)(X — P~Y/2X P'/?). After the variable substitution, ¥ = DF X
becomes Y/ = QT(DF(QX' Q1) Q = (1/2)(X' — A~/2X'A/?), which yields
(39). This simplification can be justified by the fact that the spectrum of DF is invari-
ant under a linear variable substitution. Note that X’ is not diagonal in general because
in stability analysis, we can no longer assume X € Cp.

Since each term in (39) and (40) has only one non-diagonal matrix factor, we can
readily identify all the eigenvectors Z;;’s and eigenvalues p;;’s by observation. O

Therefore, if we want p(DF) = (1/2)(/k(P) — 1) < 1 for (41), we need the 2-
norm condition number « (P) to satisfy x (P) < 9. This is very unsatisfactory because
it puts a stringent constraint on the P’s to which (29) and (31) are applicable. [43]
shows that for (31), a manual symmetrification step in the end of each iteration can
alleviate this stability constraint to k (P) < 17+6+/8, which is only a nonessential and
minor improvement. This makes sense because Cp requires being commutative with
P besides being SPD, so symmetrification itself does not retract a perturbed iterate
back to Cp in general, though may bring it closer.

On the other hand, (42) alwayshas p(DF) = 1. Note that (30) has the special feature
that P does not show up in the iteration at all and the converging point (X, Y ) can
vary with the initial value (X¢, Y¢) continuously. Indeed, the fixed points of (30) are
not isolated but form an n2-dimensional submanifold corresponding to the n? degrees
of freedom in XY ! for specifying the initial values. Moreover, the n” eigenvectors
associated with y; ;= 1 in (42) span the tangent space of this fixed-point submanifold
at X .. Any perturbation along these directions will neither grow nor diminish, but will
simply remain constant and eventually reflect itself on a shift in the converging point,
while perturbations along the eigenvectors for u;; = 0 will decay quadratically.

Before moving on, we make several remarks on the practical use of Egs. (28)—(28).
First, solving the Sylvester equation for AXy in (28) is nontrivial and expensive [31,
sec. 13.3], which renders (28) of little practical value. Second, the extra constraint
1 Xoll2 < +/3/1 P for the convergence of (31) indeed poses no difficulty because
such an X is easy to find. Note that || Xp|2 < +/3/[P]>» can be replaced by a
more stringent inequality || Xo|| < +/3/[|P]| since || Xoll2 = p(X0) < || X0l for any
operator norm || - || and symmetric X(. Hence, we can replace the 2-norm by another
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operator norm (e.g. 1-norm or co-norm) that can be more easily calculated. A simple
choice of X can be, for example, Xo = (1//[[P][1)1.
(ii) Stablizing two unstable SPD square root iterations by combining with orthogonal
polar factor iterations

Next, we review two iterations for computing the orthogonal polar factor of an
invertible R € M,,«, (see [26] and [20, sec. 9.4.3]):

Xt = (/X + X (43)
Xis1 = X + (1/2) X (I — X X0), (44)

where the initial value is set to Xo = R for both iterations. With the polar decom-
position Xo = @S0, Eqs. (43) and (44) is analytically equivalent to using the same
iterations with initial value Xo = Sp to compute the square root of I. Note that
Egs. (43) and (44) are almost the same as Eqs. (29) and (31) with P = I except for
the presence of an extra transpose. Analytically this makes no difference when the
initial value X is SPD since all the iterates will be symmetric. However, surprisingly
it turns out that this extra transpose makes a huge difference in numerical stability
because it indeed lifts the stringent « (P) < 9 stability constraint for Egs. (29) and
3D).

We will expound this significant improvement by generalizing Eqs. (43) and (44)
to the following multi-purpose (SPD square root or orthogonal polar factor) iterations:

Xir1 = (1/2)(Xi + X' P); (45)
Xir1 = Xi + (1/2) X, (I — X{ PX)), (46)
where P is some SPD matrix. Equations (45) and (46) can be viewed as the counterparts

of Egs. (29) and (31) for computing the square root of P in the sense of XX = P
rather than X> = P.

Lemma 3.3 Suppose the initial value X is invertible and has polar decomposition
Xo = 0QySo (or X! = QgSo). Then we have the following convergence properties:

(45): X — QoPY* for Xo = QySo. So € Cp: (47)
(46): Xi — P72 Qy for Xo = S0Qg, So € Cp, IXol2 < /3/IIPll2. (48)

In other words, X converges to a particular (inverse) square root of P that shares
the same orthogonal polar factor with X¢. In particular, if we set P = I, X} will
converge to the orthogonal polar factor Q of X, while if we instead set Q@ = I
(i.e. Xo € Cp), Xy will converge to the (inverse) SPD square root of P. Hence, these
two multi-purpose iterations reflect the inherent connections between matrix square
root and polar decomposition and unify the two on a algorithmic level.

Using the same methodology for stability analysis as before, we obtain:

Lemma 3.4 The Fréchet derivative at X « for both Egs. (45) and (46):

DFX = (1/2)(X — A~'2XTA?), (49)
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Table 1 Recommended algorithms for computing the minimum-correction second-moment matching solu-
tion U in Theorem 2.1. U 4-based algorithms avoid forming P = U Ty and directly operate on U

Algorithm Description

A4-EVD Use (27) for Ay with /- computed by Cholesky factorization and
(-)l/2 computed by EVD (see Sect. 3.2.1)

A4-NtSqr Use (27) for Ay with /- computed by Cholesky factorization and
(-)1/ 2 computed by the stablized Newton iteration (45) or (46)

U «-NtPD Perform Householder QR factorization U = VR

Compute the orthogonal polar factor Q of R \/;T using the stablized
Newton iteration (45) or (46). Form U, = V Q\/;

where the diagonal A contains the eigenvalues of P. Again, by observation, we obtain
all the eigenvalues and eigenvectors for the linear operator DF as:

Zij=Eij+ri/rjEji, pij=0, <],

Zij=E;j— N/ Eji, wij=1, i>].

Therefore, instead of the stringent constraint x (P) < 9 for Egs. (29) and (31) due to
(41), now we have p(DF) = 1 regardless of « (P). Moreover, the fixed points are no
longer isolated and they form a n(n — 1)/2-dimensional submanifold corresponding
to the unitary freedom encoded by Q. The n(n — 1)/2 eigenvectors associated with
eigenvalue 1 span the tangent space of this fixed-point submanifold at X, and any
perturbation orthogonal to this tangent space decays quadratically to 0.

Again, as discussed in the end of part i), the extra initial value constraint || Xo|l2 <
/371 P2 for (46) poses no practical difficulty. The trade-off between (45) and (46) lies
in the relative cost between matrix inversion A~' B and multiplication A B for square
A and B. (45) costs one inversion while (46) costs three multiplications. In practice,
computing A~! B is about 1.5 times the cost of computing A B (based on testing in
MATLAB and [29]), so overall Eqs. (45) and (46) are equally good alternatives to
the SVD/EVD approach for computing the SPD square root or the orthogonal polar
factor.

