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ABSTRACT

The nonlinear Gaussian Mixture Model Dynamically Orthogonal (GMM–DO) smoother for high-

dimensional stochastic fields is exemplified and contrasted with other smoothers by applications to three

dynamical systems, all of which admit far-from-Gaussian distributions. The capabilities of the smoother are

first illustrated using a double-well stochastic diffusion experiment. Comparisons with the original and im-

proved versions of the ensemble Kalman smoother explain the detailed mechanics of GMM–DO smoothing

and show that its accuracy arises from the joint GMMdistributions across successive observation times. Next,

the smoother is validated using the advection of a passive stochastic tracer by a reversible shear flow. This

example admits an exact smoothed solution, whose derivation is also provided. Results show that the GMM–

DO smoother accurately captures the full smoothed distributions and not just the mean states. The final

example showcases the smoother inmore complex nonlinear fluid dynamics caused by a barotropic jet flowing

through a sudden expansion and leading to variable jets and eddies. The accuracy of theGMM–DO smoother

is compared to that of the Error Subspace Statistical Estimation smoother. It is shown that even when the

dynamics result in only slightlymultimodal joint distributions, Gaussian smoothing can lead to a severe loss of

information. The three examples show that the backward inferences of the GMM–DO smoother are skillful

and efficient. Accurate evaluation of Bayesian smoothers for nonlinear high-dimensional dynamical systems

is challenging in itself. The present three examples—stochastic low dimension, reversible high dimension, and

irreversible high dimension—provide complementary and effective benchmarks for such evaluation.

1. Introduction

Smoothing is a process of estimating the history of a

system by integrating its dynamics with all available

measurements across time, both past and future. In con-

trast, filtering is a process of estimating the current state

of a dynamical system using only the past measurements.

The theoretical basis of smoothing has been well estab-

lished for some time (e.g., see Gelb 1974; Jazwinski 2007;

Särkkä 2013) and has been used in multivariate geo-

physical applications (e.g., see Cohn et al. 1994; Bennett

1992; Wunsch 1996; Lermusiaux et al. 2002; Cosme et al.

2012; Lolla 2016). For linear systems with Gaussian

measurement noise, the Kalman smoother is optimal in a

Bayesian sense (Gelb 1974). However, ocean and atmo-

spheric dynamics are highly nonlinear and can develop

far-from-Gaussian distributions (Miller et al. 1999;

Lermusiaux 1999a,b). Practical smoothing schemes

for such systems are commonly limited to linearized

and/or low-dimensional models (e.g., see Särkkä 2013;

Lolla 2016), or to schemes that respect the nonlinearities in

the dynamics, but are limited to Gaussian smoother up-

dates, such as ensemble smoothers (Lermusiaux and

Robinson 1999; Evensen and Van Leeuwen 2000;

Bocquet 2005; Cosme et al. 2012). Hence, the utilization

of efficient and accurate smoothing in high-dimensional

nonlinear models, using fully Bayesian updates, is the

challenge addressed here.

In the companion manuscript (Lolla and Lermusiaux

2017), we developed the theoretical basis for the present

applications and derived the fundamental equations for

the Gaussian Mixture Model Dynamically Orthogonal

(GMM–DO) smoother, a methodology for retrospective

Bayesian nonlinear inference of high-dimensional sto-

chastic fields governed by nonlinear dynamics. In the

present study, we exemplify the nonlinear GMM–DO

smoother and contrast its performance with respect to

that of other smoothers and their underlying filters by

applications to three dynamical systems, all of which ad-

mit far-from-Gaussian statistics. These three applications

also define complementary and effective benchmarks for
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the generic evaluation of Bayesian smoothers with higher-

dimensional nonlinear dynamical models.

The questions that inspired this work include the

following: What are the expected gains of a Bayesian

nonlinear smoother over a Bayesian nonlinear filter?

Can one obtain analytical solutions for the smoothed

probability distributions of dynamic fields governed by

nonlinear partial differential equations? How do GMM–

DO smoother estimates compare to such analytical solu-

tions?What is theperformanceof theGMM–DOsmoother

in more complex geophysical flows consisting of dynamic

jets and eddies? How does the GMM–DO smoother com-

pare to linear smoothers, Gaussian ensemble smoothers, or

approximate Bayesian smoothers? Overall, a main objec-

tive here is to exemplify the GMM–DO smoother and its

properties while addressing the above questions within the

context of geophysical applications.

In itsRauch–Tung–Striebel (RTS) style forward–backward

form, the equations of the GMM–DO smoother consist of

three steps, summarized in Table 1. The first step is the

forward-filtering pass, in which the Bayesian GMM–DO

filter (Sondergaard and Lermusiaux 2013a) is used to as-

similate observations sequentially over time. The prior

probabilities are predicted forward in time using the DO

differential equations (Sapsis and Lermusiaux 2009),

which optimally reduce the dimensionality to a dominant,

time-evolving stochastic subspace (Feppon andLermusiaux

2017). Non-Gaussian features of the state variable are pre-

served during each assimilation cycle by fitting a GMM in

the stochastic subspace and then analytically carrying out

Bayes’s law within the subspace. The second step of the

GMM–DO smoother is the joint-subspaces GMM fitting

pass. In this step, joint GMM distributions are fit to

variables across all pairs of successive observation times.

It is these joint-GMM fits that allow for analytical, non-

linear back propagation of information arising from future

observations. The final step of the GMM–DO smoother is

the backward-smoothing pass, in which the conditional

probabilities given by the GMM–DO filter are updated by

solving a Bayesian smoothing recursion equation backward

in time, within the joint stochastic subspaces. The smoothed

conditional probabilities in the smoothing recursion are

evaluated analytically, using the joint-GMM fits from the

GMM-fitting pass. Hence, the GMM–DO smoother re-

cursively estimates the smoothed probabilities backward in

time, without linearizing the dynamics, and preserves the

non-Gaussian features of the stochastic field across time.

To illustrate and examine the performance of theGMM–

DO smoother, we employ the following three test cases:

1) The first example is a 1D double-well stochastic

diffusion experiment (section 2), in which we compare

TABLE 1. GMM–DO smoother: summary of equations and algorithm.

GMM–DO smoother

a. Forward GMM–DO filter pass: Solve the DO equations (A3) to predict the state pdf. At each observation time tk, perform the analysis

step of the GMM–DO filter (section 4). Save the following:

1) mean vectors xkj1:k (filtered) and xk11j1:k (forecast) for k 5 1, 2, . . . , K 2 1;

2) sets of stochastic coefficients ff(r)
kj1:kg

Nr

r51
(filtered) and ff(r)

k11j1:kg
Nr

r51
(forecast) for k 5 1, 2, . . . , K 2 1;

3) matrices of modes Xk for k 5 1, 2, . . . , K;

4) the final-time filtered variables—the stochastic coefficients ff(r)
Kj1:Kg

Nr

r51
and the mean vector xKj1:K .

b. Joint subspaces GMM-fitting pass: Form the realizations of Fk,k11jk(v), as per (A4): f
(r)
k,k11j1:k 5

"
f

(r)
kj1:k

f
(r)
k11j1:k

#
.

Fit aGMMto each joint ensemble ff(r)
k,k11j1:kg

Nr

r51
using theEM–BICprocedure, to obtain the joint filteredGMMs (A5) for k5 1, 2, . . . ,K2 1:

pFk ,Fk11 jY1:k(fk, fk11 j y1:k)5 �
M

j51

pj 3N
 �

fk

fk11

�
;

"
mj

kj1:k
mj

k11j1:k

#
,

"
§j

k,kj1:k §j

k,k11j1:k
§j

k11,kj1:k §j

k11,k11j1:k

#!
.

c. Backward-smoothing pass: Execute the following steps sequentially, starting from k 5 K 2 1 until k 5 1:

1) For each r 5 1, 2, . . . , Nr

(i) determine the subspace conditional pdf pFk jFk11,Y1:k(� jf(r)
k11j1:K , y1:k) from (A6)–(A7), where

pFk jFk11,Y1:k(fk jf(r)
k11j1:K , y1:k)5 �

M

j51

p̂j,(r)3N (fk; ~m
j,(r)
k , ~§j

k);

(ii) draw the sample ~f
(r)
kj1:K from (A6), where ~f

(r)
kj1:K ; pFk jFk11,Y1:k(� jf(r)

k11j1:K , y1:k);

2) compute the smoothed mean xkj1:K from (A8), where xkj1:K 5 xkj1:k 1Xk 3

 
1

Nr
�
Nr

r51

~f(r)

!
;

3) compute the zero-mean vectors of smoothed stochastic DO coefficients f
(r)
kj1:K from (A9), where

f
(r)
kj1:K 5 ~f

(r)
kj1:K2

1

Nr
�
Nr

r51

~f
(r)
kj1:K , r5 1, 2, . . . , Nr ;

4) decrement k by 1 and go to step 1).
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the GMM–DO smoother to the ensemble Kalman

smoother (EnKS). Standardizing the filtering skill across

the two smoothers, we also compare the GMM–DO

smoother to a modified Gaussian smoother that uses

the GMM–DO filter in the filtering pass and the

EnKS during the backward-smoothing pass. This

low-dimensional example provides insight into how

the GMM–DO smoother operates in a nonlinear,

non-Gaussian setting and enables a direct comparison

with the GMM–DO filter results (Sondergaard and

Lermusiaux 2013b). It also sets the stage for the next

two higher-dimensional examples.

