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Abstract We develop an accurate partial differential
equation-based methodology that predicts the time-optimal
paths of autonomous vehicles navigating in any continu-
ous, strong, and dynamic ocean currents, obviating the need
for heuristics. The goal is to predict a sequence of steering
directions so that vehicles can best utilize or avoid cur-
rents to minimize their travel time. Inspired by the level
set method, we derive and demonstrate that a modified
level set equation governs the time-optimal path in any
continuous flow. We show that our algorithm is computa-
tionally efficient and apply it to a number of experiments.
First, we validate our approach through a simple benchmark
application in a Rankine vortex flow for which an analyti-
cal solution is available. Next, we apply our methodology
to more complex, simulated flow fields such as unsteady
double-gyre flows driven by wind stress and flows behind
a circular island. These examples show that time-optimal
paths for multiple vehicles can be planned even in the pres-
ence of complex flows in domains with obstacles. Finally,
we present and support through illustrations several remarks
that describe specific features of our methodology.
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1 Introduction

The problem of path planning has a long history in several
branches of science and engineering, especially robotics.
However, it does not have a universal solution, primarily
due to the broad usage of the term and the wide spec-
trum of complexity associated with it. In most recent cases,
these paths are planned for autonomous robots performing
tasks with little human intervention. In the most general
sense, path planning refers to a set of rules provided to the
autonomous robot for navigating from one configuration to
another in an optimal fashion, i.e., by optimizing an objec-
tive performance criterion. Since a wide variety of tasks are
assigned to autonomous robots, varied path planning rules
are utilized.

Autonomous underwater vehicles (AUVs) are employed
for ocean mapping, commercial exploration, naval recon-
naissance, and harbor protection. By making measurements
of field quantities of interest in the ocean, they enable
ocean prediction and other types of scientific research
(Lermusiaux 2007; Schofield et al. 2010). Their path plan-
ning may involve minimization of travel time or energy
spent by the vehicle. This planning must also take into
account the possibly dynamic nature of the environment and
limited capabilities of the robot itself. The challenge, there-
fore, is to develop rigorous theories and computationally
efficient schemes that accommodate both environmental
forcing and robotic constraints while, at the same time,
provide an exact, optimal path for the robot. Applications
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shown in this paper focus on time-optimal path planning
for swarms of underwater robots such as gliders and pro-
pelled vehicles. Nevertheless, the methodology is valid for a
much wider class of vehicles including small vessels, ships,
aircrafts, and ground vehicles (if under advection by the
environment). These vehicles are employed in a wide range
of industries and human activities. Thus, accurate path plan-
ning can lead to major savings on resources such as fuel and
limit environmental impacts.

Underwater gliders are ideal for long range sampling
missions due to their low power consumption and high lev-
els of autonomy (Lermusiaux et al. 2014). Their endurance
however comes at the expense of smaller travel speeds. In
many cases, the glider speed becomes comparable to or even
less than that of ocean currents in which it operates. Thus,
the dynamic nature of the ocean currents and their effect on
vehicle speed should not be neglected. In addition, as these
vehicles have become more reliable and affordable, their
simultaneous use in sampling and exploratory missions has
become viable (Bahr et al. 2009; Fiorelli et al. 2004; Ramp
et al. 2009; Haley et al. 2009; Schofield et al. 2010), pos-
sibly with coordination (Leonard et al. 2007; Zhang et al.
2007; Bhatta et al. 2005), enabling inter-vehicle information
exchange (Bahr et al. 2009; Paley et al. 2008; Davis et al.
2009). This naturally raises the central question of how to
optimally navigate swarms of vehicles through these pos-
sibly strong and dynamic ocean currents, which often have
large variability in both space and time. Moreover, similar
to our common use of weather predictions, it is essential to
utilize current predictions (up to the predictability limit) for
this planning. As most gliders and AUVs receive position
fixes or communicate only intermittently, we wish to pre-
dict their optimal controls ahead of time by using current
forecasts.

We present a rigorous (partial differential equation
based) methodology inspired by the level set method, to
compute continuous time-optimal paths of swarms of under-
water vehicles, obviating the need for heuristic approaches.
The methodology predicts the exact fastest path between
any two points along with the sequence of vehicle steer-
ing directions that realize this fastest path. The methodol-
ogy automatically generates vehicle trajectories that avoid
obstacles, both stationary and mobile.

Next, we first briefly review prior results on robotic
and underwater path planning. In Section 2, we formally
define our problem and introduce the relevant notation. In
Section 3, we briefly review level set methods and develop
the basis of our approach to path planning. Numerical
and implementation details are discussed in Section 4. In
Section 5, we present some applications, ranging from sim-
ple benchmark test cases to more complex and realistic flow
fields. Summary and conclusions are presented in Section 6.
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Applications in realistic multiscale ocean flows and com-
plex geometry are provided in the companion paper (Lolla
et al. 2014b).

1.1 Prior work

Traditionally, robotic path planning has focused on gen-
erating safe trajectories away from hazardous regions and
obstacles. The common difficulty here is in handling the
large number of degrees of freedom (DOF) of the robot.
Every extension to this basic problem adds in compu-
tational complexity (Lolla 2012; Latombe 1991). Motion
planning for multi-DOF systems such as robotic arms
(Canny 1988; Latombe 1991), including cooperative control
(Paley et al. 2008; Leonard and Fiorelli 2001) and coor-
dination (Bahr et al. 2009; Davis et al. 2009), have been
extensively studied. Path planning through unsteady flow
fields has received far less attention in comparison. The
challenge here is that the currents directly affect the dis-
placement of the vehicle, making the cost of movement
variable and anisotropic at different points in space (Isern-
Gonzalez et al. 2012). In this case, even the seemingly
simple task of generating feasible tracks becomes challeng-
ing. Most robotic path planning algorithms use dynamic
programming-based approaches such as Dijkstra’s method
and the A* algorithm (Rhoads et al. 2010). When applied
to dynamic flow environments, they often lead to infea-
sible paths or have a large computational cost when the
environment becomes complex. Algorithms that compute
discrete vehicle paths (i.e., on a grid) do not remain opti-
mal when extended to a continuous setting. Finally, it is
not uncommon for these algorithms to remain stuck in local
minima.

Rapidly exploring random trees (RRTs) (Lavalle 1998;
Kuffner and LaValle 2000) are a randomized approach
to path planning for obstacle avoidance that use random
sampling to explore the robot workspace. Their ability to
quickly and uniformly explore a large workspace has led
to their widespread usage in several path planning appli-
cations including robotics (Yang et al. 2010; Bruce and
Veloso 2002; Melchior and Simmons 2007) and ocean cases
(Rao and Williams 2009). However, they do not provide the
global optimal and are not suited to cases where the envi-
ronment is highly dynamic and has strong effects on the
robots.

Graph search techniques, such as A*, have been used
for underwater path planning (Rao and Williams 2009;
Carroll et al. 1992; Garau et al. 2009). A major difficulty
here is defining a good heuristic function, as the perfor-
mance of A* crucially depends on it Lolla (2012). A* uses
a discretized representation of the domain, and the pre-
dicted vehicle path may not always pass through the grid
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points. To correct this, adaptive grid restructuring must be
performed. A* performs reasonably well for simple steady
flow fields, but may fail for more realistic flows. A discus-
sion of the computational complexity of A* is provided in
Section 4.4.