Finally, we emphasize that unlike Eqgs. (28)—(31) which aim to solve X 2= p,
Egs. (45) and (46) target at solving X Tx = P. Consequently, Egs. (45) and (46) will
not yield the major square root of a general P with eigenvalues not on the negative
real axis.

The various new algorithms recommended for solving the minimum-correction
second-moment matching problem in Theorem 2.1 are summarized in Table 1.

(50)

3.3 The special case of orthonormalization
Now we turn to the special case of orthonormalization, i.e. P = I, where (27) reduces

t0A, =P 2andU =U,A 1 becomes the polar decomposition. In this case, [28]
provides an a priori bound for || U,-Ulg:
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100 = 1g/(WU 2+ 1) < U« = Ullg < |[UTU = I|g. (SD

When ||U||; is of order 1 or smaller, the above yields a tight estimate of the order of
magnitude of || U — U ||. One common scenario of such is with U being nearly orthog-
onal,i.e. P = UTU =~ I, when, for example, a path on a Stiefel manifold is tracked
numerically for subspace tracking or optimization with orthogonality constraints.

For orthonormalization, there are many widely-used algorithms that yield an orthog-
onal matrix not being the closest to the original U. We clarify next how they are related
to the minimum-correction solution.

3.3.1 Comparing with QR-based orthonormalization

If we only seek an orthogonal U close to U, but not necessarily the closest one, we
can stop after the QR factorization step U = VR in Sect. 3.1 and take U = V.
This corresponds to the Cholesky decomposition P = RTR. The continuity of the
Cholesky factor R with respect to P [47, sec. 12.1.3] guarantees that P ~ I implies
R =~ I and thus V ~ U. More precisely,

_Ulr < |V - Ulp < ——— 1Yl
V21 = |lUTU - 1)

U 10, —Ullg, (52)

which is credited to Jiguang Sun by [25], bounds the closeness of the orthogonal QR
factor V to U by a multiple of the minimum ||l7 « — U||r (see also [9, sec. 4]). In
particular, we have approximately |V — U|g < v/2|U, — U||r when P ~ 1I.

This closeness property of the QR factorization stems from the nested subspace
correspondence between V and U, meaning that the firstk = 1, ..., n columns of V
and U span the same subspace in R”, which constrains V to be close to U. This also
implies that when U’s columns are permuted, the corresponding orthogonal QR factor
V cannot be obtained by applying the same permutation to the original one, unlike
the orthogonal polar factor U..

3.3.2 Comparing with plain SVD orthonormalization

[52, app. B] proposes a plain SVD algorithm where the left singular vectors V of
an SVD U = VX Z" is directly taken as U. The prime issue with this approach is
the non-uniqueness of an SVD. The singular vectors associated with the same (or
numerically close) singular value are only determined up to an orthogonal transform,
which can flip signs, permute the order and even rotate the vectors. This is especially
problematic when U is nearly orthogonal because all its singular values will cluster
around 1. In this case, ||V — U||r can be of order 1 even if U is nearly orthogonal. To
remedy this issue, [18] suggest a gradient descent algorithm for orthonormalization.
Here we analyze it in “Appendix D”” and conclude that due to its linear convergence and
stringent stability constraint, it is unattractive compared to the algorithms in Sect. 3.2.
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Table2 Description of the various orthonormalization algorithms benchmarked. Here U is to be orthonor-
malized and P = U U is its Gram matrix

Algorithm Description
SVD-EVD Plain SVD ortho. (see Sect. 3.3) by EVD of P
PD-EVD PD ortho. by EVD of P (see Sect. 3.2.1)
PD-SVD* PD ortho. by SVD of U (see Sect. 3.2.1)
PD-NtSqr PD ortho. by computing P 172 using Newton iteration (45)
PD-NtISqr PD ortho. by computing p-1/2 using Newton iteration (46)
PD-GD PD ortho. by computing p-1/2 using gradient descent (87)
PD-NtPD* PD ortho. by Householder QR U = V R and computing

the orthogonal polar factor of R using Newton iteration (45)
QR-CGS* QR ortho. by classical Gram-Schmidt
QR-MGS* QR ortho. by modified Gram-Schmid
QR-Chol QR ortho. by Cholesky decomposition of P
QR-HH* QR ortho. by Householder QR U = VR

The algorithms that do not form P and directly operate on U are marked by a “*” in their names

4 Benchmarks of the algorithms’ performance

In this section, we benchmark the performance of the various new minimum-correction
second-moment matching algorithms introduced in Sect. 3 for the special case of
orthonormalization (i.e. P = I) and compare them to existing algorithms. All the
algorithms to be tested are described in Table 2. Note that PD-NtSqr, PD-NtISqr and
PD-NtPD are based on our new multi-purpose Newton iteration (45) and (46), while
others are existing algorithms from literature. Comparing Table 2 to Table 1, here
PD-EVD corresponds to A,-EVD in Table 1, PD-NtSqr and PD-NtISqr to A.-NtSqr,
while PD-NtPD corresponds to U ,-NtPD.

For all algorithms, the fixed-point iteration terminates once || Xy — Xx—_1] <
10~ 14| X ;|| is satisfied or the maximum number of iterations is reached. The numer-
ical tests are performed under the MATLAB® environment on a machine with an Intel®
Core™ i7-4702MQ processor and 16GB of memory.

The algorithms are tested in three cases. The first is with a 10® x 10> matrix U
(m-by-n, m > n) of a small condition number « = 1.5, so the tall thin U is nearly
orthogonal. We form U = UyA Q by random generation of an orthogonal m-by-n
Uy and orthogonal n-by-n Q. A random orthogonal matrix is obtained by applying
QR Householder to a random matrix whose entries are independent and uniformly
distributed over [—1, 1]. A is a diagonal matrix of condition number « and of diagonal
entries decaying geometrically to 1. Each algorithm is tested using the same 10 samples
of U and the average performance metrics are listed in Table 3. For the second and
third cases, the same tests are performed, but for a square well-conditioned U and a
rectangular ill-conditioned U, respectively. Results are in Table 4.