2) In the second test case (section 3), the GMM–DO

smoother is validated based on a passive tracer ad-

vected in a 2D reversible-shear flow field. This new

smoothing test case is innovative in itself because it is

one of the rare high-dimensional examples where the

exact smoothed probability density can be derived and

evaluated. This derivation is explained and the results

are utilized for quantitative benchmarking and valida-

tion of the GMM–DO smoother. Additionally, we

compare the GMM–DO smoother to the GMM–DO

ESSE, a composite smoother that uses the GMM–DO

filter in the forward pass and the Gaussian ESSE

smoother (Lermusiaux andRobinson 1999;Lermusiaux

1999a) in the backward pass.

3) In the final test case (section 4), we exemplify the

GMM–DO smoother using a more complex, simu-

lated ocean flow exiting a strait–estuary with dynamic

jets and eddies. As in 2), the GMM–DO smoother is

compared to the GMM–DO ESSE smoother.

For each test case, we study and quantify specific properties

of the GMM–DO smoother and its posterior probabilities.

We also stress its equation-based and dynamic characteris-

tics. Together, these three test cases may be used as com-

plementary benchmarks for Bayesian smoothing schemes

and also for new Bayesian filters.

In sections 2–4, we showcase the results of theGMM–DO

smoother and compare them to other smoothers. The

conclusions are provided in section 5. The smoothing

problem and the main equations are summarized in the

appendix. The notation is listed in Table 2. TheGMM–DO

smoother algorithm in RTS form is synthesized in Table 1.

2. Double-well stochastic diffusion experiment

In the double-well stochastic diffusion experiment, the

objective is to track the position of a particle forced by a

location-dependent ‘‘pseudo-gravity’’ and an external ad-

ditive white noise. This test case admits bimodal stationary

distributions and, hence, lends itself well to the assessment

of schemes that aim to capture non-Gaussian features. It

has been used to evaluate various filtering schemes

(Sondergaard and Lermusiaux 2013b, and references

therein); here, we utilize it to study different smoothers.

We first illustrate the GMM–DO smoother and con-

trast its performance with that of the GMM–DO filter

and the EnKS. Next, we compare the GMM–DO

smoother with amodified EnKS, which uses the GMM–

DO filter for forward filtering and the EnKS for back-

ward smoothing.

a. Experimental setup

The position of the particle, denoted by X(t; v)2R, is

governed by the nondimensional scalar stochastic dif-

ferential equation:

dX5 f (X)dt1 kdG(t;v),

f (X)5 4X2 4X3, G;N (�; 0, 1), (1)

where f acts as the pseudo-gravitational force and the

diffusion coefficient k ($0) controls the strength of the

stochastic excitation. We are given infrequent access to

direct, but noisy, measurements of the particle’s loca-

tion, modeled as

Y5X1Y, Y;N (y; 0,s2
0), (2)

that is, pYjX(y j x) 5 N (y; x, s2
0), and Y is the measure-

ment noise. Based on these observations, we wish to

infer the entire history of the particle’s location. We are

thus faced with a smoothing task.

The noise-free dynamics of the particle [i.e., (1) with

k 5 0] has three fixed points, each corresponding to a

root of the pseudo-gravity force f. The fixed points at

x521 and x5 1 are stable, while that at x5 0 is unstable.

Therefore, for k 5 0, the particle will eventually settle at

eitherx521orx521, assuming it is not releasedat x5 0.

For k 6¼ 0, the stochastic process (1) forms an ergodic

Markov chain and possesses a bimodal stationary dis-

tribution, well approximated by a GMM of complexity 2

(Sondergaard and Lermusiaux 2013b). The modes of this

distribution are located at x 5 61. The average time of

transition between the positive and negative wells (i.e., the

regions x. 0 and x, 0, respectively) depends on k. As k is

increased, the particle, on average, spends less time in any

well and transitions are more frequent (Eyink and Kim

2006). A crucial aspect of the estimation is whether a given

method can successfully track such transitions.

b. Test procedure

In this example, the DO methodology (A3) of di-

mension one captures the full state dynamics since

the state space is one-dimensional (X is a single

scalar). Our DO numerical solution is then equivalent
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TABLE 2. Table of notation.

Symbol Type Description

Scalars

t Time

v Experiment number

i 2 N Stochastic subspace index

j 2 N Mixture component index

n 2 N Dimension of spatial coordinate

NX 2 N Dimension of discrete state vector X(t; v)

Nobs 2 N Dimension of observation vector Y(t; v)

s 2 N Dimension of stochastic space

Nr 2 N No. of (Monte Carlo) realizations

M 2 N No. of mixture components

r 2{1,2, . . . ,Nr} Realization index

K 2 N No. of smoothing indices

k, l 2{1, 2, . . . ,K} Smoothing indices

tk 2 R Time at smoothing index k

p
j
k 2 R

1 jth component weight of the prior forecast GMM pdf, pFk jY1:k21

p̂ j
k 2 R

1 jth component weight of the posterior filtered GMM pdf, pFk jY1:k

X(r, t; v) 2 R Continuous stochastic field

x(r, t) 2 R Continuous mean field [mean of X(r, t; v)]
~xi(r, t) 2 R Continuous DO mode i: orthonormal basis for stochastic subspace

Fi(t; v) 2 R Stochastic coefficient i

f
(r)
i (t) 2 R Realization No. r of stochastic coefficient i

Vectors

r 2 R
n Spatial coordinate

F(t; v) 2 R
s Vector of stochastic coefficients, [F1(t; v), F2(t; v), . . . , Fs(t; v)]

T

Fk(v) 2 R
s Vector of stochastic coefficients at time tk

f(r)(t) 2 R
s Realization r of the vector of stochastic coefficients, [f

(r)
1 (t),f

(r)
2 (t), . . . ,f(r)

s (t)]T

f
(r)
k 2 R

s Realization r of the random vector of stochastic coefficients at time tk
X(t; v) 2 R

NX State vector [spatially discretized X(r, t; v)]

x(t) 2 R
NX Discrete mean field [mean of X(t; v)]

~xi(t) 2 R
NX Discrete DO mode i, forming the orthonormal basis for stochastic subspace

xj(t) 2 R
NX Mean vector of mixture component j in state space

x(r)(t) 2 R
NX Realization number r in state space

x
(r)
k 2 R

NX Realization number r in state space at time tk
mj(t) 2 R

s Mean vector of mixture component j in stochastic subspace

Y 2 R
Nobs Observation vector

y 2 R
Nobs Realization of observation vector Y

Y 2 R
Nobs Observation noise

y 2 R
Nobs Realization of observation noise

Ckj1:l Any random vector C(tk; v) conditioned on observations Y1:l

Ck,k11j1:l Vector formed by augmenting Ck11j1:l to Ckj1:l

Matrices

X 2 R
NX3s Matrix of orthonormal DO basis vectors [~x1, ~x2, . . . , ~xs]

P 2 R
NX3NX Covariance matrix in state space

§j 2 R
s3s Covariance matrix of mixture component j in the stochastic subspace

Pj 2 R
NX3NX Covariance matrix of mixture component j in the state space

R 2 R
Nobs3Nobs Covariance matrix of observation noise

H 2 R
Nobs3NX Observation matrix

Densities

pCk jY1:l The pdf of the vector C(tk; v) conditioned on observations Y1:l—filtering (k 5 l),

forecast (k . l), and smoothing (k , l)

pCk ,Cm jY1:l Joint pdf of vectors Ck and Cm conditioned on Y1:l

pCk jCk11,Y1:k The pdf of Ck, conditioned on both Ck11 and Y1:k
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to using a standard Monte Carlo method to solve (1) and

directly obtain the realizations of X(t; v). We nonetheless

continue using the terms GMM–DO filter andGMM–DO

smoother to describe the results, even though there is in

fact no DO dimension reduction.

For each realization (indexed by r), an Euler–

Maruyama scheme (Higham 2001) is used to discretize

(1) as follows:

x
(r)
k11 5 x

(r)
k 1 f (x

(r)
k )Dt1 ky

(r)
k

ffiffiffiffiffi
Dt

p
,

r5 1, 2, . . . ,N
r
, k5 0, 1, . . . ,K2 1, (3)

where x
(r)
k denotes the rth Monte Carlo realization of

X at time step k, Dt is the time-step size, and y
(r)
k is

white in time and is drawn from a standard normal

distribution.

In the results to follow, we set the number of realizations

as Nr 5 104. We focus on the case where k 5 0.5 and

s2
0 5 0.25. We then briefly summarize the effect of k and

s2
0. For a fair comparison, all the model runs are de-

terministically initialized (at time step k 5 0) as x
(r)
0 5 1,

r 5 1, 2, . . . , Nr; that is, all Monte Carlo realizations are

initially located at x5 1. Starting at (nondimensional) time

t5 0, the forward-filter pass of theGMM–DO smoother is

carried out until the final time t5 40, with a time stepDt5
0.01. Seven observations, equally spaced over time, arrive

between t 5 4 and 40. These observations are noisy mea-

surements drawn from a ‘‘true’’ solution that transitions

from the positive well to the negative well at time 20. This

transition is central in the present test.

c. Results and discussions

Recall that at the final assimilation time, the estimates

of the GMM–DO smoother and EnKS are equal to

those of their respective filters. Figure 1a compares the

results of the GMM–DO filter and the ensemble Kalman

filter (EnKF). Superimposed on the true solution,

we show the temporal mean (thick lines) and standard

deviation envelope (thin lines) for each filter. Also de-

picted are the noisy observations and their error bars.