Fast marching methods (Sethian 1999a) have also been
applied to underwater path planning. These are similar to
Dijkstra’s algorithm, but solved in a continuous domain.
They solve an Eikonal equation (Sethian 1999b) to isotrop-
ically compute the arrival time function at different points
in space. In Petres et al. (2007), the regular (isotropic)
fast marching method is modified to create an anisotropic
version where the cost function depends on the flow
fields (for related approaches using wavefront expansions
for underwater path planning, see (Soulignac et al. 2009;
Thompson et al. 2009, 2010)). Potential field techniques
(Warren 1990; Barraquand et al. 1992) have been widely
used for robotic collision avoidance algorithms. The key
idea is to introduce an artificial potential field on the
obstacles that prevents vehicles from getting very close to
them, thus generating safe paths. Although this approach
generates only locally optimal solutions, it is inexpensive,
allowing real-time computations. It has been used for under-
water path planning (Witt and Dunbabin 2008) using a cost
function that depends on the total vehicle drag, travel time,
and obstacles in the field. Voronoi diagrams have also been
used to solve obstacle avoidance problems in static environ-
ments (Garrido et al. 2006) and in flow fields (Bakolas and
Tsiotras 2010).

Variational calculus-based approaches have also been
used in underwater path planning (Davis et al. 2009): Gov-
erning equations for minimal time routes in steady flows
are derived and related to Snell’s law in optics. Routing
strategies to maximize the field mapping skill are also
discussed. Such use of path planning for information max-
imization and adaptive sampling is developed in Binney
et al. (2010), Smith et al. (2010), Choi and How (2010),
Heaney et al. 2007, Yilmaz et al. (2008), and Wang et al.
(2009).

The solution to the minimum time navigation problem in
dynamic flows is governed by a Hamilton-Jacobi-Bellman
(HJB) equation (Bryson and Ho 1975). Rhoads et al. (2010)
derive a set of Euler-Lagrange equations for the optimal tra-
jectory, which are solved using an extremal field approach.
This approach requires tracking a potentially large family
of 1D curves backward in time for several choices of the
arrival time at the end point. Other underwater path planning
approaches include Lagrangian Coherent Structures (Zhang
et al. 2008), case-based reasoning (Vasudevan and Ganesan
1996), and evolution (Alvarez et al. 2004). We refer
to (Lolla 2012; Lolla et al. 2014c¢) for more extensive
reviews.
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2 Problem statement

Let 2 € R” be an open set and F' > 0. Consider a vehicle
(P) moving in 2 under the influence of a dynamic flow field,
V(x, t) : Q x [0,00) — R”. We wish to predict a steer-
ing rule for P that minimizes its travel time between given
start and end points denoted by ys and yg¢, respectively. In
other words, the goal is to develop an algorithm that predicts
the sequence of headings that would result in the fastest
time path from ys to y¢. Let a general continuous trajectory
from ys to yr be denoted as Xp(ys, ¢) (see Fig. 1). The vehi-
cle motion, being composed of both nominal motion due to
steering and advection due to the flow field, is governed by
the kinematic relation

dX

dtP =UXp(ys. ). 1) = Fp(t) h(t) + V(Xp(ys. 1). 1)

ey

where Fp(t) is the speed of the vehicle relative to the flow,
with 0 < Fp(t) < F, fz(t) is the vehicle heading (steering)
direction at time ¢ and U(Xp (ys, ), t) is the total vehicle
velocity. Let f(y) : € — R denote the “first arrival time”
function, i.e., the first time the vehicle reaches any given y,
starting from ys. Clearly, f(ys) = 0. The limiting conditions
on Xp(ys, t) are

Xp(ys.0) =ys. Xp(ys. T(yp) = yr. )

We aim to predict the optimal controls for ﬁ(t) and
Fp(t) that minimize T(yf) subject to the equation of motion
(1) and limiting conditions (2). Equations 1 and 2 can be
interpreted as constraints for this minimization problem.
Let the optimal travel time to reach y¢ be 7*(y¢f) and the
corresponding optimal trajectory be X% (ys, f).

End (yf)

) U

%
Flow
V(x,1)

=N

Fig. 1 Motion of P in an unsteady flow field, V(x, ¢). Its trajectory
Xp(ys, t) connects the start (ys) and end (yg) points and satisfies
(1), (2). The total velocity, U, is the vector sum of the steering
velocity Fp(t) ﬁ(t) and flow field V(x, t)

Fph(t)
Xp (y87 t)
)

Start (ys

@ Springer



1376

Here, we assume that V(x, ¢) is exactly known. In real-
istic ocean applications, forecast flow fields are always
associated with some levels of uncertainty (Lermusiaux
2006; Lermusiaux et al. 2006). V(x, ¢) can correspond to,
for example, the mode or the mean of the predicted flow
field. Planning paths in predicted probabilistic flows (Sapsis
and Lermusiaux 2009; Ueckermann et al. 2013) are reported
by Lermusiaux et al. (2014) and Pereira et al. (2013). We
consider cases where the distance travelled by the vehicle is
much larger than its dimensions, thereby assuming the inter-
action between the vehicle and the flow field to be purely
kinematic. The notation | e | in this paper will denote the
L? norm of e. We assume that Fp(¢) and ﬁ(t) are Lipschitz
continuous in ¢ and that V(x, ¢) is bounded and Lipschitz
continuous in both x and ¢, i.e., 3 C, Cy > 0 such that

max {|V(x,#)|]} <C and (3)
xeQ,r>0

IV(x1, 1) — V(x2, )| < Cv (Ix1 —x2| + |11 — 12,
X, X €Q,t,b>0. (4

3 Approach
3.1 Control and reachability

The computation of time-optimal paths in a dynamic flow
field is not trivial. The complexity arises in part due to the
number of control choices available to the vehicle. At every
point in its trajectory, the vehicle has an infinite number of
heading (steering) directions to choose from (see Fig. 2).
For every such heading direction chosen at 7, it has again an
infinite number of heading choices at the next instant. Thus,
it is not trivial to predict the instantaneous vehicle headings
that will lead to the quickest path.

Instead of aiming for the exact solution, approximate
solutions are often sought. A class of practical schemes is
based on heuristic control decisions for the vehicle. For
example, a heuristic steering rule can be to always steer in
the direction of the end point (LaValle 2006). However, such
approaches are neither guaranteed to be optimal nor guaran-
teed to find a feasible trajectory. The problem becomes more
complicated when the flow fields are dynamic; the heuris-
tic control then becomes a function of the velocity field at
least near the vehicle. One solution could be to keep track
of the vehicle trajectories for every possible control deci-
sion choice and then choose the sequence of headings that
leads to the least travel time. However, this method would
be extremely expensive and require a lot of storage.

Our approach to path planning is inspired by the com-
putation of the reachable set from a given starting point. A
reachable (or attainable) set is defined as the set of points

@ Springer

Ocean Dynamics (2014) 64:1373-1397

Reachability Front
OR

*
- \f/Zr yr

Ys

Fig. 2 Reachability front 3R (ys, ) and infinite possible steering
directions: 3R denotes the boundary of the reachable set R(ys, t) (set
of points that can be visited at time t)

that can be visited by the vehicle at a given time. The bound-
ary of such a set is called the reachability front. By tracking
the evolution of the reachability front, one can determine
when it first reaches the end point. The path traced by the
point on the reachability front that first reaches the end point
will be the optimal path we wish to compute.

The reachable set R(ys, t) (see Fig. 2) at time r > 0
is the set of all points y € €2 such that there exists a tra-
jectory )~(p (ys, ) satisfying (1), with ip (ys, 0) = ys and
X p(ys, t) = y. Note that the subset of trajectories X p(¥s, 1)
that reach y¢ is denoted as Xp (ys, 7).