Overall, Tables 3 and 4 confirm several key messages:
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Table 3 Performance of the various algorithms for orthonormalization in the case of well-conditioned
(nearly orthogonal) rectangular matrices (m-by-n, m > n)

m=10° n=10% «kU) =15

10T -1 10— v A — AT (#Ite) time
SVD-EVD 2e—14 16 12 0.6s
PD-EVD 3e—14 2.75 le—15 0.6s
PD-SVD* 3e—14 2.75 le—15 Ss
PD-NtSqr 8e—15 2.75 8e—16 (6)2.3s
PD-NtISqr 9e—15 2.75 le—15 (8) 0.6s
PD-GD 8e—13 2.75 3e—15 (131) 0.6s
PD-NtPD* le—14 2.75 le—15 (7) 5s
QR-CGS* 6e—15 3.04 1.9 38s
QR-MGS* 6e—15 3.04 1.9 38s
QR-Chol Te—15 3.04 1.9 2s
QR-HH* le—14 3.04 1.9 4s
Here A is the linear transform such that U = UA. The Frobenius norm is exclusively used. For the
algorithms based on a fixed-point iteration, the average number of iterations is recorded in the parenthesis
in front of the run time. In this case, we have ||U Ty -1 || = 6.5 for all 10 repetitions, which can be

compared to 1070 — 1

Table 4 Performance of the algorithms on well-conditioned square matrices (« (U) = 1.5, ||UTU —I|| =
29) and on ill-conditioned rectangular matrices (k (U) = 106, v Ty -1 | =15x 1012), respectively

m=n=2x103, k(U)=15 m=10% n=10% k= 10°

WP —1I| 10U —U| (#Ite) time WP -1 (#Ite) time
PD-EVD 3e—13 12.3 2s 4e—5 0.65
PD-SVD* 4e—13 12.3 4s 3e—14 5
PD-NtSqr 4e—14 123 (7) 3s 4e—5 (100) 2s
PD-Ntlnv 6e—14 123 ) 6s 4e—5 (100) 0.6s
PD-GD 3e—11 12.3 (422) 280s 9 (le4) 3s
PD-NtPD* Te—14 12.3 9) 4s 2e—14 (26) 5s
QR-CGS* 8e—14 13.6 13s 6e—5 38s
QR-MGS* 6e—14 13.6 13s 2e—10 38s
QR-Chol 3e—14 13.6 0.3s 3e—5 2s
QR-HH* Te—14 13.6 0.4s le—14 4s

Notations are as those in Table 3

i The plain SVD algorithm does not promote closeness between U and U, as is verified
by || U-U || of SVD-EVD being much larger than that of the QR-based and of the
new minimum-correction (PD-based) algorithms, see Table 3.

ii The new PD-based algorithms achieve the minimum correction as is verified by the
agreement between their || U — U|| values and the analytical one computed using (6)
as U, — Ull = (] + P =20 P12 = (n + |U|} = 2||U|.)"/%, where | - ||
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is the nuclear norm, being the sum of singular values. The symmetry of A, is verified
by the machine epsilon values of ||A — AT|. The |U — U| values of the QR-based
algorithms are larger than || U,-U I, but within the bound (52).

iii For ill-conditioned matrices, the algorithms based on forming P = UTU suffer
from poor accuracy due to squaring the condition number. This is revealed by the
large | P — I values of the algorithms without a “*” in their names, see Table 4.
Among them, those based on a fixed-point iteration have their solutions stagnate with
large orthogonality errors after only a few iterations. The iterates neither converge
nor blow up and just bounce around, even after as many as 107 iterations. CGS and
MGS are known to suffer from the same orthogonality issue in this case. Hence, the
only algorithms that can still reliably orthonormalize U are those based on performing
Householder QR or SVD on U.

iv For tall thin matrices, the algorithms based on forming P = U U tend to be more
efficient when U is well-conditioned, because other than computing the small P in the
beginning and applying A to U in the end, they only deal with small n-by-n matrices.
This strategy avoids performing QR factorization or SVD to a large m-by-n matrix,
which could be relatively expensive in this case.

There is yet another algorithm for computing the SPD matrix square root that
takes a completely different route from fixed-point iterations. [23] utilizes the matrix
version of the Cauchy integral formula for the square root function and combines
conformal maps and the trapezoidal rule in computing the contour integral. However,
its exponential/geometric convergence rate is only equivalent to a linearly converging
fixed-point iteration, which is significantly slower than the quadratic convergence of
Eqgs. (45) and (46) proposed previously. Indeed, this can be verified by comparing
to the results based on the Pascal matrices shown in Fig. 7 of [23]. It takes 9 and 20
Newton iterations to obtain the SPD square root of the 3-by-3 and 8-by-8 Pascal matrix,
respectively, while the contour-integral approach requires 13 and 34 quadrature points
to reach the same accuracy. Here every extra quadrature point has the equivalent cost
of one iteration step because both involve solving a linear system of the same size.
Besides efficiency, using fixed-point iteration has the extra advantage of conceptual
and algorithmic simplicity.

5 Application to matrix differential equations that preserve
orthogonality

A matrix differential equation
d,U = F(U) (53)

for U(t) € M,,xp is said to preserve orthogonality if U Tu=T1atr=0 implies
UTU = I atall t > 0. We encounter such equations in applications such as subspace
tracking [5,8,17,30,32,34], where we track the time evolution of an n-dimensional
subspace of R™, which may come from a discretization of an infinite-dimensional
dynamical system, by evolving an orthonormal basis with its base vectors forming U’s
columns. In this section, we showcase our new minimum-correction second-moment
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matching algorithms in the special case of P = I for re-orthonormalization required
in solving such equations. Before the examples, we analyze the error due to the loss
of numerical orthogonality and clarify the role played by re-orthonormalization.

Although (53) preserves orthogonality, its time-discretized counterpart U n+l =
F (ﬁ ) in general does not [11,24,25,53]. Here, U » 18 a numerical approximation of
U, = U(t,) and the map F stems from a particular time-marching scheme, which
is said to preserve orthogonality if IAJEIA]H =1= lA]ZHlA]nH = I. According to
[11,24], the only known family of orthogonality-preserving time-marching schemes is
the one of Gauss—Legendre Runge—Kutta schemes. Unfortunately, such schemes are
difficult to implement, expensive to use and not widely available in numerical software
[25]. Moreover, they only preserve orthogonality for certain F, which renders them
even less attractive. Therefore, a more practical strategy is to integrate (53) by an
arbitrary scheme and re-orthonormalize the U,’s at the end of each time step.

We denote by U the numerical solution at a particular time obtained by some
time-marching scheme without re-orthonormalization, and by AU = U — U the
time-marching error. If we choose || - || as the matrix 2-norm, we have

A

100~ 1| =I(U+ AU U + AU) — I|| < 2| AU || |U|| + | AU,

since UTU = I. If the scheme is p-th order accurate, i.e. |AU| = O((At)P), since

U = O(1), we have ||ﬁTﬁ — I|| = O((Ar)?), which is of the same order as the
time-marching error. This seems to imply that as long as the time-marching scheme
is accurate enough, there is no need to worry about the orthogonality error. However,
the fact that (53) preserves orthogonality only implies that the Stiefel manifold Sy =
{U: U v =1 } is invariant under (53), but Sy may not be a stable manifold.
Therefore, any deviation of U from Sy may not stay bounded under (53). It might
even hit an unstable direction and diverge exponentially. In addition, in many cases,
the derivation and thus the validity of (53) itself relies on U remaining orthogonal, so
a violation of this condition may unexpectedly ruin the numerical solution.

The above analysis justifies re-orthonormalizing U after each time step. This pro-
cedure should ideally not undermine the convergence order of the time-marching
scheme or introduce significant numerical artifacts. Hence, we need to analyze how
re-orthonormalization affects the numerical errors.