We show only the mean and standard deviation of the

GMM–DO filter so as to enable a direct comparison to

the EnKF. Nonetheless, as we shall see shortly, the pdf

of the particle location is far from Gaussian, which the

GMM–DO equations capture. During the first three

assimilation cycles, we find that the GMM–DO filter and

EnKF successfully track the particle, as evident from

their temporal mean and standard deviation envelopes.

At t 5 20, the true particle transitions into the negative

well. Prior to assimilating the fourth observation

[marked as (i) in Fig. 1a], the GMM–DO filter assigns a

bimodal prior since several realizations are in the

negative well. After assimilation, the GMM–DO filter

assigns a larger weight to the negative Gaussian com-

ponent, thereby increasing the overall variance and de-

creasing its mean estimate. However, because of the

large observation error, neither filter means transitions

at this time. Following the fifth observation, the GMM–

DO filter transitions into the negative well by further

increasing the weight of the negative Gaussian. This

transition is confirmed as the filter reduces the variance

of its estimate after the sixth observation. However, the

EnKF fails to recognize the transition on account of its

strong Gaussian prior (centered at the positive well) and

the measurement noise, which is too large to force in-

dividual particles into the negative well.

Figure 1b depicts the results of the GMM–DO

smoother and the EnKS. The backward-smoothing pass

of the GMM–DO smoother is initialized as the solution

of the GMM–DO filter at the final time, t5 40. We find

that the smoother and filter solutions almost coincide

between t 5 34 and 40. The GMM–DO filter had de-

tected the transition of the particle at t 5 28 [marked as

(ii) in Fig. 1a], albeit with low confidence. The final two

observations strongly suggest that the particle remains

in the negative well; the smoother thus accounts for this

future information to estimate the past particle location

between t 5 28 and 34 with greater confidence than the

GMM–DO filter. Arguably, the most remarkable im-

provement in the estimate occurs between t5 16 and 28,

an interval that straddles the period where the particle

diffuses into the negative well. Figure 1b shows that the

GMM–DO smoother accurately captures this transition

within the standard deviation envelope. This improve-

ment arises because it balances the information from

the past observations (which repeatedly suggest that

the particle is located in the positive well) with those

in the future (which indicate that the transition has

taken place). The GMM–DO filter, in contrast, only de-

tected the transition at t 5 28, as it is oblivious to the

future observations. We also confirm that the obser-

vations that arrive at after the particle’s transition

provide little information about its history prior to the

transition. As a consequence, the GMM–DO smoother

solution within the time interval t 5 0–16 (i.e., prior to

the transition) is largely similar to that of the filter.

The EnKS does not detect the transition, although

its temporal mean increasingly aligns toward the

center. It is clear from Fig. 1a that the primary reason

for this is that the EnKS smoothing pass is initialized

from the underlying EnKF solution, most of whose

realizations are located in the positive well at t 5 40.

To compare the EnKS and GMM–DO smoother on an

equal footing, we evaluate the performance of the

GMM–DO–Filter–EnKS , a modified EnKS method

JULY 2017 LOLLA AND LERMUS IAUX 2767



FIG. 1. The double-well stochastic diffusion experiment. (a) A comparison of the GMM–DO

filter andEnKF.The time seriesof theparticle’s true location is shown ingreen.Themeanestimates of

theGMM–DOfilter and theEnKFalongwith their standarddeviationenvelopes aredepicted inblack

and gray, respectively. The instances highlighted as (i) and (ii) are discussed in section 2c. Even though

only the mean and standard deviation of the GMM–DO filter are plotted, the particle’s location

follows a far fromGaussian distribution, as depicted in Fig. 2. (b)A comparison of the performance of

the smoothers: GMM–DO smoother (black), EnKS (gray), and GMM–DO–Filter–EnKS (red). The

GMM–DO smoother successfully detects the transition of the particle within its standard deviation

envelope. Although having performed better than the EnKS, the GMM–DO–Filter–EnKS does not

satisfactorily detect the particle’s transition. The mean and standard deviation envelopes are depicted

so that the GMM–DO smoother and the two EnKSs can be directly compared.
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in which the filter pass is carried out using the GMM–

DO filter, in place of the EnKF. This ensures that the

filtering skill is common across both methods; the two

methods then differ only in their joint GMM-fitting

and backward-smoothing passes. We recall that in the

GMM-fitting pass, the GMM–DO smoother fits a

GMM to the joint intermediate realizations using the

EM–BIC criterion, whereas the GMM–DO–Filter–

EnKS fits a Gaussian distribution (GMM of com-

plexity M 5 1).

Figure 1b also compares the results of the GMM–

DO smoother and this GMM–DO–Filter–EnKS. The

solutions of the two smoothers coincide between t 5
34 and 40. This is because in this interval a majority of

realizations of the underlying GMM–DO filter are

located in the negative well. In the GMM-fitting pass,

it therefore suffices to use a Gaussian distribution to

fit the realizations of the particle location at any two

time instances in this interval (i.e., it suffices to use

M 5 1). A similar argument holds for the time in-

terval t 5 0–16. Between t 5 28 and 34, the GMM–

DO–Filter–EnKS increases its variance and its

improvement over the filter is marginal. The most

notable departure between the GMM–DO–Filter–

EnKS and GMM–DO smoother is observed between

t 5 16 and 28, which is the interval of the particle’s

transition. The GMM–DO–Filter–EnKS, despite

yielding a solution closer to the truth than the filter, is

outperformed by the GMM–DO smoother. We now

explain this superior performance by studying the

role played by the GMM fitting in the backward-

smoothing pass.

The panels in Fig. 2 show the ensemble members of

the GMM–DO filter at t 5 27.75 and 28. The samples

from the joint GMM are shown in Fig. 2b and the

corresponding scalar marginals in Fig. 2a. The planar

GMM fit of the joint samples is indicated by black-

colored ellipses in Fig. 2b and the corresponding

scalar marginals of the GMM fit are shown in Fig. 2a.

These figures clearly depict the bimodal nature of the

particle location, which is captured by the joint-GMM

fit. Only a small fraction of samples (about 1024),

depicted as round unshaded markers, diffuse across

into the opposite well between t 5 27.75 and 28. This

indicates a strong correlation between realizations in

any well; that is, given that a particle is located in a

certain well at t5 27.75, it is very likely to remain in the

same well at t 5 28, and vice versa. Figure 3 illustrates

how the smoothed distributions evolve from t 5 28 to

27.75 during the backward-smoothing passes of the

GMM–DO smoother (continuous black curve) and

GMM–DO–Filter–EnKS (continuous gray curve). We

notice that at t 5 28, a majority of samples of both

smoothers are located in the negative well, although

the samples of the GMM–DO–Filter–EnKS are more

spread out. The GMM–DO smoother, owing to the

joint-GMM fit of the filtered distributions, estimates

with high confidence that the particle is located in the

FIG. 2. A double-well stochastic diffusion experiment. Realizations and joint distributions of X(27.75; v)

and X(28; v). Specifically, their (a) single-time marginal and (b) two-time joint distribution. The samples

are shown in orange, while their GMM and Gaussian fits are, respectively, depicted in black and gray.

The particles that transition across wells are depicted in larger, unshaded orange circles. Also shown in

(a) is the handful of particle realizations that have transitioned across the two wells between times and

t 5 27.75 and 28.
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negative well at t5 27.75. In contrast, samples of the

GMM–DO–Filter–EnKS become more aligned to-

ward the positive well at t 5 27.75 because the joint

Gaussian fit of the filtered distributions is erroneously

concentrated at the positive wells (see the marginals).

This phenomenon becomes more pronounced over time

and eventually leads to a striking disparity in the GMM–

DOsmoother andGMM–DO–Filter–EnKS solutions (see

Fig. 1b).

The results discussed so far consider the effect of all

seven observations on estimating the particle history.

Figure 4 shows the results of the GMM–DO smoother,

executed directly as soon as observations arrive through

time. For the first three observations (not shown), the

smoother and filter solutions are identical. The fourth

observation at t 5 24 contradicts the smoother’s strong

belief that the particle is located in the positive well.

Consequently, the smoother only slightly aligns its esti-

mate toward the negative well. The fifth observation is

in line with the fourth, and provides more evidence

of a transition. Accounting for this information, the

smoother retrospectively improves the statistics of the

transition. The variance of the smoother’s estimate of

the transition is reduced after the sixth observation is

assimilated.

If the observations are sparser or noisier, or if the

model noise (k) is large, the differential between the

estimates of the GMM–DO smoother and Gaussian

smoothers increases. This confirms the filter results of

Sondergaard and Lermusiaux (2013b), in that schemes

FIG. 3. Double-well stochastic diffusion experiment. An analysis of the GMM–DO smoother

and the GMM–DO–Filter–EnKS distributions during the backward-smoothing pass. Owing to

its Gaussian fit of the joint filtered distribution of X(27.75; v) and X(28; v), the GMM–DO–

Filter–EnKS estimate erroneously drifts toward the positive well.
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that accurately capture the pdfs are especially needed

when data are sparse or noisy, which is common in oce-

anic and atmospheric studies. As such, if the nonlinear

deterministic model is accurate (i.e., low model noise),

rigorous non-Gaussian state distributions are crucial: er-

roneous or ad hoc approximations then severely un-

dermine the smoothers. On the other hand, when the

model uncertainty is Gaussian and large, then aGaussian

smoother suffices (Lolla 2016). Nonetheless, a key ad-

vantage of theGMM–DO smoother is that it adapts to all

of these situations as they occur.