From this definition of a reachable set (and front), one
can ask some key questions which include: If the reachabil-
ity front exists, can one prove that its evolution is directly
linked to that of the time-optimal path in any dynamic flow?;
What are the equations governing the dynamics of this front
and path?; and How can they be computed efficiently? Level
set methods, briefly reviewed next, provide leads for the
answers. After that, we derive a new level set equation
that governs the reachability front (Fig. 2) and time-optimal
paths from the origin ys.

3.2 Modified level set equation and time-optimal paths

Consider a front 9R, for example, the interface between
two immiscible fluids. Level set methods are convenient
tools to track the evolution of such a front. They can model
the dynamics of the implicit front and capture the interac-
tion between the evolution of the front and fluid forcing.
They were originally introduced to solve problems related to
fluid-interface motion and front evolution problems (Osher
and Sethian 1988). They can also handle problems in which
the speed of the interface depends on various local, global,
or other independent properties of the system.

Level set methods evolve an interface (a front) by embed-
ding it as a hyper-surface in one higher dimension. For
example, an interface in 2D is represented as the zero con-
tour of a 2D scalar field, and the evolution of this scalar
field governs the movement of the front. This effectively
transforms the problem to a 3D one, time being the third
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dimension. This higher dimensional embedding is what
allows for automatic handling of merging and pinching
of fronts and other topological changes. Level sets are an
implicit representation of the front as opposed to an explicit
one. They offer several advantages over an explicit repre-
sentation (Sethian 1999b; Osher and Fedkiw 2003). For any
C € R, the C—level set of a function ¢ : R” — R is the set
{x:¢(x) =C}

The choice of ¢ (x) is often somewhat arbitrary. The most
common function used for this purpose is the signed dis-
tance function denoted by ¢,(x). As the name suggests, a
distance function p(x) : R* — R, is the minimum dis-
tance of x from the front, i.e., p(X) := miny, 3R [X — X;|. A
signed distance function ¢, (x) is defined as:

o (x), if x is outside the front,
—p(x), if x is inside the front.

¢p(X) 1= { )

Clearly, ¢ (x) = 0 for all x € IR, implying that the front
is implicitly represented as the zero level set of ¢ (x). For all
points outside the front, ¢(x) > 0, and for all points inside
the front, ¢ (x) < 0. Signed distance is a preferred choice
for ¢ (x) because it is smooth and maintains fixed amplitude
gradients in the field.

The level set equation governing the evolution of a front
moving in a direction normal to itself at a constant speed
F (> 0) and in a stationary environment (i.e., with zero
external flow field) is (Osher and Fedkiw 2003):

3¢ B
5, TFIVYI=0. ©6)

In Eq. 6, the front’s motion can be thought of as being driven
by an internal velocity, Fh = F ‘g"". Considering now the
motion of field ¢ solely driven by an external flow V(x, ),
the governing advection equation is

¢
NEACORCELS )

If in addition to the external flow field of Eq. 7 the front
is also internally driven by its own velocity as in Eq. 1, the
advection (7) becomes

99

I (Fp ) h(t) + V(x, t)) V¢ =0, (8)

where, as in Eq. 1, Fp(t) fz(t) is the velocity of the vehicle

relative to the flow field of magnitude 0 < Fp(t) < F
and heading direction fl(t). If the initial conditions to (8) are
given level set conditions, then 8 defines a family of level
set equations, each member of the family corresponding to
a specific choice of Fp(t) and ﬁ(t).

The comparison of Egs. 8 to 6 indicates that the head-
ing and magnitude of the relative velocity of the vehicle are
free time-dependent control variables of our problem. It also
raises the following question: Should time-optimal paths be
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those of vehicles driven in a direction normal to the time-
dependent level set similar to Eq. 6 even if that level set is
externally advected as in Eq. 87

In Appendix B, we state and prove a theorem that shows
that the time-optimal trajectory; if it exists, it is indeed
obtained by a combination of Egs. 6 and 8. The relevant
background theory is discussed in Appendix A. Specifically,
we show that the viscosity solution to the Hamilton-Jacobi
equation

a [0

g; + FIVY°|+V(x,t)- Vg’ =0 in Qx(0,00), (9)
with initial conditions
¢°(x,0) = |x — ys| (10)

governs the reachable set R(ys, t), viz., R(ys,t) = {x :
¢°(x,t) < 0}. In other words, the reachable set coincides
with the region(s) where ¢ is non-positive. As a result, the
minimum time to reach the end point y¢ (i.e. 7*(y¢)) corre-
sponds to the first time the zero level set of ¢ arrives at y¢
(see 33). Furthermore, we show that the optimal trajectory
X5 (ys, 1) satisfies

X5 V(X5 1)

= VX%, 1),
a = veeexn,n TYERD

1 € (0, T*(yp)

(1)

whenever ¢° is differentiable at (X% (ys, ?), ¢). This implies

that the vehicle’s optimal relative speed equals F, and its
optimal heading is normal to the level sets of ¢°. Critically,
we show that (9), which is solved to generate all the results
shown in this paper, is valid for all F and V cases, even
when the flow V is stronger than F. We also show that in
the special case when F is always larger than the flow speed
(F > |V]), the minimum arrival time function is also gov-
erned by a modified boundary value Eikonal Eq. 34, which
may be efficiently solved using a standard fast marching
method (Sethian 1999a). In the following section, we pro-
vide several remarks extending the theorem in Appendix B.
Examples corroborating some of the remarks are presented
in Section 5.

3.3 Remarks

Reachability/existence of feasible paths: For a given prob-
lem configuration (ys, yf, V(X, t), and F), the solution to
Eq. 9 can be used to predict whether or not the vehicle can
reach yg (or any given point in space) within a specified time
limit, Tin,x. For the latter, either the optimal zero level set
cannot reach yy in finite time, indicating that it is impossible
for the vehicle to reach yg, or may reach yg, but not within
the allowed time limit, Tihax. In all other cases, the level set
method can compute the time-optimal paths to yg. We refer
to Section 5.2.1 for an illustration.

@ Springer
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Applicability of modified Eikonal equation: When the max-
imum relative vehicle speed F is smaller than the flow speed
[V(x, t)| for some x € 2 and ¢ > 0, the minimum arrival
time field 7°(y) may be discontinuous since some points
may be visited more than once in the optimal trajectory. At
these points, the gradients VT are not defined, and mul-
tiple arrival times need to be stored in order to compute
the correct optimal trajectory. The modified Eikonal Eq. 34
does not admit continuous viscosity solutions in this case.
We refer to Section 5.3.1 for an example.

Optimal start time: The initial conditions (10) indicate that
the vehicle starts moving at time t; = 0. However, in some
cases, the vehicle may reach the end point yy faster if it is
deployed at a later start time, #; > 0. Section 5.3.2 discusses
an example of such a scenario.

Forbidden regions: Time-optimal paths of vehicles mov-
ing in dynamic flow fields may be updated/corrected when
“forbidden” or unsafe regions are introduced in the domain.
These regions do not affect the flow field and are areas in
space which the vehicle must avoid. Examples are discussed
by Lolla et al. (2012) and Lermusiaux et al. (2014).

Relations to optimal control: Equation 9 is a Hamilton-
Jacobi equation with Hamiltonian H(x,t, V¢?) =
F|V@°| + V(x,t) - V¢°. A problem closely related to ours
is the optimal “time-to-go” problem (Rhoads et al. 2010).
Its closed loop optimal control law can be derived from
a dynamic programming principle (Bryson and Ho 1975;
Cannarsa and Sinestrari 2004). This governing equation for
the optimal time-to-go is a HIB equation and has a structure
similar to Eq. 9. HIB equations also form the basis of sev-
eral approaches to compute the reachability fronts in areas
of game theory and differential games (Mitchell et al. 2005;
Bokanowski et al. 2010).