Suppose U € Sy is the orthonormalized solution obtained from U. To maintain
the order of convergence, it suffices to have |U — U|| < C||U — U|| for some C > 0
because then by triangle inequality, we have || U-U | < (C+ 1) | U-U |I. This can be
satisfied if we choose U to be U «» the orthogonal projection of U onto Sy, because, as
Uesy, CorollaryZ 3 implies ||U* U|| < ||U Ul andthus |U,—U| < 2||U Ul.
Indeed, since || U-U || is small, U.,U,and U are almost the vertlces of aright triangle
(“almost” because Sy is not flat), so in practice, ||U* Ul < ||U U ||. Numerical
examples in [11] show that in some cases || U +— U|| can even be smaller than || U-U I
by an order of magnitude. Another viable option for U is the orthogonal QR factor V
of U because (52) guarantees |V — U|| < v/2|Us — U|| < v2|U — U]|.

To showcase the new algorithms and demonstrate the above results, we consider
the stochastic Lorenz-96 system [38] (the index i is circular, i.e. x; = Xjm),
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100 Time Evo of Ortho Errors (n = 10) 105 Time Evo of Ortho Errors (n = 20)
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Fig. 2 Orthogonality errors in the absence of re-orthonormalization. The error saturates at a higher level
with larger time step Az. When Az = 0.05, the orthogonality is completely lost for n = 10 (left), while the
solution even blows up for n = 20 (right)

dxi =@ —xi2xi—x+F, i=1...,m. (54)

This toy model mimics atmospheric convection along a mid-latitude circle. We set
m = 40 and F = 8 which lead to chaotic dynamics. In all simulations, the initial
condition is x; = 0 for i # 1 while x; is uniformly distributed over [—0.01, 0.01].
The classical explicit RK-4 scheme is used for time integration.

To solve (54), we employ the dynamically orthogonal (DO) equations [46]. They
approximate the random vector u(t; w) = [x1, ..., x,]T € R™ by a low rank expan-
sion u(t; w) = u(t) + ZL] ¢i(t; w)u;i(t) = u + U¢ where u is the mean, U =
[ug,...,u,] € M, «, contains the orthonormal base vectors and ¢ = [¢, ..., ¢>n]T
contains the random scalar coefficients. The evolution of all these components is gov-
erned by a dynamical system, the DO equations, that preserves and whose validity is
predicated on UTU = I. Such techniques are useful for uncertainty quantification
in high-dimensional systems governed by time-dependent stochastic PDEs [18,49].
Related works include the dynamic low-rank approximation of a time-varying matrix
[30], geometric analyses of the DO equations based on matrix manifold theory [17,19]
and dynamically bi-orthogonal equations [10].

In Fig. 2, we first show the time evolution of the orthogonality error |U TU — I'|max
(| Al max £ max{A; 1) for the numerical integration of the DO equations without any
re-orthonormalization. Results are shown for n = 10, 20 and three time step sizes.
As we can see, the orthogonality error grows with Az since a larger At implies a
larger discrepancy between the time-discrete system and the originally orthogonality-
preserving continuous one. Moreover, when A7 = 0.005 and 0.01, |U v -1 [l max
tends to saturate at a low level (< 1073) that corresponds to only a negligible deviation
from orthogonality. However, when At increases to 0.05, |U TU — I||max can either
level off at a magnitude of 1 for n = 10 that signals a complete loss of orthogonality
or even drive the simulation unstable and cause the solution to blow up for n = 20.
This exemplifies the necessity of re-orthonormalization.

Note that in the expansion u = u + U¢, there is also the unitary freedom
Up = U Q)(QTqS) for any orthogonal @, under which all realizations u(#; w) are
unchanged. Therefore, if we apply such a Q at some time ¢ and use U Q and QT¢
as the initial values of the modes and coefficients for the subsequent time integra-
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Time Evolution of DO Modes Time Evolution of DO Modes

Mode Number
Mode Number

10 20 30 40 50 10 20 30 40 50
(a) DO modes (SVD-EVD) (b) DO mode (PD-EVD)

DO Coefficient Variance DO Coefficient Variance

50 40
35
30
25
Coeff 1
= Coeff 2
10 . . 20 .
10 20 30 40 50 10 20 30 40 50
(¢) DO variances (SVD-EVD) (d) DO variances (PD-EVD)

Fig.3 Comparison between orthonormalization using SVD-EVD (left) with that using polar decomposition
PD-EVD (right). The evolution (from ¢ = 10to 50, Ar = 0.05) of the first two DO modes [u;r, urzr]T stacked
together are shown on the top and the evolution of their coefficient variances Var(¢1) and Var(¢;) on the
bottom

tion, the future evolution of u(¢; w) will remain the same. However, this breaks the
time continuity of U and ¢ at time ¢, as illustrated in Fig. 3, where the SVD-EVD
and PD-EVD (see Table 2) algorithm are compared. Due to the non-uniqueness of
an SVD, SVD-EVD not only removes the orthogonality error, but also applies to U
some @ that may not at all be close to I. As a result, we lose the time continuity
of the modes and coefficients as indicated by the “random” pattern in the left half
of Fig. 3. In contrast, PD-EVD minimizes such numerical artifacts. Maintaining time
continuity is especially important when we use multi-step time-marching schemes’
because their validity relies on the smooth evolution of U and ¢ across different time
steps. A “random” Q applied at each time step destroys this smoothness and can cause
the time integration to diverge.

Finally we show in Fig. 4 how the orthogonality error can be controlled by PD-EVD,
PD-NtSqr, PD-NtISqr, QR-Chol and SVD-EVD for re-orthonormalization. These
algorithms were described in Table 2. They are the best choices in this case based on
the discussion in Sect. 4 because the U to be re-orthonormalized after each time step is
a tall thin matrix and is already nearly orthogonal. Here we exclusively use At = 0.05
and n = 10 for all simulations. The left of Fig. 4 indicates that the orthogonality errors
are kept at almost machine epsilon. The two EVD-based algorithms have slightly larger

5 For example, [49] uses the leapfrog scheme and [13] uses the implicit-explicit backward difference
schemes for the DO equations.
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Time Eyo of Ortl]o Errors (n = 10) 1 4Ratio of Ortho Corr to Min Corr (n = 10)

——PD-EVD
——PD-NtSqr 13

——PD-EVD

= PD-NtSqr
PD-NtISqr

—QR-Chol

10 20 30 50 10 20 30 40 50

Fig.4 The orthogonality errors after re-f)rthoraormalization by various algorithms (left) and the ratio of the
correction ||U — U|| to the minimum ||Uy — U|| computed by (6) (right). The ratios for SVD-EVD are of
order 10° and thus not plotted. Here At = 0.05 and n = 10 are used for all the simulations

errors, most likely due to the convergence criterion for the built-in EVD subroutine, but
this is not essential in practice. The right plot shows the ratio of the actual correction
U — ﬁ|| to the theoretical minimum ||U,, — l7|| = (n+tP =2t P12 computed
by (6). As we can see, all three PD-based algorithms achieve a ratio of 1, while the
QR-based algorithm has a ratio between 1.2 and 1.4, agreeing with the bound (52).
Not surprisingly, the plain SVD orthonormalization yields a huge ratio of order 10°
(not plotted) because it produces corrections of order 1 even when || U0 -1 || is only
of order 1079,