3. Passive tracer advection in a swirl flow

Wenow consider the passive advection of a tracer by a

divergence-free, deformational flow in a unit square

basin. Such test cases are often used to evaluate nu-

merical schemes [e.g., for flux limiters, see Durran

(1999)]. Here, we employ this test case because it ad-

mits an exact non-Gaussian smoothed solution (i.e., the

Bayesian posterior) and thus allows a validation of the

GMM–DO smoother. First, we show how to calculate

such exact smoothed distributions for a certain class of

reversible dynamical systems. Second, we evaluate the

GMM–DO smoother by comparison with this exact

smoothed solution. Finally, we compare the GMM–DO

smoother results with these of the GMM–DO ESSE

subspace smoother, a composite Gaussian smoother

that uses the final GMM–DO filter estimate to initialize

the backward ESSE smoother pass. In this scheme,

the forward-filtering pass is thus performed using the

GMM–DO filter. However, during the joint-GMM fit-

ting pass, a mixture complexity of M 5 1 is enforced, so

as to fit aGaussian to the joint subspace coefficients. The

ESSE backward-smoothing pass is thus as that of the

GMM–DO smoother but with M 5 1. We note that if

the EnKS is used instead, results are similar, but the

EnKS is much more expensive than this GMM–DO

ESSE since it uses a backward update for each of the

realizations (here, Nr 5 10 000 of them, as we will see)

FIG. 4. Double-well stochastic diffusion experiment. The various panels depict the results of the GMM–DO smoother executed as and

when observations arrive over time.
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while the GMM–DO ESSE and GMM–DO smoothers

only employ a single update directly on their distribu-

tions. Next, we start by describing the test case and its

numerical schemes. As in section 2, we then simulate

a true solution over a suitable time window and re-

construct the tracer’s evolution based on noisy, in-

termittent observations of the true solution.

a. Experimental setup and test procedure

Weaim to track the concentration of a tracer, denoted by

X(r, t; v), defined inside the unit square basin [0, 1]2. It is

governed by the following advection equation:

›X(r, t;v)

›t
1 v � =

r
X(r, t;v)5 0,

r5 (r
x
, r

y
) 2 (0, 1)2, 0, t, 1, (4)

where v 5 (yx, yy) denotes the flow field. We use the

following analytical form for v:

y
x
5 sin2(pr

x
) sin(2pr

y
),

y
y
52sin2(pr

y
) sin(2pr

x
) . (5)

This v, modified from Durran (1999), represents a

counterclockwise-rotating flow, centered at (0.5, 0.5): it

is divergence free and vanishes at the domain bound-

aries. As a consequence, the tracer is transported within,

and confined to the interior of the basin. The dynamics

in (4) of the tracer are noise free; that is, there is no

model noise in this test case. The uncertainty inX arises

only through the initial conditions, and is deterministically

evolved in accordance with (4).

1) INITIAL CONDITIONS

The initial tracer concentration is stochastic and is

given by

X(r, 0;v)5
1

2
f11 cos[pD(r;v)]g , (6)

where

D(r;v)5max[0, 12 4kr2R
c
(v)k],

R
c
(v);N

 
� ;
"
0:5

0:5

#
,

"
0:0625 0

0 0:0625

#!
. (7)

The random variable Rc(v) generates a distribution of

the initial tracer concentration X(r, 0; v). For each

realization r(r)c of Rc(v), the corresponding realization

of the initial tracer is unity everywhere except in the

interior of a circular disk of radius 0.25 centered at r(r)c .

Inside the disk, the concentration is radially symmetric,

with a minima at r(r)c . The flow field v(r, t) and the initial

tracer concentration are depicted in Fig. 5. In the double-

well example (section 2), the goal was to estimate the

particle’s location, a scalar quantity. Consequently, we

could afford to use the direct Monte Carlo method to

evolve the state pdf. However, in the present example,

the state vector is much larger; it has NX 5 104 compo-

nents, where NX is the number of grid points used in the

spatial discretization. Hence, we employ the DO meth-

odology to evolve the pdf of (4).

2) DO EQUATIONS FOR STOCHASTIC TRACER

ADVECTION

The stochastic tracer concentration, at any time t, is

represented by the DO decomposition,

X(r, t;v)5 x(r, t)1 �
s

i51

F
i
(t;v)~x

i
(r, t).

The DO equations in (16) for this system take the

following form:

›x(r, t)

›t
1 v � =

r
x5 0, (8a)

›~x
i
(r, t)

›t
1 v � =

r
~x
i
2 �

s

j51

hv � =
r
~x
i
, ~x

j
i~x

j
5 0, and (8b)

dF
i
(t;v)

dt
1 �

s

j51

hv � =
r
~x
j
, ~x

i
iF

j
(t;v)5 0. (8c)

3) INITIALIZATION OF DO DECOMPOSITION

Let the vectors X(t; v), x(t), and ~xi(t) 2 R
NX denote the

spatially discretized fields of X(r, t; v), x(r, t), and ~xi(r, t),

respectively. We first construct the realizations x(r) 2 R
NX

of the discretized initial tracer concentration X(0; v) by

drawing independent samples r(r)c , and transforming them in

accordance with (7) and (6).

d The mean vector, x(t), is set to the average of all the

realizations x(r)(0) [i.e., x(0)5 (1/Nr)�Nr

r51x
(r)(0)].

d For i 5 1 2, . . . , s, the orthonormal mode vec-

tors ~xi(0) are set to be the s leading eigenvectors

of the sample covariance matrix C, given by

C5 1/(Nr 2 1)�Nr

r51[x
(r)(0)2x(0)][x(r)(0)2x(0)]T.

d The ensemble members f
(r)
i (t) of the stochastic co-

efficients Fi(t; v) are initialized as

f
(r)
i (0)5 ~xTi (0)3 [x(r)(0)2 x(0)],

i5 1, 2, . . . , s, r5 1, 2, . . . ,N
r
. (9)

The sample mean of the stochastic coefficients thus

generated is zero. Typically, the number of realizations
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FIG. 5. Passive tracer advection in swirl flow. Time evolution of the mean tracer field x(r, t) estimated by the GMM–DO filter,

displayed alongside the true tracer field. The difference between the posterior mean field and the truth is also shown. The swirl flow

is depicted by its streamlines, and the stationary sensors are indicated by white markers.

JULY 2017 LOLLA AND LERMUS IAUX 2773



Nr, is much larger than s such that the dynamic structure

of the pdf within the evolving subspace may be accu-

rately represented. In all the results presented here, we

use s 5 20 modes and Nr 5 104 ensemble members in

the DO decomposition.

4) TRUE SOLUTION AND OBSERVATION MODEL

We initialize the true tracer concentration in an

unbiased manner using a random sample rtruec drawn

from the initial distribution of Rc(v), given by (7). In

this case, the sample equals rtruec 5 (0.43, 0.31). Hence, the

true concentration is initially unity everywhere except

within a disk centered at rtruec . The significant initial error,

shown in the first row in Fig. 5, is representative of data

assimilation in common sea exercises, where the initial

mean estimate can be quite far from the true solution

(Lermusiaux et al. 2006; Haley et al. 2009; Ramp et al.

2009). The true field is evolved deterministically forward

using (4).

We make four sets of observations (K5 4) of the tracer

concentration, at times 0.25, 0.50, 0.75, and 1, through four

stationary sensors, located at f(0.7, 0.05), (0.5, 0.7), (0.3, 0.5),
(0.5, 0.3)g. The observation noises are set to be independent,
both across sensors and through time, and of zero-mean

Gaussian with variance s2
0 5 0:08. This variance is about

twice as large as the variance in the tracer field expected at

the measurement locations at time 0.25, the time of the first

assimilation.

5) NUMERICAL METHOD

We solve the DO equations in (8) using a modular

finite-volume framework. The geometry is discretized

using a uniform, staggeredC grid of 100 elements in each

direction. The advection operator is discretized using a total

variation diminishing (TVD) scheme with a monotonized

central limiter (Van Leer 1977). A first-order forward

Euler method is used to evolve themean x and themodes

~xi, and a four-stage Runge–Kutta scheme is employed

for the stochastic coefficients (Fi). A time step of 53 1024

is used, satisfying the Courant–Friedrichs–Lewy (CFL)

condition.

b. Validation of GMM–DO smoother: Computing
the exact smoothed solution

In this Bayesian setting, the skill of the GMM–DO

smoother should be judged based on how close the pdf

of the smoother estimate is to that of the exact smoothed

pdf.We now obtain this exact smoothed pdf. First, recall

from Lolla and Lermusiaux (2017) that the smoothed

state-space distribution pXkjY1:K is governed by the re-

cursive smoothing equation:

p
XkjY1:K

(x
k
j y

1:K
)5

ð
p
Xk jXk11,Y1:K

(x
k
j x

k11
, y

1:K
)

3p
Xk11jY1:K

(x
k11

j y
1:K

) dx
k11

.