Optimal trajectories and costates: The time-optimal con-
trol problem that we study here can also be viewed as
a calculus of variations problem. This formulation estab-
lishes the existence of a costate g (¢) : [0, T*(yp)] —
R" corresponding to the optimal trajectory X% (ys, t)
and its control (Athans and Falb 2006). q}(¢) equals
V¢ (X% (ys, 1), t) whenever it is defined. Furthermore, the
trajectories X% (ys, t) correspond to characteristics of Eq. 9
that emanate from ys.

Uniqueness (single vs. multiple optimal paths): In some sit-
uations, there may exist multiple optimal paths to y¢. This
happens when two or more characteristics of Eq. 9 emanat-
ing from ys merge at yg, making ¢° non-differentiable at yg.
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The viscosity solution to Eq. 9 automatically allows for the
formation of such singularities or “shocks”. For end points
lying on these shock lines, there exist multiple costates, each
corresponding to one of the optimal trajectories. Numerical
procedures to treat such cases are mentioned in Appendix C
(see Section 5.3.3 for an example).

Regularity of $°: The regularity assumption on ¢ at points
(X% (ys, 1), t) fort > 0in part 2 of Theorem 4 (Appendix B)
is not a strong one. The value functions arising in several
types of optimal control problems (e.g., fixed time prob-
lems) are regular (Cannarsa and Sinestrari 2004). Locally
Lipschitz functions that are either differentiable or locally
convex or locally semi-convex at a point in their domain are
regular there. More details and references may be found in
Appendix A.

4 Numerical implementation and discussion
4.1 Algorithm and numerical scheme: basics

Our path planning algorithm consists of the following two
steps:

1. Forward Propagation: In this step, the reachability front
is evolved by solving the modified level set (9) forward
in time from the start (ys = 0). The front is evolved
until it reaches the end point (yg).

2. Backward Vehicle Tracking: The optimal vehicle trajec-
tory X% (ys, ¢) and control are computed after the reach-
ability front reaches the end point by solving Eq. 12
backward in time starting from y¢ at time 7*(yf) =
T°(yp), ie.,

dX% (ys. ) V1) F Vo (X%, 1)
dr o ’ Voo (X%, 1)
with X% (ys, T*(y¢)) = yr. (12)

We note that Eq. 12 corresponds to Eq. 11 when it is
solved backward in time. For any 0 < ¢ < T*(yp),
if ¢ is not differentiable at (X’ (ys, t), ¢), the optimal
trajectories are obtained by integrating

dX* (ys, t *(t
PO _ yexs - g SO
dr lqp ()]

backward in time, where, q}(?) is the costate corre-
sponding to each trajectory X% (¢).

The numerical schemes used to solve Eqs. 9 and 12 and their
implementation over the full spatial domain are outlined in
Appendix C and detailed in the study of Lolla (2012) and
Lolla et al. (2014c). Appendix C also discusses the case
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when yr lies on a shock line (see Uniqueness remark in
Section 3.3).

4.2 Algorithm and numerical scheme: narrow band

Since we are interested only in the evolution of the reach-
ability front and not the behavior of ¢° away from the
front, we can use a narrow band approach (Adalsteinsson
and Sethian 1995) in the forward propagation step above:
Eq. 9 is then solved only within a band of points around
the zero level set instead of the whole domain. Due
to this, significant reduction in computational effort is
achieved.

In this scheme, points within a band around the front
are tagged as alive and points far away from the front
are marked far. Points near the edge of the alive set
are marked close. At each time step, Eq. 9 is solved
for points in the alive set. Points from the close set that
enter the alive set are assigned ¢° values using a fast
marching method (Adalsteinsson and Sethian 1995). When
these points are brought into the alive set, the close set is
updated. Similarly, points that leave the alive set are added
to the close set. Since Eq. 9 is solved in a much smaller
domain, the computational cost of the narrow band scheme
is significantly lower than that of the regular level set
method. Here, we implemented the narrow band scheme of
Adalsteinsson and Sethian (1995).

4.3 Representation of ¢*

There are several possible representations of ¢, whose evo-
lution is governed by (9). Their theoretical and numerical
properties are now outlined. The level set method does not
place any strict restrictions on the choice of ¢ as long as
it is Lipschitz continuous (Osher and Sethian 1988; Russo
and Smereka 2000). The viscosity solution to the Cauchy
problem (9) is unique and locally Lipschitz (Bressan 2011;
Tonon 2011). If the forward evolution (9) is solved exactly
(i.e., no numerical errors), any Lipschitz continuous ¢ will
yield the correct evolution of the reachability front R and
the correct optimal path X‘;, (ys, ). However, the numeri-
cal solution of Eq. 9 is dependent on the specific choice of
¢°. Usually, ¢° is chosen to be the signed distance function
(¢p(x)) due to its several favorable properties: It is smooth
and maintains gradients of fixed magnitude everywhere,
especially close to the front. This leads to a more sta-
ble and accurate front evolution. Detrimental effects of the
loss of this representation are well-documented (Sussman
et al. 1994; Chopp 1993). Next, we describe how ¢° devi-
ates from a signed distance field during the course of front
evolution.
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Classic level sets and signed distance functions: When
V(x, t) is identically zero, Eq. 9 reduces to the classic level
set Eq. 6. If ¢ is initialized to be the signed distance func-
tion, then |V¢?| = 1 initially, wherever ¢ is differentiable.
For the rate of change, we have

. 012 a40
éalvf)qtb I~ _ V(PO'V(BE?I )
=—FV¢°-V|V¢?|,

considering the cases where all derivatives are well-defined.
Initially, since [Vo°| = 1, 179" = 0. Hence, |V¢*| = 1
at all future times. This means that Eq. 6 (i.e., (9) with
no external velocity field) theoretically preserves the signed
distance property of ¢°. However, due to the numerical
approximations, this property is gradually lost. This causes
neighboring level sets to either bunch up (large gradients)
or spread out (small gradients). This problem, in general,

cannot be alleviated by using higher order schemes (Mulder
et al. 1992).

Path planning level sets and signed distance functions: For
general velocity fields, V(X, ¢) is not identically zero and the
level set is governed by Eq. 9. In this case, we obtain
1OV _ 09
2 9 = Vg? -V at

= —FV¢® - V|V¢°| — V¢® -V (V- V¢?) .

Even if |V¢?| = 1 initially, the second term of the right-
hand side is non-zero in general. Thus, ¢° will not remain
a signed distance field under (9), even with exact compu-
tations. Numerically, in the absence of large enough grid
resolution, this can result in sizable errors in the computa-
tion of quantities such as V¢?, etc. Thus, one needs to either
sufficiently resolve the regions close to the front or maintain
the gradients of ¢ within reasonable bounds. Methods for
maintaining a signed distance representation may be found
in the studies of Chopp (2009), Adalsteinsson and Sethian
(1999), and Russo and Smereka (2000) (see Lolla et al.
(2014c¢) for further discussions and additional references).

4.4 Computational cost

In this section, we quantify the asymptotic computational
complexity of our path planning algorithm and highlight the
challenges in obtaining similar estimates for other common
algorithms.

We solve Eq. 9 numerically using a finite-volume (FV)
approach for both the full domain level set and the narrow
band version. The asymptotic complexity of the algorithm is
a function of the grid size. In this paper, we present results
for 2D path planning and, hence, Eq. 9 is solved on a 2D
grid. Let us assume that there are roughly n grid points in
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each direction and a total of N grid points in the whole
domain, i.e., N = O(n?).