6 Application to ensemble square root filters for data assimilation

Another application of the minimum-correction second-moment matching is in the
ensemble square root filters for data assimilation [3,6,15,16,35,41,44]. Given an n-
dimensional dynamical system d;u = f(u) as well as a linear observation model
y=Hu+ec RY with Gaussian noise ¢ ~ N’ (0, R), the task of data assimilation is
to combine the information content of observations y with that of model predictions
to refine the (probabilistic) estimate of the state u. At each observation time 7, we
denote a forecast ensemble with m realizations for u by U_ € M., and its sample
covariance by P_ = (1/m)U_UT . Here, U _ is decomposed into the mean and the
fluctuation as U_ = #1" + U_, where 1 is a vector with all entries being 1.

The task of filtering, the most common type of data assimilation, is to obtain an
analysis ensemble U+ € M,,,,, Which integrates information in U _ with the obser-
vations collected at 7 denoted by ¥, so that U . better captures the underlying true state
than U _ can. A popular family of filters is that of ensemble square root filters, which
update the mean in the same ways as a Kalman filter:

i, =u_+K3y—-Hua_), K=P_H'HP_H'"+R)', (55)

6 Here the role of rows and columns flips compared to previous sections, since we want to follow the
notation convention in the field of data assimilation.
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and update the ensemble spread in some way such that the sample covariance of U 1
matches the one given by a Kalman filter, i.e.

P, = (1/m)l7+l71 = -KH)P_. (56)

Many variants for obtaining such a U have been proposed, including the ensem-
ble Kalman filter [15,16], error subspace statistical estimation [33,35], ensemble
adjustment filter [3] and ensemble transform filter [6], to name a few [54]. Here,
we demonstrate a particular variant proposed by [41], which choose U . to be the one
closest to U _, reducing the task to minimum-correction second-moment matching.
This choice may be seen as retaining as much physical information from the prior
ensemble U _ as possible [41].
More precisely, the update formula for U . proposed by [41] is

U,= argmin [|V—-U_|p-1. (57)
V:VVT=mP, T

Corollary 2.1 implies that Uy = AU _ with (here I', = P~1)

A=r,'AJr,=/P_"(/P_"P,./P_~H2 /P T, (58)
This is almost the same as A = PI_/Z(P P+P:1/2)]/2P:1/2, which is eq. Al4
in [41], except that all the square root /- were unnecessarily restricted to the unique
SPD one (-)!/? in the expression used by [41].

We will again use the Lorenz-96 system (54) as an example with exactly the same
numerical setups as those in Sect. 5, except that F' = 4 is used now. Hence, we have
n = 40, m = 1000. Note that n now denotes the system’s dimension while m the
number of realizations, differing from Sect. 5. The observation data include every
other variable, i.e. xq, x3, ..., x39, at time ¢t = 10, 15, 20, ..., 50. The observation
noise covariance R = 0.017 is assumed known.

Here four filters are tested and compared: “EnSQR” is the one proposed by [41] and
based on (57); “EnKF” is the classical ensemble Kalman filter [16]; “KF” is the same
as EnKF except that the filtering update is replaced by fitting a Gaussian to the prior
ensemble, applying the classical Kalman update and re-sampling from the posterior
Gaussian. These three filters are based on brute force Monte-Carlo simulations of the
Lorenz-96 system without any dimension reduction. “EnSQR-DO” is EnSQR applied
to a DO simulation with a 10-dimensional reduced subspace. The performance of
these four filters are compared in Fig. 5.

The RMSE (root mean squared errors) on the left shows that all filters perform
similarly except that EnSQR-DO has a larger error due to dimension reduction (the
attractor is not well contained in a 10-dimensional linear subspace globally). The ratios
of the ensemble correction (fluctuation part) || U +— U_| at each filtering step to the
theoretical minimum ||U e — U_|| for posterior covariance matching are plotted on the
right. The minimum is computed by (12) being |U ;s —U _||> = tr(I+ P —2P'/?),
where P = /P_ TP, /P_~'. As we can see, the two minimum-correction-based

—-1/2
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Fig.5 Time evolution of RMSE of the various filters (left) and the ratio of the filtering correction || U 4 — U |
to the minimum || fl+* -U_ || computed by (12) (right). The first three cases are without dimension reduction
while the last one is reduced to a 10-dimensional subspace using DO. Here At = 0.05 is used for all the
simulations

filters (EnSQR, EnSQR-DO) achieve the unit ratio while the other two do not. KF
has the largest ratio because its re-sampling step completely breaks any realization
correspondence between the prior and posterior ensemble. In contrast, EnKF adopts a
realization-wise update strategy, which yields a ratio between those of KF and of the
minimum-correction filters. For further details on the performance of the minimum-
correction-based ensemble square root filter (EnSQR), please refer to section 5.3.3
and 5.7 of [36].

7 Conclusions

In this paper, we develop the theory for minimum-correction second-moment match-
ing. We solve the optimization analytically for both the full-rank and rank-deficient
case. The finite-dimensional result is generalized to the infinite-dimensional setting
and a connection to optimal transport is drawn. We also show how the general prob-
lem can reduce to the familiar one of optimal orthonormalization and we accordingly
generalize the polar decomposition, which is known to solve this special case.

We obtain numerical schemes for computing the optimizer. We show the instru-
mental role played by the algorithms for polar decomposition and SPD matrix square
root and we analyze existing ones in the literature. We modify two Newton iterations
deemed unstable before and significantly improve their stability. The resulting two
new multi-purpose schemes (45) and (46) can be used to efficiently compute both the
orthogonal polar factor and the SPD square root. These iterations play a key role in
minimum-correction second-moment matching using algorithm A..-NtSqr and U,-
NtPD in Table 1 and in their counterparts PD-NtSqr, PD-NtISqr, and PD-NtPD in
Table 2 for orthonormalization. We verify the higher performance of the new algo-
rithms using benchmarks with random matrices.