(10)

A sample from this pdf may be drawn as follows:

x
(r)
kj1:K ; p

XkjXk11,Y1:k
(� j x(r)

k11j1:K , y1:k),

where x
(r)
k11j1:K ; p

Xk11jY1:K
(� j y

1:K
) . (11)

Thus, given a set of samples of the smoothed state

Xk11j1:K, one can use (11) to march backward in time

and obtain the corresponding samples of Xkj1:K. As

discussed in Lolla and Lermusiaux (2017), the condi-

tional distribution pXkjXk11,Y1:k is not available in closed

form for irreversible dynamical systems and nonlinear

systems where the dynamics operator cannot be in-

verted analytically. However, pXkjXk11,Y1:k can be eval-

uated here since the dynamics in (4) is reversible. To

see this, let Lk11
k denote the discrete operator that

maps Xk to Xk11; that is, Xk11 5Lk11
k (Xk). Although not

known in closed form, Lk11
k is implicitly given by the nu-

merical solution of (4) from tk to tk11. Furthermore, since

the tracer advection is deterministic, the conditional pdf

pXk11jXk
(� j xk) is a Dirac delta distribution centered at

Lk11
k (xk); namely,pXk11jXk

(xk11 j xk)5 d[xk11 2Lk11
k (xk)].

Since the dynamics in (4) is a passive advection, the

operator Lk11
k is a bijective map between Xk and Xk11.

In other words, given a realization xk11 of the discrete

stochastic tracer fieldXk11, there exists a unique vector

xk such that Lk11
k (xk)5 xk11. The position of each fluid

parcel at time tk11 may be traced back to its corre-

sponding location at tk by simply reversing the flow.

As a consequence, the inverse of Lk11
k (hereafter de-

noted by Lk
k11) exists, and is obtained by reversing the

flow in (4), that is, replacing vwith2v. Mathematically,

this is also equivalent to reversing time in (4). More-

over, since the time-reversed dynamics are also noise

free, we obtain pXkjXk11
(xk j xk11)5 d[xk 2Lk

k11(xk11)].

Similar to Lk11
k (xk), the inverse map Lk

k11(xk11) is

evaluated numerically [i.e., running (4) backward in

time]. Now, using Bayes’s theorem and the Markov

property to rewrite pXkjXk11,Y1:k(� j x(r)k11j1:K, y1:k), we

obtain

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)

} p
Y1:kjXk

(y
1:k

j x
k
)p

XkjXk11
(x

k
j x(r)

k11j1:K)

5 p
Y1:kjXk

(y
1:k

j x
k
)d[x

k
2Lk

k11(x
(r)
k11j1:K)] .
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The Dirac delta pdf d[xk 2Lk
k11(x

(r)
k11j1:K)] van-

ishes for all xk 6¼ Lk
k11[x

(r)
k11j1:K]. Thus, as long as the

likelihood pY1:kjXk
(y1:k j xk) is finite for such xk,

pXkjXk11,Y1:k(xk j x(r)k11j1:K, y1:k) must also vanish. Since

Lk
k11[x

(r)
k11j1:K] is uniquely defined, using the fact that

pXkjXk11,Y1:k(xk j x(r)k11j1:K, y1:k) must integrate to unity,

we obtain

p
XkjXk11,Y1:k

5 d[x
k
2Lk

k11[x
(r)
k11j1:K]] .

Therefore, from (11), x
(r)
kj1:K 5Lk

k11[x
(r)
k11j1:K]. In other

words, samples of Xkj1:K may be obtained by evolving

the samples of Xk11j1:K backward in time in accor-

dance with (4). Presently, since we use the DO

methodology to predict pdfs, the exact smoothed pdf

is obtained by solving the DO equations in (8) back-

ward in time, starting from the filtered solution XKj1:K
at the final assimilation time tk 5 1. For a fair evalu-

ation of the smoothing skill, we use the GMM–DO

filter estimate of XKj1:K to initialize the backward pass

of the GMM–DO smoother and of the GMM–DO

ESSE smoother, as well as the computation of the

exact smoothed pdf.

It is important to note that this approach of reversing

time is only applicable to dynamical systems that are

reversible, and numerically stable upon reversing time.

In the present case, the advection operator remains

numerically stable upon reversing v, since the time-

reversed dynamics are well posed. However, this prop-

erty does not hold for general nonlinear dynamical

systems. For example, a fluid flow governed by the vis-

cous Navier–Stokes equations is not reversible. In fact,

the time-reversed dynamics are ill-posed and, as a con-

sequence, its numerical solution becomes unstable. The

present example was specifically chosen so as to high-

light this time-reversal property and we use it to de-

termine the exact smoothed solution.

c. Results and discussion

Figure 5 depicts the evolution of the true tracer

concentration field, the mean field of the GMM–DO

filter estimate (both prior and posterior), and the dif-

ference between the posterior mean and the true field.

At t 5 0, the true solution is uniform everywhere ex-

cept in the interior of a disk of radius 0.25 centered

at rtruec 5 (0.43, 0.31). The initial mean field of the

GMM–DO filter is largely uniform as a result of the

distribution of Rc. Thus, the largest initial difference is

observed within the interior of this disk. Because of the

shear flow, the true tracer distribution becomes in-

creasingly deformed, appearing as a long thin arc at t5 1,

the end of the simulation. As observations are as-

similated over time, the GMM–DO filter’s mean

estimate improves, as indicated by the magnitudes in

the difference plots. The largest mean innovations

(posterior mean minus prior mean) and error re-

ductions occur during the second assimilation t 5 0.5)

because the sensor location then samples the patch of

low values (note that since only advection is present,

the sign and magnitude of the tracer is arbitrary).

Subsequently, the fourth and third assimilations are

still informative because two sensor locations surround

the now-elongated patch of low values. By the end of

the run (t 5 1), the filter mean bears a strong visual

resemblance to the truth.

The normalized RMS difference between the filter

mean and true tracer field is plotted and is shown later

(Fig. 9a). It quantifies the error reduction in the means

shown in Fig. 5. We note that the RMS difference re-

mains constant between successive assimilation times.

This happens because the flow v is nondivergent and

vanishes at the boundaries. Additionally, the tracer dy-

namics are purely advection based and does not contain

any source of randomness. As a consequence, the un-

certainty does not grow or decay with time. Over the

course of the entire simulation, the RMS error of the

GMM–DO filter mean estimate reduces from 18% at

t5 0 to 6% at t5 1. Note that here these errors contain a

component due to the filter approximation but also a

large component due to the initial mean error and the

limited observations (see Fig. 5, first row): the exact

Bayesian filter solution does not have a mean equal to

the truth right away either.

In Fig. 6, we depict the evolution of the first three

modes (~xi, for i 5 1, 2, 3) and the marginal pdfs of their

respective stochastic coefficients (Fi). The prior pdfs are

shown by dotted lines whereas the posterior pdfs are

depicted by solid lines. We observe that the stochastic

coefficients are composed of several far-from-Gaussian

features. The updates of the GMM–DO filter capture

these features by optimally adjusting the mixture com-

plexity (M). Furthermore, the GMM fitting and analysis

is performed in the low-dimensional subspace spanned

by the modes ~xi. We can also observe that upon assim-

ilation, the spread of the stochastic coefficients is re-

duced, as their pdfs become taller and thinner. This

indicates that theGMM–DOfilter becomes increasingly

confident in its estimate of the true tracer concentration

over time. As expected, the pattern of time evolution of

the modes is synchronous to the flow magnitude and

direction. The flow field in (5) vanishes at the domain

center (0.5, 0.5) and at the edges. Since the dynamics in

(4) are advection driven, the modes at these locations do

not evolve with time. At other locations, the modes

evolve in an axisymmetric fashion, with a speed de-

pending on the magnitude of the swirl flow at that
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location. In particular, the third mode ~x3(r, t) is initially

axisymmetric (up to roundoff), and hence the term

v � =r~x3 is close to zero. Thus, (8b) implies that the rate of

change of ~x3 is also small. Hence, ~x3 remains axisym-

metric with time.

Next, the joint GMM-fitting pass of filtered states

and the backward-smoothing pass are completed,

starting from the filtered solution at t 5 1. The exact

smoothed pdf is obtained by solving the DO equa-

tions in (8) backward in time, from t 5 1, until t 5 0.

Figure 7 compares the mean tracer field of the GMM–

DO smoother with the exact smoothed mean at the

four assimilation times. The difference between the

GMM–DO smoother mean and the true smoothed

mean are also shown. We observe that the mean field

of the GMM–DO smoother closely matches that of

the exact smoothed pdf at all times. The largest errors

again occur close to the deformed disk. Ignoring nu-

merical errors in the calculation of the true smoothed

mean (e.g., due to numerical diffusion), the differ-

ences in the fields arise only because of the joint-

GMM fitting and the finite number of samples used to

represent the smoothed stochastic coefficients. Later,

we show the normalized RMS error between these

mean field quantities (Fig. 9b). At the final time, t5 1,

the normalized RMS error is zero because the GMM–

DO backward-smoothing pass and exact smoothed

solution are each initialized with the GMM–DO filter

solution. As we approach t 5 0, the GMM–DO

smoother mean begins to slightly depart from the

exact smoothed mean, owing to the imperfect joint

subspace GMMfits and also to the imperfect DO filter

FIG. 6. Passive tracer advection in swirl flow. Time evolution of the first three DO modes ~xi(r, t) of the GMM–DO filter, displayed

alongside the kernel density estimates of the correspondingmarginal pdfs ofFi(t;v). The prior pdfs are shown as dotted lines, while posterior

pdfs are depicted as solid lines.
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modes and coefficients at final time t 5 1 (the initial

conditions of the GMM–DO smoothing). Neverthe-

less, the GMM–DO smoother mean remains within

1% of the exact smoothed mean throughout the

simulation time window.

Figure 8 compares the first three modes and marginal

pdfs of the stochastic coefficients of the GMM–DO

smoother (shown in blue) to those of the exact smoothed

solution (shown in black), at t 5 0.75, 0.5, 0.25, and 0.