Cost of solving level set equation: We start first with the
full domain level set. If Eq. 9 is solved in the full domain,
the computational cost per time step is O(n?) for any clas-
sic PDE solver. If a narrow band approach is used to solve
(9), this cost reduces significantly to O(nd) per time step
(Adalsteinsson and Sethian 1995), assuming a bandwidth d.
The number of time steps (K) needed is directly related to
the optimal travel time: K ~ T°(yg)/At. Since T°(ys) is
not known a priori, it is not possible to compute K with-
out solving (9) in the first place. Furthermore, since we use
an explicit time integration scheme, At is chosen to satisfy
the CFL condition (Osher and Fedkiw 2003), making Af
inversely proportional to n. As a result, K increases in direct
proportion to .

Cost of re-initialization: Re-initialization of ¢ incurs sig-
nificant expense. Its contribution towards the overall com-
putational cost depends on its frequency (number of time
steps without re-initialization) and on the scheme used. The
procedure of computing the distance of every grid point to
the level set front is an O(n>) operation. This cost drops to
O(n?logn) if a fast marching method is employed (Sethian
1999a). For the narrow band version, the cost of computing
the distances of all points inside the narrow band to the front
is O(nd?). In each of these cases, the re-initialization cost
is more than the corresponding level set cost (per time step).
Due to this, it is essential to choose the re-initialization
scheme and frequency with caution so that it does not
dominate the overall computational cost.

Cost of other algorithms: It is more challenging to esti-
mate the computational costs of the approximate algorithms
discussed in Section 1 in part because they are iterative
schemes, and in continuous settings, they provide opti-
mal solutions only in infinite time. Most of these schemes
do not have rigorous estimates of rates of convergence or
computational cost. For example, the A* method computes
approximate trajectories by restricting the vehicle motion
onto a grid. It maintains an open list (points that can possi-
bly lie on optimal path) and a closed list (points that are no
longer in consideration) at every step. In addition, there is a
sorted priority queue of path segments and estimates of total
cost to reach the end point. Due to the dynamic flow field,
the cost of each arc becomes time-dependent. Since the opti-
mal path may visit some points more than once, no grid
point may be removed from the open list, i.e., no branches
of the graph may be pruned. Hence, the worst case complex-
ity of A* scales exponentially with the length of the optimal
path. As a result, for realistic flows even in two or three
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dimensions and at the grid sizes needed to resolve them, the
size of the A* search space becomes prohibitive.

Randomized methods like RRTs are quick in practice,
and their main utility lies in uniformly exploring high
dimensional control spaces. Owing to the probabilistic
nature of RRTs, it is challenging to obtain rigorous estimates
of their cost for path planning in dynamic flows (see Lolla
(2012) for a detailed discussion). We are not aware of pub-
lished rigorous estimates of the computational costs of other
approximate algorithms for time-optimal path planning in
dynamic currents.

5 Applications

In this section, we illustrate our path planning algorithm by
means of three sets of examples. The first set (Section 5.1)
is based on a canonical vortex flow. This serves as a bench-
mark, allowing comparison to an analytical solution. In the
second set (Section 5.2), we utilize more complex and real-
istic ocean flows to highlight the features of our algorithm.
In the final set (Section 5.3), we consider specific test cases,
which support the remarks given in Section 3.3.

5.1 Benchmark application: path planning in rankine vortex

In this application, we consider a vortex flow characterized
in polar coordinates as V(r, 6, t) = vg(r) 9, where @ is the
unit vector in the circumferential direction and vy (r) is the
flow field speed, depending on the type of vortex. We are
interested in computing the fastest time trajectory from ys =
0Otoyr: (r = R,0 = 0). As earlier, let a first arrival time
of the vehicle be f(yf) and the optimal first arrival time be

T(yp) = T*(yp).

Analytical solution for general flow vo(r): Let the to-be-
optimized velocity of the vehicle relative to the flow be
Fp(t)h(t) = Fr(t) £+ Fo (1) 0, with Fr ()2 + F(1)? < F2.
The total velocity is

dX
dt

with Xp (ys, 0) = 0 and Xp (ys, T(yf)) = yr. Separating the

radial and angular components of dfi(t” gives i = F,(t) and
rf = Fp(t) +vg(r). Upon integrating the radial component,

we obtain

T(yp) T(yp ~
R:/ F.(t)dt < / Fdt=FT(y),
0 0

P = F() R+ [Fo(t) +ve(r)]0 (13)

implying that f(yf) > §. Hence, R/F is a lower bound
for f(yf). We now generate a trajectory that satisfies (13)
and meets this bound, thereby proving that 7°(yf) = R/F.
Such a trajectory can be generated by setting F;- () = F and
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Fy(t) = 0. For this choice of the vehicle speed, we obtain
F=Fandf = ”9r(r ) Integration of these equations yields
r(t) = Ft and

Rvg(r)

9(R)=90+/0 o, dr. (14)

Here, 6y is the initial heading angle and may be computed
using (14) since 6(R) is known from the coordinates of yg.
Hence, the optimal control is
R
FOO () = F§, with 6)=60(R) — / o) g
0 Fr

This optimal solution can also be obtained by using our
level set algorithm. The only information needed from the
forward evolution of the level set to solve (12) is the direc-
tion of the normals to the intermediate level set contours. In
this problem, we could have guessed the shapes of the con-
tours without solving (9). Since the flow field is symmetric
and purely circumferential, the zero level set contours are
circles centered at the origin (see Fig. 3b) with their outward
normals coinciding with radial directions (n° = r). Using
this observation, we may directly solve (12), starting from
the heading h° = fat ¥t to compute the initial heading angle
6o (where the normal to the point level set is undefined).

This problem is almost identical to crossing a river/jet in
the fastest time. In order to do this, one needs to head normal
to the flow at all times so that the maximum component of
the vehicle’s velocity is directed towards the opposite bank
(Lolla et al. 2012). Similarly, in our case, one needs to steer
normal to the streamlines of the flow (i.e., I) to obtain the
fastest time path.

Rankine vortex solution: We exemplify our algorithm with
a Rankine vortex flow, vg(r) = 271;; ,» which resembles a
solid body rotation of the fluid and is seen in many practical

vortex flows. I' is the total circulation around the origin and
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o is the radius of the vortex. Here, we use non-dimensional
values, I' = 20, 0 = 1.5 and F = 1. The coordinates of yf
are (R = 1, 0 = 0). From Eq. 14, the initial heading angle
is 6y = PR '~ —1.41rad ~ —81.1° and the optimal

K _. 2 Fo?
trajectory 1s

I'(Ft — R)

*(t) =Ft,
ro 2nFo?

0*(1) = 15)

Shapes of the zero level set contours at different times
and the optimal trajectory obtained by solving (12) are plot-
ted in Fig. 3b. A 200 x 200 grid and a time step of 1073
are used to solve (9), with open boundary conditions on
¢° (see Appendix C for more on boundary conditions).
Figure 3a compares the headings predicted by the level set
algorithm with their analytical values and provides evidence
that our algorithm works correctly. Through this example,
we emphasize that the only information needed from the
solution of Eq. 9 is the time evolution of the zero level set
front. If the level set contours can be determined a priori,
only (12) needs to be solved.

5.2 Path planning in more realistic flows

In this section, we apply our path planning methodology
to more complex but numerically simulated flow fields.
These examples also illustrate certain unique features and
capabilities of our approach.