Finally, we showcase results in two applications. In reduced subspace tracking for
uncertainty quantification, we maintain the numerical orthogonality and continuity of a
time-varying orthonormal basis. In an ensemble square root filter for data assimilation,
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we obtain the unique posterior ensemble that matches a given covariance matrix while
also minimizing its distance to the prior one.
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A: Proof of theorem 2.1
Proof First, since the objective function of (4) can be rewritten as

U - Ul =ul(U-U)YU -U)]=uP +uP - 20(UTD),
we have

arg min U — U||% = arg min —2u(UTD). (59)
UeMpn: U U=P UeMpn: U U=P

The Lagrangian of this optimization is thus
LU, A) = —20UTT) + w(AT@" T — PY), (60)

where A € M, y, is the Lagrangian multiplier for the constraint U Tf] = P. The
global optimizer should be one of the critical points, so ’

~ ~ T ~ ~
VoLlg o = —2U+2U.A =0,  V4llg 4 =UU.—P=0. (61)

The first condition gives U = U «A 4 and the second is simply the second-moment con-
straint on U .. The symmetry of this constraint implies the symmetry of the Lagrangian
multiplier A,. Inserting these results into the objective function (59), we obtain

- T ~ - = —T
U, = —20(AT LU, = —20(AP) = 2u(VPANP ). (62)
The reason for symmetrifying the matrix in the last step will soon become clear. Since
T L7 %
P=UU=AUU,A,=A,PA,,

the second-moment constraint reduces to P = A*i’A*. To relate the objective func-
tion (62) to this constraint, we use a small trick:

7 See [42] for how these matrix gradients are computed or refer to “Appendix A” of [37].
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WPANP ) = VPANPHWPANP )
_VPAPANWD
_JVEPVP .

Therefore, \/F A*\/FT must be a symmetric square root of \/; P \/FT, which is not
unique. This characterizes all the critical points of (4), among which is the desired
global optimizer U, = U AL I

Next, we identify the global optimizer by comparing the values of the objective

. .. . . jod T . . .
function evaluated at these critical points. Since v PA,vV P is symmetric, it has an
eigendecomposition

- —T
VPANP = Vdiag(u, ..., 0 VT
= —T
and its square \/; P \/; will have the corresponding eigendecomposition

- —T
VPPVP = Vdiag (1, 22) VT (63)

.. . jod jod T .
If we denote the n positive eigenvalues of v PPV P byoy, ..., o, then without loss
of generality, we must have o; = Al.z and hence A; = £,/0;. Therefore, the objective
function (62) reduces to

o (UTfJ*) = 2w (Vdiag v ) VT)

23 ko = -2 o (64)
i=1 i=1

We can see that the lower bound is attained if and only if ; = Jo;,i = 1,...,n,1i.e.

= —T
when \/F A*\/; takes the unique SPD square root:

VPANP = PPVP )2, (65)

Therefore, the global minimizer to (4) is U «=UA, ! with
—T = —T =
A7 =VP /PPVP "2V (66)

Note that the particular choice of square root v/ P is irrelevant because both the spec-

= =T
trum of \/;P\/F and the global optimizer (66) are invariant under the unitary

freedom v P — Qv P, due to the fact that QA2 QT = (QA QT)"/? for any SPD
A.
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We remark that an alternative to using (62) is to use
- T
—2uUl,) = —20UTUADY) = —2u (PA;‘) — 2u(PAI'VP)

and correspondingly P = A, ! PA, ! This simply switches the role of P and P and
replaces A, with A, ! Therefore, this gives an alternative expression of A, ! obtained
in (60), i.e.

A7 = VP (WPPVPHAYPT (67)

O

B: Generalization from R™ to a Hilbert space

In Theorem 2.1, each column of U or U is an element in R” and the second-moment
matrices are computed based on an inner product on R”. A natural question is whether
Theorem 2.1 still holds when R™ is replaced by an infinite-dimensional Hilbert space
‘H equipped with an inner product (-, -)4.

More precisely, assume uy,...,u, € H are linearly independent and form an
n-vector of H denoted by u = [uy,..., u,]T € H". Then we can compute the
second-moment matrix (a.k.a. the Gram matrix) of u as P = Gr(u, u), where

Gr(u,v) 2 (u, vT>H € Muxn (68)

i.e. with the (i, j)-th element of Gr(u, v) being (u;, v;), . If H" is equipped with an
inner product (-, -)74» defined as

(w, v)yge 2 tr (VT Grta, )T ) (69)

with again an SPD weight matrix I',,, we want to solve the following minimum-
correction second-moment matching problem

arg min 7 uII%_[,l (70)
aeH":Gr(it,it)=P

for a given SPD P c M, «n. Here the norm is induced by the inner product (69). As
a common scenario, if H = L, (£2), which is the space of square-integrable real func-
tions on some measure space (§2, A, m) equipped with inner product (u(-), v(:))y =
/ o U(w)v(w)dm(w), then the inner product (69) on H" can be rewritten as

(w, V)pn = / u() T o(w)dm(w). (71)
2
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The definitions (69) and (71) are simply the Hilbert space counterparts of the two
expressions in (2). Since we can get rid of I',, by scaling the elements in H" by /T,
as before, we will assume I';,, = I hereafter.

Theorem 2.1 does not apply to (70), but as in Sect. 2.2, if we restrict the candidate
set to {# = Au : A € M, «,}, the Hilbert space complication will be confined to
computing the Gram matrices only. Since

Gr(Au, Bv) = (Au, (Bv)") = A{u.v") B = AGr(u, v)B"
due to the bilinearity of an inner product, we have
I = wl = (A = Dull}y, = ((A = DGra, (A = D') = A= 11} p.

Hence (70) reduces to (16) and Corollary 2.2 applies.
To establish the analog of Theorem 2.1 for (70), we need some techniques from the
calculus of variation to generalize optimization in R™ to that in a Hilbert space.

Theorem B.1 (Minimum-correction 2nd-moment matching on a Hilbert space) Given

u € 'H" whose entries are linearly independent and P which is SPD, we have

argmin  ||it — uII%n =A,u (72)
ﬁeH":Gr(ﬁ,ﬁ):i’

with A, given by (7).

Proof Compared to the case in R™, although S = {# € H" : Gr(u,u) = P} is
still closed and bounded (||f4||%{,, = tr(P) on Sp), Sp is no longer compact due to
the infinite dimensionality. Therefore, although the objective function is continuous
and bounded from below, its infimum may not be attainable. In the following, we first
assume that a global minimizer i, exists and derive an analytic expression for it. After
that, we will show that this expression, which is well-defined whether or not a global
minimum exists, is indeed the unique global minimizer to (70).
Here the objective function is

F@)=|u- uII%_[n =tr (Gr(@t — u, it —u)) = tr(P) + tr(P) — 2tr (Gr(@t, u)) ,
so its first-order variation is
8F(u,du) = —2tr (Gr(Su, u)) .
The constraint on & is Gr(u, i) = P, so the constraint on 8t is

Gr(du, u) + Gr(u, su) = 0, (73)

which is simply saying that Gr(8u, &) is anti-symmetric. If # is a local minimizer to
(72), we must have § F (i, §u) = 0 for any du € H" that satisfies (73).
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Now we prove by contradiction that each entry of # must be a linear combination of
the entries of a local minimizer &, which means u = Au for some A € M,,«,. If this
was not the case, without loss of generality, we can assume u| ¢ span {uy, ..., u,} C
‘H. Therefore, the projection of u; onto span {uy, ..., ﬁn}L must be nonzero and we
denote it by v. Now we construct §u = [v, 0, ..., 0]T. We can see that Gr(éu,u) =0
because (v, iu;)yy =0, i =1, ..., n.Hence, (73) is satisfied. On the other hand, since
(v, u1)y = Ilv[3, > 0, we have

SF(ii, 8it) = —2tr (Gr(8it, w)) = —2 Y (8iki. ui)py = —2 (v, ur)p <0,

i=1

which contradicts the assumption that # is a local minimizer. Therefore, any local
minimizer # must satisfy u = Au for some A € M,,«,. Since the entries of u are
linearly independent, A must be invertible and thus &t = A~ 'u.