Also shown (in gray) are the marginal pdfs of the co-

efficients when the Gaussian ESSE smoother updates

are used in the backward pass. It is clear that both sets of

modes are in very good agreement with each other at the

times shown.We observe that at t5 0.75, theGMM–DO

FIG. 7. Passive tracer advection in swirl flow. Time evolution of the mean tracer field estimated by the

GMM–DO smoother plotted alongside the corresponding exact smoothed mean field. The exact smoothed

mean is computed by reversing the flow from the final filtered solution. The error in the smoother mean is also

depicted.
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smoother pdfsmatch those of the exact solution. The pdf

of the first coefficient is well captured by GMM–DO

ESSE, but differences are noticeable in the second and

third coefficients, where the non-Gaussian features are

apparent. As the schemes march farther back in time,

the discrepancies between the GMM–DO ESSE and

GMM–DO smoother pdfs grow larger. The Gaussian

smoother diffuses the pdfs, thereby losing its non-

Gaussian features. In contrast, the pdfs of the GMM–

DO smoother coefficients and the exact solution match

closely at all times. Finally, although we have only

shown the first three modes here, the marginal pdfs of

the remaining modes are also very similar. This implies

that the GMM–DO smoother accurately captures not

FIG. 8. Passive tracer advection in swirl flow. Time evolution of the first three modes and the marginal pdfs of their respective

stochastic coefficients (blue) during the backward-smoothing pass of the GMM–DO smoother. The marginal pdfs shown in black

correspond to the stochastic coefficients of the exact smoothed tracer field (they almost overlap with these of the GMM–DO

smoother). The marginal pdf estimates from the GMM–DO ESSE smoother are depicted in gray (they become more and more

Gaussian as time decays).
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just the mean field (Fig. 9), but also the exact smoothed

pdf of the state vector. This completes its stochastic

validation.

4. Sudden expansion flows

We now examine the performance of the GMM–DO

smoother in more complex, high-dimensional dynamics,

consisting of variable jets and eddies. Specifically, we con-

sider two-dimensional sudden expansion flows (Fearn

et al. 1990). Such flows are quite common in the coastal

ocean. They occur when a uniform barotropic jet exits a

narrow strait or estuary, leading to meander and vortex

generation as the jet exits the constriction. These circu-

lation features are highly variable: the number of vortices,

their locations, the strength of the jet, and its meanders

are all time-varying quantities, leading to nonstationary

distributions.

This dynamical system was utilized in Sondergaard

and Lermusiaux (2013b) to test and evaluate the GMM–

DO filter. Here, we contrast the GMM–DO smoother

against the GMM–DO ESSE scheme, as in the previous

passive tracer advection in section 3. As in the previous

two examples, the true solution is generated by drawing a

random sample from the stochastic initial conditions and

evolving the sample deterministically. Interestingly, this

third example develops dynamic multimodal statistics as-

sociated with the breaking of flow symmetries at moderate

to largeReynolds numbers.Hence, it is an ideal irreversible

test to evaluate the GMM–DO smoother, which aims to

capture and retain such non-Gaussian features backward in

time. Overall, this example demonstrates the applicability

of the GMM–DO smoother in practical high-dimensional

dynamical systems. Next, we describe the experimental

setup and test procedure, and then we discuss the results.

a. Experimental setup and test procedure

Figure 10 shows the schematic setup of the 2D sudden

expansion test case. A uniform, horizontal flow of non-

dimensional speed U 5 1 enters a narrow conduit of

widthh5 1/3 at the far-left end of the domain. It develops

into a steady, parabolic flow, attaining a maximum speed

Umax 5 1.5 at the center line. At x 5 3, the flow reaches

the abrupt expansion into a channel of larger width. The

flow exits the channel at the right end of the domain,

L 5 20 units downstream of the expansion.

The flow behavior closely depends on the Reynolds

number (Re). For low Re, the flow remains steady and

symmetric about the centerline, with recirculation zones

appearing at the corners of the expansion (Durst et al.

1974). At larger Re, the flow downstream of the expan-

sion develops asymmetry and exhibits vortex shedding,

which can either be steady or unsteady.Here, we consider

an intermediate value of Re 5 250, at which we expect

the symmetric inlet flow to break toward one side of the

centerline, depending on the initial perturbations (see

Fig. 11a for an illustration of the flow field). Farther

downstream, a second region of circulation forces the

FIG. 9. Passive tracer advection in swirl flow. (a) Normalized RMS error between the mean estimates of the

GMM–DO filter (dashed black), the GMM–DO smoother (solid black), the GMM–DO ESSE smoother (solid

gray), and the true tracer field.We see that the smoothermeans aremuch closer to the truth than the filtermean. (b)

Normalized RMS error between the smoother means (GMM–DO smoother, solid black; GMM–DO ESSE

smoother, solid gray) and the exact smoothed mean, computed by reversing the flow from the final-time filter

solution (this is not the true tracer field). The GMM–DO smoother error remains less than 1% during the entire

simulation window.
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flow to the opposite side before symmetry is eventually

restored (Sondergaard and Lermusiaux 2013b).

The flow is governed by the incompressible Navier–

Stokes equations without source terms. The corre-

sponding DO equations in (16) are solved to forecast

the uncertainties, with the specifics as described in

Ueckermann et al. (2013). The state vector X(t; v)

consists of the spatially discretized x and y components

of the flow field. In this example, uncertainty arises only

through the stochastic initial conditions.

1) INITIALIZATION OF DO DECOMPOSITION

The DO initialization employed here is simple and

inspired by the multiscale multivariate initialization of

ESSE simulations used for real-time regional ocean

probabilistic predictions (Lermusiaux et al. 2000;

Lermusiaux 2002).

d Mean vector x(0): the x component of the mean field

velocity is initialized to 1 everywhere in the inlet and

to 1/3 in the channel so as to satisfy continuity. The y

component of the mean flow is initialized to zero

everywhere.
d Modes ~xi(0): following (Sapsis and Lermusiaux 2009;

Sondergaard and Lermusiaux 2013b), the orthonor-

mal modes of the streamfunction are generated by

retaining the dominant singular vectors of the corre-

lation operator C(�, �), defined by

C(r
1
, r

2
)5M(r

1
, r

2
)~C(kr

1
2 r

2
k
2
) , (12)

where jj�jj2 denotes the L2 norm, M is a mollifier

function that is unity everywhere except near solid

boundaries, at which it vanishes smoothly. In addition,
~C(r) takes the form

~C(r)5

�
11 r1

r2

3

�
exp(2r) . (13)

We initialize the stochastic subspace by retaining the

20 most dominant eigenvectors of C; that is, we use

s 5 20.

d Stochastic coefficients Fi(0; v): for 1 # i # 20, the

coefficients are initialized as uncorrelated, zero-mean

normal random variables, with variance proportional

to the corresponding eigenvalue of the correlation

operator defined in (12). We generate Nr 5 10,000

subspace realizations f
(r)
i of Fi and solve (A3c) in a

particle-wise manner. We use Nr � s so as to

accurately capture the dynamic structure of the pdf

in the evolving subspace.

2) TRUE SOLUTION AND OBSERVATIONAL MODEL

We initialize the true solution by drawing an arbitrary

field according to the aforementioned initial pdf. We

then propagate this sample forward in time using the

deterministic Navier–Stokes equations for a total time

of T 5 70.

Wemake a total of four sets of noisy measurements of

the x and y components of the true flow field at t5 40, 50,

60, and 70. The measurements are provided by six sta-

tionary sensors, placed at locations indicated in Fig. 10.

Their measurement noises are independent and of zero-

mean Gaussian distribution with variance of s2
0 5 0:1.

As with the tracer advection example, this variance is

about as large as the predicted variance in the flow field

at the first assimilation time. Conditioned on these noisy

data, we wish to compute the smoothed pdf of the

flow field.

3) NUMERICAL METHOD

We numerically solve the Navier–Stokes DO

equations using a finite-volume method (Ueckermann

et al. 2013). The sudden expansion geometry is dis-

cretized onto a uniform structured grid of 50 3 30

nodes in the x and y directions, respectively. Thus,

NX 5 3000, since we solve for both the x and y velocity

components (numerically, note we also solve for

pressure). The diffusion operator is discretized a using

second-order central differencing scheme. The ad-

vection operator makes use of a TVD scheme with a

monotonized central limiter. The modes are evolved

using a first-order semi-implicit projection method,

FIG. 10. Sudden expansion flow setup. Six sensors located at (xobs, yobs)5 f(6, 0.25), (6, 0.5),
(6, 0.75), (8, 0.25). (8, 0.5), (8, 0.75)g.
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FIG. 11. Sudden expansion flow. The time evolution of (a) true flow field; (b) the prior GMM–DO filter mean field;

(c) the posterior GMM–DO filter mean field (when available); (d),(f) the first two modes of the GMM–DO filter; and

(e),(g) the marginal distributions of the corresponding stochastic coefficients (prior, dotted; posterior, solid).
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where the diffusion and pressure terms are treated

implicitly, and advection is treated explicitly. A time

step of 0.025 is used, satisfying the CFL condition. The

stochastic coefficients are integrated in time using a

four-stage Runge–Kutta scheme. As shown in Fig. 10,

no-slip boundary conditions are used at all the solid

boundaries. At the open outlet, we impose a zero

Neumann boundary condition for both components of

the velocity. Across the inlet, we impose a uniform

horizontal velocity of 1.

b. Results and discussion

Though the circulation features observed in this

example are highly dynamic, we mainly focus on the

results at t 5 20, 40, 50, 60, and 70, which show

snapshots of the DO evolution at three intermediate

assimilation times, and the final time. At each of

these times, Figs. 11 and 12 depict the true solution in

panel a; the prior mean field in panel b; the posterior

mean field (only shown at assimilation times) in

panel c; the two most dominant modes, ~x1, ~x2, in

panels (d) and (f), respectively; and the marginal

filtered pdfs of their stochastic coefficients F1, F2, in

panels (e) and (g), respectively. The dotted and solid

curves represent the prior and posterior marginal

pdfs, respectively. All fluid flows are shown by

streamlines overlaid onto a color map of velocity

magnitude.