5.2.1 Double-gyre flow

The wind-driven double-gyre flow is modeled using a
barotropic single-layer model in a square basin of size
L = 1 described in detail in the studies of Dijkstra and
Katsman (1997) and Simmonet et al. (2009) (see also
Pedlosky 1998 and Cushman-Roisin and Beckers 2010).

Fig. 3 a Optimal heading 0
angles, b optimal path and
circular intermediate
reachability fronts of a vehicle
navigating in a Rankine vortex
flow. Black path predicted by
level set algorithm, red
analytical, i.e., governed by
Eq. 15

A Algorithm
Analytical

|
4
3

Heading Angle (rad)

A Algorithm
1 Analytical

0.5

Time

(a)
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Fig. 4 Snapshots of the
double-gyre flow field at 1

Ocean Dynamics (2014) 64:1373-1397

T=1.18

different times: flow streamlines
(white) overlaid on color plots of
vorticity (range: [-15,15]). The
start (circle) and end (star)
points are also depicted. All
physical quantities shown are
non-dimensional

-

*
S
)

0.5 — =4 05}
0 - M 0 ;
0 0.5 1 0 0.5 1

(a) t =1.10

The intent is to simulate the idealized near-surface double-
gyre ocean circulation at mid-latitudes.. The mid-latitude
easterlies and trade winds in the northern hemisphere drive a
cyclonic gyre and an anticyclonic gyre and the correspond-
ing zonal jet in between. This eastward jet would correspond
to the Gulf Stream in the Atlantic and to the Kuroshio and
its extension in the Pacific. This idealized flow is modeled
by the non-dimensional equations of motion

du p () _ o)

0y = ox + Relu— 5. — auy” + fv+ate, (16a)

av ap 1 du)y  A(v?)

0 = — b+ Re AV — o) — sy — fu+ary, (16b)
0=+, (16¢)

where Re is the flow Reynolds number taking values from
10to 10*, f = f + By, the non-dimensional Coriolis coef-
ficient, and a = 103, the strength of the wind stress. In
non-dimensional terms, we use f =0,8= 103. The flow in
the basin is forced by an idealized steady zonal wind stress,
T = —2171 cos2my and 7y = 0.

Free slip boundary conditions are imposed on the north-
ern and southern walls (y =0, 1) and no-slip boundary
conditions on the eastern and western walls (x =0, 1). A
64 x 64 grid and a non-dimensional time step of 10~*
are used to solve both (16c) (generation of flow field) and
Eq. 9 (forward level set evolution). Open boundary condi-
tions (see Appendix C) are implemented on all the walls for
Eq. 9. In what follows, we present results for Re = 150.

The governing flow field equations (16¢) are solved
using a second order accurate Navier-Stokes solver, which
is a component of a modular finite volume framework
(Ueckermann and Lermusiaux 2011). The framework uses
a uniform, two-dimensional staggered C-grid for the spatial
discretization. The diffusion operator in Eq. 16c is dis-
cretized using a second-order central difference scheme.

@ Springer

(b) t = 1.18

The advection operator is discretized using a total variation
diminishing (TVD) scheme with the monotonized central
(MCQ) limiter (Van Leer 1977). The time discretization
uses a first-order accurate, semi-implicit projection method,
where the diffusion and pressure terms are treated implic-
itly and the advection is treated explicitly (Ueckermann
et al. 2013). In Fig. 4, we show a few snapshots of the
computed flow field streamlines, overlaid on a color plot
of vorticity, at different non-dimensional times. The for-
ward evolution (9) is solved using the numerical scheme
described in Appendix C.

In this example, we (i) examine the performance of our
methodology for path planning in a strong and dynamic flow
field and (ii) illustrate an example to determine if a vehicle
can reach a given end point within a specified time limit.
Here, we choose ys = (0.2,0.2) and yf = (0.8, 0.8). The
vehicle is allowed to move after an offset time ¢, = 1.10,
i.e., the flow field experienced by the vehicle at the start of
its motion is the flow field at time f;. Figure 4a depicts the
points ys, yr and the flow field at the time .

Figure 5 shows the evolution of the zero level set front
when F = 5. The optimal trajectory obtained by solv-
ing (12) is plotted in Fig. 6. Due to the strong flow field,
the vehicle has to perform two revolutions around the
lower eddy before it finds a favorable current that drives it
towards yf.

Using this double-gyre flow field, we study another
important aspect of path planning which is to determine
whether a vehicle can reach a given end point within a
specified time limit, Tyax. For this example, we use a start-
ing time #; = 0.4. We examine the effect of varying F,
setting all other parameters the same as before. If we set
F = 8, the optimal travel time is computed to be 0.0343
(see Fig. 7b). Upon reducing F' to 6, the optimal travel
time increases to 0.0856—more than twice the earlier value.
The optimal trajectory is also significantly different. Our
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T=1.1250

05} ¢ 05}

o} 0.5 1 0 .
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Fig. 5 Time evolution of the reachability front (black) in the double-gyre flow field for a start time #; = 1.10 and relative speed F = 5. The

evolution of the flow field, colored by vorticity, is also shown

level set methodology can predict if a vehicle can reach yg
within time Tpnax. The reachability front at time t = 0.035
for F = 6 is shown in Fig. 7c. Since the front has not

=

0.5

Fig. 6 Time-optimal trajectory (black) from ys = (0.2,0.2) to yr =
(0.8,0.8) in the double-gyre flow overlaid on the final flow field
colored by vorticity

yet reached yg, we conclude that it is not possible for the
vehicle to reach y¢ within Trax = 0.035. In the general
case, Eq. 9 needs to be solved until the front reaches yg or
until time Tiax, Whichever is smaller. In the first case, the
optimal trajectory can be computed, and in the second, the
algorithm terminates, providing the reachability set at time

Tmax.
5.2.2 Flow past circular island: all-to-all broadcast

We now consider the case of open flow in a smooth ocean
channel with a circular island obstacle (see Fig. 8). This
is a highly unsteady flow field that exhibits varied vortex
shedding (a function of the Re) in the wake. Through this
example, we (i) illustrate performance for swarms of vehi-
cles in a strong and dynamic flow field, (ii) demonstrate
how obstacles to the flow (and vehicle) are naturally han-
dled by the algorithm, and (iii) illustrate that the algorithm
can be parallelized when paths for multiple vehicles have to
be planned.
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Travel Time = 0.0856
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Travel Time = 0.0343

05|

0.5r
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(a) F =6 (b) F =8 () F =6

Fig. 7 Time-optimal trajectories for two vehicles in the double-gyre
flow field. a The first vehicle (F = 6) takes 0.0856 units of time to
reach the end point whereas b the second vehicle (F = 8) takes only

In this example, 11 swarms (black circles) of 11 vehi-
cles each are initially located upstream of the obstacle. Each
swarm has one designated leader who must receive infor-
mation from representative vehicles of each of the other 10
swarms. The information exchange must take place in the
fastest time at specific locations downstream (shown by col-
ored markers in Fig. 9), where swarms are reformed. Each
leader travels to the end point corresponding to its swarm,
and each follower travels to one of the other end points. This
situation is an all-fo-all broadcast in distributed computing
and communication, where every node broadcasts its infor-
mation to all other nodes. Thus, the goal for these vehicles
is to reach their end points in the fastest time by utilizing
(or avoiding) the multi-scale flow structures in their path. In
addition, none of the vehicles should collide with the cylin-
drical obstacle, i.e., the paths of all the vehicles should be
both safe and optimal.