Since we have already shown that with the candidate set restricted to {# = Au},
Corollary 2.2 applies. This completes the proof of (72) when a global minimum exists.

Note that no matter whether a global minimum exists or not, we can always construct
i, = Au € Sp with A, given by (7). Therefore, if we can show [|it, — u||p4 is
indeed a lower bound of ||# — u||3» on Sy, we can prove the existence and uniqueness
of a global minimizer.

Since F(@t) — tr(P) — tr(P) = —2tr (Gr(@t, u)) = —2 (i, u)ymn, we want to show
(@, u)pn < (@y, w)pyn forany u € Sp by the Cauchy-Schwarz inequality. Since &, is
not parallel to u in general, we need two linear transforms u = Ai/ 217 andu = A*_l/ 2v
to make sure that the Cauchy-Schwarz inequality attains its equal sign when#t = A,u.
Therefore, we have

- 1/2 |~ —-1/2 ~ ~ -
(i, uhyee = e (417 5, vT>H 4. =u (s, vT>H) — (5, 030 < IBllpgn [0l
where the last step is the Cauchy-Schwarz inequality. On the other hand, we have
01 = (A7, A %0) = (A (@ T) Al?) =wa.p),

15130 = <A;‘/2a, A;”Za)m —r (PA;I) = tr (A, P).,

(Us, u)pm = (A, u)pm = tr (A P),

where the last equal sign in the second line is due to the second-moment matching
constraint A, PA, = P. Combining the above results, we have shown

<ﬁ, u>Hn <tr (A*P) = (ﬁ*, u>Hn

for any # € Sp, which completes the proof. O

Theorem 2.2 can also be generalized to the case with R™ replaced by a Hilbert
space H. This continuous setup can be intuitively viewed as the discrete one with
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m = oo, which implies that we always have m > n > 7 so the modification in step 1
is never needed. We state this generalization in the following theorem, whose proof is
omitted since it is totally in parallel with that of Theorem 2.2.

Theorem B.2 (Degenerate counterpart of Theorem B.1) Given u € H" with P =
Gr(u,u) € ./\/l,,x,Land rank(P) = dim(spanf{ui, ..., u,}) = r, and semi-SPD P
M xn withrank(P) = F, we have

argmin  ||& — uII%{n =i, =25, =Z(ZWy+Z W) (74)
ﬂeH":Gr(ﬁ,ﬁ):i’

where §4 = ZWy + ZJ_ﬁ)J_f € 'H'. Moreover, the columns on € M, «j form an
orthonormal basis of Row(P) and the columns of Z € My, form an orthonormal

basis of Row(Z' PZ) with

¥ =7 — dim(Row(P) N Row(P)T) = r — dim(Row(P) NRow(P)). (75)
Finally, w, and W | 4 are given by

~ . ~ =T
W, = arg min lw—Z Z u|?,, (76)
weH": Gr(w,w)=2"Z PZZ

and W |, = BszBfllﬁhk + v, € H" with arbitrary vy such that Gr(v,, wy) = 0,
ie. vy € span{iby 1, ..., Wy, )" C Hfori = 1,...,(F —r'), and Gr(vy, vi) =
By — B?zBfllBlz. The B;j blocks are defined as:

BU BIZ A w w _ ZT 5T ~ ~
oty o) 2o () [50]) =[] iz

Besides, the global minimum of the objective function is
lis — ull3 = [P + P —2(PP)'/]. (77)

All previous remarks regarding Theorem 2.2 apply here as well. Moreover, this
theorem also extends our optimal transport interpretation in “Appendix C” to the most
general case with arbitrary semi-SPD covariance matrix ¥, and ¥, unlike most
previous literature (e.g. [12,40]) on this topic, which essentially restrict themselves
in cases with Row(X,) C Row(X ). In particular, Theorem B.2 implies that the
optimal coupling 7, between  and v (which is a joint distribution with ¢ and v being
its marginals) for matching only the first two moments is deterministic (i.e. corresponds
to a bijection between u ~ w and & ~ v) if and only if rank(X ) = rank(X,) =
rank (X, X,). The optimal coupling is deterministic in the direction from p to v (i.e. 7y
induces a map from u to @ or the conditional 7, is always a Dirac delta) if and only
if Row(X,) N Row(EM)l = 0, of which the assumption Row(X,) C Row(X )
usually made in previous literature is a special case.
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C: Connections to optimal transport

Our main results Theorems 2.1 and B.1 are also closely connected to the problem of
optimal transport (a.k.a. the Monge-Kantorovich minimization problem [55, p. 10]),
which concerns the coupling (in the form of a joint distribution) between two given
probability distributions that minimizes an associated transport cost. More precisely,
in a particular setting that is relevant to our context, given two PDFs p(-) and v(-) with
finite second moments over R”, the problem concerns the joint distribution 7 (-, -) over
R" x R", which can be degenerate, such that 7 has y and v as marginals and the L,
distance between the two marginal random variables are minimized, i.e.

., = arg min / Ix — yl*7(x, y)dxdy, (78)
well,,y JR"XR"
where || - || is the Euclidean distance in R” and

n,, = {71(~, -) € PDFs : / w(x,y)dy = y,(x),/ m(x,y)dx = v(y)} .(79)
]Rn ]Rn

Under the above conditions, a unique optimizer i, exists [55, p. 11] and it turns out
to be deterministic, i.e. w4 (x, y) = 8y—r,x)u(x) for some mapping T, : R" — R”
such that [ 7, (x, y)dx = v(y). Moreover, the quantity

12
Wa(u,v) = min ( / ||x—y||2n<x,y>dxdy> (80)
RHXRYI

Telly v

is called the L, Wasserstein distance between w and v [55, ch. 6].