Figure 11 illustrates the GMM–DO filter pass, show-

ing how the flow and uncertainties evolve and ultimately

settle. At t 5 20, the initial perturbations in the true

solution have already broken the symmetry of the flow,

whereas the DO mean field forecast remains symmetric

as no data have been assimilated. For F1, we attain a

bimodal distribution, where each mode corresponds to a

direction in which the sudden expansion flowmay break.

However, F2 remains unimodal at this time, not having

evolved much from its Gaussian initialization. None-

theless, the variances of bothF1 andF2 grow from their

initial values, reflecting the increase in uncertainty over

time. The modes ~x1 and ~x2 also remain symmetric since

no observations have been assimilated so far. Before the

first assimilation at t5 40, the DOmean field forecast is

still symmetric and therefore substantially different

from the truth. Similarly, the modes are also symmetric

at this time. However,F2 now starts to develop bimodal

structures, indicating the possible secondary bifurca-

tions of weaker downstream eddies at x 5 9. After the

assimilation at t 5 40, the mean field shows a marked

improvement, correctly identifying the direction of the

flow breakage. This is confirmed by the normalized

RMS difference between theGMM–DOfilter mean and

the true solution shown in Fig. 13a. The posterior

coefficients remain far from Gaussian, but have a lower

variance than their corresponding priors, suggesting a

greater confidence in the estimate. Evolved forward in

time, the posterior mean field breaks the symmetry of

the modes at t5 50, and the uncertainty is largely at the

edges of the main jet. Additionally, the eddies on either

side of the main jet grow between t 5 40 and t 5 50.

During t 5 50–60, the meander around x 5 12 evolves

farther downstream. However, this evolution is also

uncertain, as indicated by the widening shapes in ~x2
during this time interval. Additionally, the prior filter

mean closely resembles the corresponding true field.

Subsequent assimilations continue to further reduce

the RMS difference (see Fig. 13a). The tall, thin mar-

ginal pdfs of F2 indicate that the stochastic energy of

the second mode has almost completely evanesced,

leaving the first mode to be the main contributor of

uncertainty.Moreover, at t5 60, the posterior pdf ofF1

exhibits similar levels of variance as the prior, in-

dicating that the variance of the prior is now much

smaller than that of the observation noise projected

onto the first mode. This is further evidenced by the

modest improvement in the RMS difference achieved

by the assimilation at t5 60 (see Fig. 13a). At the end of

the forward-filter pass (t 5 70), the RMS difference

between the mean and the truth is down to 6%, from

a value of 25% prior to the first assimilation. The

GMM–DO filter correctly forecasts that its final t 5 70

estimate (Fig. 12) has accurately captured the true so-

lution: the prior variances of F1 and F2 are indeed

much reduced.

Figure 14 depicts the results of the joint subspace

GMM-fitting pass, at t 5 39 and t 5 40 (i.e., imme-

diately prior to the first assimilation) for the two

most dominant modes. The individual realizations

f
(r)
1 and f

(r)
2 , r 5 1, 2, . . . , Nr, are shown in orange, in

the form of a scatterplot. Based on the BIC criterion,

we determine the optimal mixture complexity to be

M 5 16. We display the one standard deviation

contours of the mixture components (shown in

black) marginalized across pairs of coefficients (2D

joint pdfs). We further project the optimal GMM

onto the domain of each coefficient, thus obtaining

their respective 1D marginal pdfs (also shown in

black). The kernel density estimate of the marginal

pdfs (shown in blue) are also plotted for comparison.

Finally, we also show, in gray, the pairwise-joint and

marginal pdfs obtained by a multivariate Gaussian fit

of the joint subspace coefficients (i.e., the GMM

with a forced mixture complexity of M 5 1). It is

clear that the joint-GMM fit successfully captures

the complex, multimodal characteristics of the sto-

chastic coefficients. In particular, the 2D projections
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of the GMM identify the localized regions in the

subspace that dynamical realizations visit most, and

the 1D GMM marginals differ little from their re-

spective kernel density estimates. On the other hand, the

Gaussian fit results in a severe loss of dynamical in-

formation as it cannot capture the multimodal struc-

ture of the pdfs. Of further interest is the shape of the

joint pdf of the stochastic coefficients across time. We

observe that the joint pdf of F1(39) and F1(40) takes

on an elongated shape, with a majority of realizations

concentrated at the two extremes. This shape can be

primarily attributed to the noise-free dynamics of the

fluid flow, coupled with the fact that the two times are

not far enough apart for the dynamics to spread the

samples farther out. We remark that it is this joint pdf

of coefficients across time that enables smoothing.

FIG. 12. Sudden expansion flow. The GMM–DO filter estimates at the final time, t5 70. The

description of individual panels is the same as in Fig. 11. This final filter solution is used to

initialize the backward-smoothing pass of the GMM–DO smoother.
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Consequently, it is crucial to accurately represent this

pdf. We see that the GMM captures it, whereas the

Gaussian fit puts too much weight toward the center

and is, consequently, detrimental to the smoother’s

performance.

We illustrate the results of the backward-smoothing

pass, at t 5 60, 50, 40, and 20 (as in Fig. 11), showing

the true field in Fig. 15a, the mean field of the GMM–

DO smoother in Fig. 15b, the two most dominant

modes in Fig. 15c, and the corresponding marginal

pdfs of the smoothed stochastic coefficients in

Figs. 15e and 15f. We clearly find that the GMM–DO

smoother mean is much closer to the truth than the

filter mean: at all times, the smoother accurately

captures the direction in which the main meander

breaks, as well as the location of the secondary eddies

farther downstream. The smoother is logically most

superior over the filter at past times of t5 40 and t5 20,

when the filter mean is still significantly different

from the truth. The statistical coupling across time

due to the joint-subspace GMM fits allows the

smoother to detect the break sooner than the filter. At

t5 50 and 60, the improvement due to the smoother is

smaller, since the filter mean was already close to

the truth.

We also note that the smoother estimate remains

precise over time, as indicated by the low variance

in the two most energetic modes. Figure 16 shows,

in black, the realizations of the joint smoothed

coefficients F1, F2 at t 5 40 and t 5 39. As in Fig. 14,

the orange-colored scatter points correspond to re-

alizations of the pairwise filtered coefficients. Also

shown in Fig. 16 are the 1D marginal pdfs of the

smoothed coefficients (solid line). From these plots, we

see that the smoothed coefficients have a much lower

variance, but remain far from Gaussian. Therefore, we

can expect the GMM–DO smoother to achieve a su-

perior level of performance over Gaussian-based

smoothers.

In Fig. 13, we examine the performance of the GMM–

DO smoother against the GMM–DO ESSE smoother

(again, if the Gaussian EnKS is used, results are similar,

but the EnKS is much more expensive because of its

backward update for each of the Nr 5 10 000 re-

alizations). Figure 13 depicts the RMS differences be-

tween each of the two smoothedmean fields and the true

solution. At t 5 70, the GMM–DO ESSE estimate is

similar to the GMM–DO smoother, since both are ini-

tialized with the GMM–DO filter pdf. However, as we

march backward in time, the performance of the GMM–

DOESSE scheme deteriorates when compared with the

GMM–DO smoother, with the relative discrepancy

growing to be about 40% at t 5 20. In fact, between

times t 5 40 and t 5 56, the mean of the GMM–DO

ESSE smoother is briefly worse than the GMM–DO

filter; between t 5 40 and t 5 20, it recovers. As hinted

earlier, the origin of the inferior performance of the

GMM–DO ESSE is the loss of dynamical information

FIG. 13. Sudden expansion flow. (a) The normalized RMS error between the mean estimates of the GMM–DO

filter (dashed black), GMM–DO smoother (solid black), and the true flow field. (b) The normalized RMS error

between the mean estimates of the GMM–DOESSE scheme (solid gray) and the true field. The plot of the GMM–

DO smoother error (solid black) is the same as in (a). We note that these RMS errors should not be zero theo-

retically; they should be equal to the RMS errors of the true Bayesian mean estimate, which depends on the initial

error conditions.
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due to the Gaussian fitting between the joint subspace

variables. In comparison, the adaptive GMM fit per-

formed by the GMM–DO smoother accounts for

the non-Gaussian structures of the joint pdfs, there-

by allowing an accurate inference. We remind the

reader that all RMS errors shown in Fig. 13 contain a

component due to the filter–smoother approxima-

tions but also due to the initial mean conditions and

the limited observations: the exact Bayesian filter–

smoother does not have a mean equal to the truth

right away either.