In the example shown, Re = 1, 000. The flow is driven
by a deterministic uniform flow at the inlet (left of domain),
with slip velocity boundary conditions at the top and bottom
and open boundary conditions at the outlet (see Fig. 8). The
governing flow field equations are given by Eq. 16¢ without
the Coriolis and wind stress terms (i.e., f =0, 7x = 7y =
0). The obstacle in the domain is handled by masking out the

0.0343 units of time. ¢ The reachability front at time ¢+ = 0.035 for the
slower vehicle (F = 6)

appropriate region in the mesh. A 200 x 30 grid and a non-
dimensional time step of 5 x 10™* are used in solving both
(16¢) (flow field) and (9) (forward evolution). Snapshots
of the resultant flow field at different times are shown in
Fig. 9.

We choose F = 0.5 and evolve a level set (9) corre-
sponding to each of the 11 start points. In solving Eq. 9,
we use mask the grid points that lie under the obstacle (see
Appendix C). Open boundary conditions are imposed on ¢
at all other domain edges.

Figure 10 shows the time evolution of level set fronts for
three different start points overlaid on plots of flow fields
colored by vorticity. We see that the level set fronts do not
penetrate the obstacle, but “wrap” around it. This feature
of level sets leads to collision-free (safe) trajectories. The
level set fronts from each start point are evolved until every
end point has been crossed. The crossing times of each end
point are recorded because backtracking (12) is performed
from the time each end point is reached. The optimal vehicle
trajectories corresponding to each start point are plotted in
Fig. 11. As expected, none of the paths pass through the
obstacle. Figure 11j contains all of the vehicle paths, clearly
illustrating the all-to-all broadcast, with connections from
each start point to every end point.

Fig. 8 Schematic of flow past 20
circular island test case. Flow >
enters the left edge of the s Ou

— un=0%=0
domain at a non-dimensional u= (27 0) 1 ’ on
speed of 2 and encounters a —> 4 . ou _
circular island, leading to the »l< 5 1 3 on
formation of vortices P=0
downstream of the island —>

- u-n=02%=0
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Fig. 9 Snapshots of flow field behind the circular island at different times. Streamlines are overlaid on the flow field colored by vorticity (range:

[-15,15])

This example shows that our methodology generates
collision-free vehicle trajectories in addition to time-optimal
paths at no additional computational expense. Also, the
number of level sets that need to be evolved depends on the
number of different start points and not on the number of
end points. Paths to every end point corresponding to a sin-
gle start point can be planned by evolving just one level set
field. In the case of multiple end point points, the level set
needs to be evolved until all of the end points have been
reached. Thus, this algorithm can be efficiently parallelized
to independently compute optimal vehicle tracks from mul-
tiple start points. Other examples of path planning in other
flows can be found in Lolla (2012), Lolla et al. (2012), and
Lermusiaux et al. (2014).

5.3 Path planning examples complementing Section 3.3
5.3.1 Applicability of modified eikonal equation

We consider a 1D problem with y; = 0, yy = 4, and
F =1.LetV(x,t) = —2sin(xt) i (see Fig. 12). This is an
oscillating flow field in one dimension.

Since its motion is restricted to the x-axis, the vehicle has
only two heading choices at any time: it can either be steered
to the right or to the left. From Theorem 4, only vehicles
that are steered at maximum (relative) speed F can remain
on the reachability front. In this case, the reachability front
consists of only two points, corresponding to positions of
two vehicles, one steered to the left and the other to the right
at relative speed F. Since y > y, and the flow is spatially

uniform, the optimal trajectory X% (s, t) is realized when
the vehicle always moves to the right at relative speed F and
satisfies

*

Xp . 2 .
dr =F+V(Xp,t)-i=1-2sin(we). (17)

Integrating (17) with initial condition X% (ys, 0) = 0 yields

X’;,(ys,t)zt—i-i (cos(mt) — 1) . (18)

This continuous trajectory is plotted in blue in Fig. 13a.
Using X%, T°(y) can be computed as T°(y) = min,{r :
X»(ys, 1) = y}. Note that the argument y should not be con-
fused with the ordinate; here, it represents a general point in
the 1D domain. T°(y) is plotted in red in the same figure.
We can clearly see the discontinuity in 7 near points 0.08
and 2.08. This happens because at certain times, the vehicle
experiences a strong flow adverse to its rightward motion;
due to which, it is forced to reverse its trajectory until a
favorable current advects it towards y r. As aresult, the vehi-
cle visits some points (such as y = 0.08) in its optimal path
more than once. At such points, where T°(y) is not contin-
uous, the gradient VT°(y) is undefined and (34) does not
admit a continuous viscosity solution. This makes it neces-
sary to keep track of subsequent arrival times (in addition to
the first one) to compute the optimal path. Solving (9) gives
the optimal solution, even with strong adverse flow fields
since the level set front always corresponds to the reachabil-
ity front. By predicting and tracking this front, our algorithm
records multiple arrival times, providing the solution for
both weak and strong flows.
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Fig. 10 Flow past circular island: time evolution of level set front corresponding to three different start points (marked in black). In all cases, the

level sets “wrap” around the island and never pass through it

Let us consider the same 1D example but now with a flow
field, V(x,t) = —0.95sin(xt) i. This flow is not strong
since its magnitude is at most 0.95, which is smaller than
F. The optimal trajectory in this case is plotted in blue
in Fig. 13b. The optimal first arrival time field T(y) is
superposed in red. Here, these curves are identical since the
vehicle does not experience currents of speeds larger than F
along its path. In this case, 7°(y) is the continuous viscosity
solution of Eq. 34.

5.3.2 Determination of starting time
In addition to the optimal control, the level set methodol-

ogy can also be used to determine when vehicles must be
deployed to reach their end points in the quickest time. In

@ Springer

most of the previous examples, the vehicle starts its motion
at time t;, = 0. In some cases, if the vehicle is allowed to
start at a later time (unknown a priori), it may be able to
arrive at the end point sooner than if it starts at £, = 0. This
can happen if the vehicle experiences strong adverse cur-
rents at the start which advect it away from the end point.
In such cases, the vehicle may reach the end point sooner if
deployed (from a ship, for example) after the adverse current
has passed.

We now present an example where this situation occurs
and how our approach can be used to determine 7;. We use
the same 1D example as in Section 5.3.1. The flow field
is given by V(x,?) = —2sin(rwt) i Here, we set F = 1,
¥s = 0, and yy = 2. As seen earlier, the optimal trajectory
satisfies (17). Let us assume that the vehicle is deployed at a
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(j) All Start Points 1-11 and time-optimal paths

Fig. 11 Flow past circular island: all-to-all broadcast. Safe and time-optimal trajectories corresponding to different start points. Vehicle paths
(black) are overlaid on the flow field colored by vorticity (shown in range: [-15,15])

variable start time £; > 0, so that X%, (y;, ;) = 0. Our goal
now is to minimize the arrival time at y s = 2 by a suitable
choice of #;. Integrating (17) and setting the limits yields

Xps, 1) = (t —t;) + j (cos(mt) —cos(mtg)) , t>1ts.
(19)

V(z,t) = —2sin(rt)i

®
ys(x =0)

Fig. 12 1D flow field and domain

This family of optimal trajectories and corresponding opti-
mal arrival times at y s can be computed for different values
of t; > 0. Sample trajectories corresponding to starting
times ¢, = 0, 0.5, g, 1.5, 2 are plotted in Fig. 14a.