In general, the optimal transport mapping T . (-) is nonlinear. However, if we relax
the constraint of marginal matching to only first- and second-moment matching, The-
orem B.1 implies that T, (-) is indeed affine with the linear part being SPD, even when
w and v do not have a well-defined PDF (i.e. not absolutely continuous with respect to
the Lebesgue measure). To show this, first notice that the optimization (78) over joint
distributions on R” x R” can be translated into an equivalent problem over random
vectors in R":

U, :argminIE[Hﬁ—qu] (81)

u~v

with some u ~ . Next, denote the mean of x and v by m,, and m,, respectively,
and also the covariance matrices by X, and X,,. Then the objective function in (81)
becomes

E[l@—ull?] = m, —m, |2 +E[ @ -],

where the primes indicate the centered random vectors. Now if we relax the distribution
matching constraint # ~ v to only mean and covariance matching, i.e. E[#] = m,
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and E[ﬁ/ﬁ/T] = X, the optimal transport problem (81) is simplified to the task of
minimum-correction second-moment matching:

i, = argmin E[||ﬁ—u||2]. (82)
B i M=%,

If we set H = L,(2) as the Hilbert space of all square-integrable random variables
defined over the probability space (£2, A, P) on which u is defined, then Theorem B.1
applies to (82) and yields #y = T« (u) = A(u —m,) + m, with

A=VE VN EOVAE (83)

Moreover, since
E [||i/ — u/||2] = tr(X,) + tr(X,) — 2tr[Cov(it, u)] (84)
and
tr[Cov(ity, u)] = tr[Cov(A,ut’, )] = trl(/Z, Zvy/Zp V2] = (X, 2,)V/21,
we have
W3, Tapt) = llmy — my||* + [ 2, + 2y — 22, 202, (85)

where the distribution T, i is the push-forward of u by T .. Note that although T, u
share the same mean and covariance with v, in general T, # v and Wa(u, Typ) <
Wa (e, v), so (85) indeed provides a lower bound for W5 (i, v) based on the first two
moments of © and v.

If we partition the set of all distributions (possibly degenerate) over R” that have
finite second moments into equivalent classes by their means and covariances then
(85) induces a metric on this quotient space. Denote by Sy, 5 the equivalent class of
all distributions with mean m and covariance X. Given Sy, 3, and & € Sy, 3, there
exists aunique ji = Ty € Sp,, 3, thatis the closest to  under the distance W (-, -).
As a generalization to the one-to-one correspondence of (9) and the intuition illustrated
in Fig. 1, the members in any two equivalent classes Sy, x, and Sp,, 5, can be paired
up by such minimum-W,-distance matching. Moreover, since this distance between
w and T, depends only on Sy, 3, and Sy, 5, but not on the particular member i,
Wa (e, Ty pt) can be used to define the distance between Sy, 5, and Sy, 5,. This is
sometimes called the Fréchet distance [12]. Note that the covariance part of (85) can
also be isolated and used as a metric among SPD matrices.

Although in general (85) is only a lower bound for W» (1, v), if both 1 and v belong
to a family of distributions closed under affine transforms and each member of this
family is uniquely determined by its mean and covariance, then we have T, = v
and thus W>(u, v) coincides with (85). [12] mentions one typical example of such
where the distribution family is characterized by a radial kernel ¢ : [0, o0) — [0, c0)
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that satisfies 0 < fooo r2 g (r2)dr < oo, which guarantees the finiteness of second
moments. In this family, a member ©’s PDF takes the form p(x) o< ¢ ((x — m)TA(x —
m)) with some SPD A, where m is the meanand A~ ' isa multiple of the covariance. In
other words, this family is generated by pushing forward a non-degenerate elliptically
contoured distribution that has finite second moments by invertible affine transforms.
It can be checked that within such a family, a distribution can be uniquely identified by
its mean and covariance. Therefore, given © and v, we always have T, = v and thus
W, (1, v) can be computed by (85). The most familiar example of such is probably the
family of Gaussian distributions corresponding to the exponential kernel ¢ (r) = e,
for which the above results are well known.

To the best of our knowledge, the earliest work that derives the right hand side
expression in (85) is in [12,40]. However, they did not connect this result to the
problem of optimal transport. Moreover, they translate the optimization into one over
the cross-covariance matrix B = Cov(u, &), which does not necessarily uniquely
determine z given u if the optimizer B, does not correspond to a deterministic affine
coupling between the two. In Theorem B.1, although the objective function is also
simplified to tr(Cov(u, &)) (or its empirical counterpart (59) in the discrete case of
Theorem 2.1), we have provided an alternative proof based on optimizing on & directly
rather than on B = Cov(u, u).

Finally, note also that the more general result Theorem B.1 on a Hilbert space
indeed contains the special case on R described by Theorem 2.1. Moreover, if we
view Theorem 2.1 through the lens of Theorem B.1, we can identify a discrete coun-
terpart of the optimal transport interpretation for Theorem 2.1. The key observation is
that Theorem 2.1 is equivalent to Theorem B.1 with = R, which on the other hand,
corresponds to (82) with u being a discrete distribution over R” with m particles, i.e.
with its (generalized) PDF being the sum of m Dirac deltas. Therefore, the optimal
transport interpretation of Theorem B.1 implies that #, also follows a discrete distri-
bution with its m particles given by the rows of U.. in Theorem 2.1. This is actually a
stronger result than Theorem 2.1 because in the latter, we have restricted the feasible
[’s within the m-particle discrete distributions a priori.

For an exposition of other connections between the optimal transport and the polar
decomposition, see [4,7].

D: Gradient descent for matrix square root

[18] proposes to solve the equation XT PX = I for an X close to I by solving the
unconstrained optimization arg min | XTPX — I ||12: iteratively with the initial guess
X

Xo=1.

The objective function attains its global minimum 0 at every X thatsolves X T PX =
I. The hope is that if we use an iterative scheme and start from I, the iterates will
converge to a solution X close to I. [18] proposes to use a simple gradient descent
iteration. Since f(X) = | XTPX —I|?> =tr(XTPXXTPX) —2tr(XTPX) +tr(I),

@ Springer



648 J.Lin, P. F. J. Lermusiaux

we can compute the gradient analytically as
Vxf =4PXX"PX —I). (86)
Therefore, the gradient descent iteration takes the form
Xpp1 =X, —yPX,(Xy PX, — 1) (87)

with y being a tunable step size. This is Algorithm 3 in [18, sec. 3.5]. However, [18]
does not mention how to pick y, when the iteration converges, and how fast.

We can analyze this iteration by exactly the same techniques used in Sect. 3.2. First,
we have X; — P~!/2Q,, for

Xo=250Q0 SocCp, |Xol2<1/IPIY? y<1/QIPl2).  (88)

since the matrix iteration can be reduced to the scalar one oy = oy —y Aok (Uk2 — 1)8,
where A is an eigenvalue of P and oy /+/A is the corresponding singular value of X.
Next, the stability analysis shows that the Fréchet derivative at the limit X, is

DF(X) =X — yAX — yA'2XTA'/2, (89)
which has eigenvectors and eigenvalues as

Zij:Eij—i- )Lj/)\iEji’ Mij=1—y()»i+)»,-), i<j,
Zij=Eij —\/Ai/ jEji, pij=1, i>].

(90)

Here the A;’s are the diagonal entries of A and are also the eigenvalues of P. Therefore,
for p(DF) < 1, we need y < 1/||P||2, which is less stringent than (88). Moreover,
the iteration converges linearly with the asymptotic error diminishing coefficient not
smaller than (Amax —Amin)/ (Amax +*min)- Therefore, the gradient descent is considered
unattractive here compared to the quadratically converging iterations (45) and (46).
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