5. Conclusions

We exemplified the properties and capabilities of the

GMM–DO smoother and contrasted its performance

with respect to that of other smoothers by applications to

three dynamical systems, all of which admit far-from-

Gaussian statistics. First, a double-well stochastic diffu-

sion experiment was used to reconstruct the history of a

particle forced under pseudo-gravity and external

noise. We showed that the GMM–DO smoother ac-

curately utilizes the multimodal structures of the state

variable, and achieves a level of performance superior

to that of the EnKS in detecting the transition of the

particle across wells. The second example was that of

an uncertain passive tracer advected in a reversible

swirl shear flow, an idealization of transport phenomena

occurring in geophysical fluids. This innovative

smoothing test case was developed because we could

derive the analytical smoothed distribution of the tracer

concentration. That distribution was computed and

FIG. 14. Joint GMM fits in the sudden expansion flow. Pairwise joint distributions of the

first two stochastic coefficients F1 and F2 at times t 5 39 and t 5 40 (i.e., immediately

before the first assimilation). Ensemble members are shown in orange, and their mar-

ginalized joint GMM fits in both 1D and 2D are depicted in black. Similarly, the joint

Gaussian fit (GMM fit with a forced mixture complexity of M 5 1) is depicted in gray. The

1D marginal densities, computed by a kernel dressing scheme, are depicted in blue. Note

that all the above marginal distributions are projections of joint-GMM fits performed in

a 2s-dimensional joint subspace.
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FIG. 15. Sudden expansion flow. Time-evolving estimates of the backward-smoother pass of the GMM–DO

smoother as in Fig. 11, but panels are backward in time and without showing the prior (which is the GMM–DO filter

estimate).
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utilized to successfully validate the GMM–DO smoother.

Results showed that the GMM–DO smoother very ac-

curately captured the full smoothed distributions, not

just the mean states. Finally, we examined the per-

formance of the GMM–DO smoother in more com-

plex simulated ocean flows exiting a strait or estuary

with jets and eddies. We found that the backward

inference of the GMM–DO smoother was very effi-

cient and accurate. To showcase the importance of

exploiting the non-Gaussian properties of the condi-

tional probabilities, comparisons were made with the

Gaussian update of the ESSE smoother. For instance,

in the third example, the final mean velocity fields of

the GMM–DO smoother were found to have an RMS

error 40% smaller than those of the GMM–DO ESSE

smoother. In general, it is shown that even when the

dynamics lead to only slightly multimodal joint distri-

butions in time, backward Gaussian updates can lead

to a severe loss of information. In each application, we

stressed the equation-based efficiency and dynamic

characteristics of the GMM–DO smoother. We also

showcased the use and capabilities of the DO equa-

tions for uncertainty predictions and illustrated how

the results of the new GMM–DO smoother compare

to those of the GMM–DO filter.

The present three nonlinear dynamical system

applications—stochastic low dimension, reversible high

dimension, and irreversible high dimension—constitute

complementary and effective benchmarks for the quan-

titative evaluation of Bayesian smoothers with nonlinear

FIG. 16. A comparison of the first two stochastic coefficients at times t5 39 and t5 40 (filtered, orange; smoothed,

black). The 1Dmarginals computed using the joint GMM-fitting pass are depicted as dashed lines, and the smoothed

1D marginal densities computed using a kernel dressing scheme are shown as solid lines.
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higher-dimensional models. This by-product of our work

is useful since such an evaluation of Bayesian filtering and

smoothing with models governed by stochastic partial

differential equations is challenging in itself. In particular,

we showed that the gains of a Bayesian smoother can

be quantified and that the smoothed probability dis-

tribution estimates can be compared with analytical

solutions. In the future, opportunities abound for

more complex oceanic and atmospheric applications

of the GMM–DO smoother. This includes Bayesian

reanalyses and state estimation so as to extend pre-

vious smoothing results (e.g., Lermusiaux et al. 2002;

Moore et al. 2004; Wunsch and Heimbach 2007; Khare

et al. 2008). Combinations within an existing assimi-

lation framework (e.g., Anderson et al. 2009) would

also be useful. Other promising directions include the

use of Bayesian smoothing for adaptive sampling

(Lermusiaux 2007; Choi and How 2010; Lolla 2016)

and for parameter estimation (Bocquet and Sakov

2013; Särkkä 2013).
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APPENDIX

Summary of the GMM–DO Smoother

This appendix briefly summarizes the GMM–DO

smoother, a particular case of the subspace-GMMsmoother

introduced in Lolla and Lermusiaux (2017). The steps

of the GMM–DO smoother are summarized in Table 1.

All the relevant symbols and notations are described in

Table 2.

Problem setup: Let X(r, t;v): R
n 3 [0, T]/R be a

continuous field governed by

›X(r, t;v)

›t
5L[X(r, t;v);v], t$ 0; (A1a)

X(r, 0;v)5X
0
(r;v)

(initial conditions); and (A1b)

B[X(r, t;v)]j
r5j

5 h(j, t;v) (boundary conditions) .

(A1c)

Here, L[�] is a general nonlinear differential operator, B
is a linear boundary operator, and j denotes the spatial

boundary coordinate. The measurements Y(tk; v) obey

the observation model:

Y(t
k
;v)5HX(t

k
;v)1Y(t

k
;v),

Y(t
k
;v);N (�; 0,R), k5 1; 2, . . . ,K , (A2)

where X(tk; v) is an NX 3 1 vector denoting the

spatially discretized field X(r, tk; v). As listed in

Table 2, we denote X(tk; v) and Y(tk; v) by Xk and

Yk, respectively. The goal is to determine the

smoothed state vectors Xkj1:K, that is, Xk conditioned

on Y1, Y2, . . . , YK.

Overview of GMM–DO smoother

The GMM–DO smoother computes a reduced-order

representation for Xkj1:K; namely, Xkj1:K(v)5 xkj1:K 1
XkFkj1:K(v), where xkj1:K(NX 3 1) is the smoothed

mean, Xk(NX 3 s) is a matrix whose columns form

the basis vectors of the s-dimensional stochastic

subspace, and Fkj1:K(v) is an s 3 1 coefficient vec-

tor that describes the uncertainty within the sub-

space. The smoother consists of the following three

steps.

(i) Forward filtering pass—In this step, the GMM–

DO filter is carried out from time t 5 0 until

t 5 tk. The observations Y1, . . . , YK are assim-

ilated as they arrive. The GMM–DO filter

utilizes the DO equations to propagate the state

variable X(r, t; v) forward in time. For the dy-

namics in (A1a)–(A1c), the DO equations take the

form

›x(r, t)

›t
5E

v
fL[X(r, t;v);v]g, (A3a)

›~x
i
(r, t)

›t
5P?(E

v
fL[X(r, t;v);v]F

j
(t;v)g)C21

Fi(t)Fj(t)
,

(A3b)

and

dF
i
(t;v)

dt
5 hL[X(r, t;v);v]

2E
v
fL[X(r, t;v);v]g, ~x

i
(r, t)i, (A3c)

where x(r, t), ~xi(r, t), and Fi(t; v) are the compo-

nents of the DO decomposition of X(r, t; v) (i.e.,

X(r, t;v)5 x(r, t)1�s

i51~xi(r, t)Fi(t;v)), Ev is the

expectation operator, h�, �i denotes the inner product
P?[F(r, t)]5F(r, t)2�s

k51hF(�, t), ~xk(�, t)i~xk(r, t),
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and C is the covariance operator. At the assim-

ilation times tk, the mean vector xkj1:k, the modes

matrix Xk, and the realizations of the prior and

posterior stochastic coefficients, namely, f
(r)
kj1:k21

,

f
(r)
kj1:k, are stored.

(ii) Joint-subspaces GMM fitting pass—The realiza-

tions f
(r)
kj1:k21

and f
(r)
kj1:k are augmented to form

f
(r)
k,k11j1:k:

f
(r)
k,k11j1:k 5

2
4 f

(r)
kj1:k

f
(r)
k11j1:k

3
5, r5 1, 2, . . . ,N

r
. (A4)

For each k, a GMM is fit to the set of joint

realizations [f
(r)
k,k11j1:k]

Nr

r51
in accordance with the

EM–BIC procedure (Sondergaard and Lermusiaux

2013a). The resulting GMMs are given by

p
Fk ,Fk11jY1:k

(f
k
,f

k11
j y

1:k
)5 �

M

j51

pj 3N
 �

f
k

f
k11

�
;

"
mj

kj1:k
mj

k11j1:k

#
,

"
§j

k,kj1:k §j

k,k11j1:k
§j

k11,kj1:k §j

k11,k11j1:k

#!
. (A5)

(iii) Backward smoothing pass—In this step, starting

from the final time-filtered solution, XKj1:K(v)5
xKj1:K 1XKFK(v), the smoother marches back-

ward in time to compute the smoothedmean vector

xkj1:K and the realizations f
(r)
kj1:K of the smoothed

stochastic coefficients Fkj1:K. At each k, the

smoother draws the samples ~f
(r)
kj1:K from the con-

ditional pdfs, pFkjFk11,Y1:k(� jf(r)
k11j1:K, y1:k), avail-

able in closed form owing to (A5). The pdfs are

given by

p
FkjFk11,Y1:k

(f
k
jf(r)

k11j1:K, y1:k)

5 �
M

j51

p̂j,(r) 3 N (f
k
; ~m

j,(r)
k , ~§j

k), (A6)

where

p̂j,(r) }pj 3N (f
(r)
k11j1:K;m

j

k11j1:k

1XT
k11(xk11j1:k 2 x

k11j1:K),§
j

k11,k11j1:k),

(A7a)

~m
j,(r)
k 5mj

kj1:k 1
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The smoothed mean state xkj1:K is computed as

x
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and the smoothed coefficients f
(r)
kj1:K are given by
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