We observe that the trajectory corresponding to ¢, = 0
reaches ys later than the one corresponding to t; = 0.5.
This is because a strong flow in the —1i direction for é <
t < g forces the vehicle to reverse its path. The optimal #,
here is when the flow speed reduces to F, which occurs at
ty = 1 — 1sin™'(0.5) = ;. In Fig. 14b, the arrival times
at yy = 2 are plotted as a function of #;. This curve clearly
shows that the fastest arrival time is for t; = g.
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Fig. 13 Optimal vehicle
trajectory (blue) and optimal
first arrival time field, 7°(y)
(red) for the 1D flow in
Section 5.3.1. In a, the adverse
flow field leads to
discontinuities in 7°(y). In b,
the flow is never adverse to
vehicle motion and 7°(y) is
continuous
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N w
N o w o ~

Arrival Time T°(y)

Discontinuous Field T°(y)

Continuous Field T°(y)

0.5

15 2
Position (y)

(a) V(x,t) = —2sin(nt) i

Our methodology can compute the optimal #; by keeping
track of reachability fronts corresponding to several starting
times. Instead of one reachability front, we will now track
an ensemble of fronts, each for one choice of 7;. The starting
time corresponding to the level set front that reaches the end
point fastest is the optimal starting time. Once this is known,
the optimal path can be calculated by solving the backtrack-
ing equation. Although this approach requires solving an
ensemble of independent forward level set (9), it is inex-
pensive due to the low computational cost. The algorithm
also lends itself to easy implementation of heuristics to
decide when to evolve new level set fronts in order to reduce
the computational cost for this problem. For example, one
admissible heuristic could be to evolve level sets when the
flow at the start point is favorable (directed towards the end
point).

5.3.3 Multiple optimal paths

In some situations, for a given problem configura-
tion (ys, g, F, V(X, 1)), there may exist multiple optimal

Fig. 14 a Optimal trajectories

4
eﬂM 9
o
7 3l
! —
- 3
o1 ¢ 25f
g
=
g
o £ 15}
O;a‘@'g <
1 OO: 1+
%I
%! 05¢
05 0 05 1 25 3 35 4 05 1 15 25 3 35 4

Positi20n (y)
(b) V(x,t) = —0.95sin(nt) i

trajectories with the same travel time. We now present such
a scenario, showing that even though two end points are
nearby each other in space, the optimal path to these points
can be very different. The end point at the limit between the
above two points admits two possible optimal paths. Theo-
retically, these are points at which characteristics of Eq. 9
merge and are quite general (e.g., lines in 2D, surfaces in
3D, etc.). We consider the example of a jet flow in a 2D
domain (Lolla et al. 2012).

In this problem, two vehicles (F = 1) start at the same
position yg = (1, 1) and same time, t; = 0. Their end
points are y% = (2,0.8) and y% = (1.95,0.75). The time-
optimal trajectories are plotted in Fig. 15. We observe that
even though y} and y% are nearby each other, the optimal
paths are very different: one of the trajectories is a straight
line from start to end and is not affected by the jet while
the second one makes use of the jet to minimize travel
time.

The viscosity solution to Eq. 9 allows the formation of
singularities (e.g., corners) in the level set front (Lolla 2012;
Sethian 1999b). This behavior occurs in this example: There

for different starting times 4
(denoted by filled circles). The
first arrival time at yy = 2 for
each trajectory is marked by
filled stars. A smaller t; does
not necessarily lead to a smaller
arrival time at y¢. b Plot of first
arrival times at yy = 2 versus
different ¢;. The minimum |t
arrival time is obtained for 1
ty = g corresponding arrival

time marked in black

w

Arrival Time T°(y)

hd
3]

w

N
o

o

ArrivalTime T°(y)

Id
3]

o

Position (y)

(a)

@ Springer

15 2

IS
o

1
Starting Time (ts)

(b)



Ocean Dynamics (2014) 64:1373-1397

Fig. 15 Optimal paths (red) overlaid on intermediate level set con-
tours (black) for a jet flow (Section 5.3.3). Nearby end points (2, 0.8)
and (1.95,0.75) produce very different optimal paths. The “shock”
line (thick black) is the set of points to which multiple optimal paths
exist

exists a shock line formed by the level sets to the end point
in which multiple optimal paths exist. This line is marked
in Fig. 15. The evidence for existence of such lines can be
obtained by solving Eq. 9 alone without the backtracking
(12). Several other similar examples can be constructed in
which there exist multiple optimal paths to some end points.

6 Conclusions

In this paper, we have developed a novel methodology to
predict the time-optimal trajectories of multiple vehicles
navigating in strong and dynamic flow fields, such as ocean
currents. To do so, we derived a modified level set equa-
tion that governs the evolution of a reachability front. The
reachability front is then evolved from the vehicle start point
until it reaches the end point, combining nominal vehi-
cle motion due to steering and advection due to the flow.
The optimal trajectory and vehicle heading directions are
then extracted from the time history of the evolution of
the reachability front by solving a backtracking problem.
The approach is interdisciplinary: It is inspired by ideas
in fluid mechanics, ocean science, and computational sci-
ences (level set and numerical methods) and applies them
to path planning, which has roots in robotics and optimal
control.

As the methodology is based on solving partial differ-
ential equations, it is rigorous and obviates the need for
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heuristics. We illustrated the theory and schemes using ana-
Iytical flows as well as unsteady double-gyre flows driven
by wind stress and flows behind a circular island. The
latter case showed that stationary obstacles that affect both
the flow and the vehicle motions can be easily accommo-
dated. The extension to moving obstacles and forbidden
regions (which affect only vehicle motions and not the flow
field) is straightforward and has discernible societal appli-
cations (e.g. ships, airplanes). Though we have only focused
on underwater path planning here, our methodology is gen-
eral and applies to many other flows (e.g. atmospheric,
microscopic) and vehicles (e.g. UAVs, bio-robots). We have
also studied several other idealized and realistic scenar-
ios, including cases with moving obstacles and forbidden
regions (Lolla et al. 2012, 2014a, ¢).

As we illustrated, the low computational cost allows the
use of our methodology to plan paths for multiple vehi-
cles simultaneously. Coordinated path planning, which has
been extensively studied and developed recently (Leonard
and Fiorelli 2001; Paley et al. 2008; Leonard et al. 2007),
renders certain types of missions possible, which otherwise
could not be executed by single-vehicle systems. A possible
future direction is to integrate our approach with existing
schemes for efficient and optimal coordination. Secondly,
in this work, we have assumed the flow fields to be exactly
known. In some cases, such as oceanic applications, the pre-
dicted flows are uncertain. It is then possible to extend our
methodology to plan paths in a stochastic setting by opti-
mizing suitable path statistics (Lolla et al. 2014c). As more
information about the forecasted flow field becomes avail-
able, the paths can be updated using onboard routing. Here,
we have focused only on continuous trajectory optimiza-
tion problems. In some practical situations, such as those
involving underwater gliders (Lolla 2012), communication
between the glider and the controller may only be possible at
discrete times (Schneider and Schmidt 2010; Hollinger et al.
2012; Cheung et al. 2013; Cheung and Hover 2013). In such
realistic cases, we need discrete control averaged over time.
This is discussed in Lolla et al. (2014a). Finally, we can also
explore the extension of our methodology to plan paths that
optimize the energy spent by the vehicles (Subramani 2014),
instead of travel time.
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Appendix A: Preliminaries

In this Appendix, we describe some of the relevant defi-
nitions and terminology needed for the theoretical results.
Most of the material presented in this Appendix may
be found in the studies of Bardi and Capuzzo-Dolcetta
(2008), Clarke et al. (1998), Cannarsa and Sinestrari (2004),
Frankowska (1989), and Bressan (2011). In what follows,
weletn e N, Q2 C R" beanopen setand &€ : Q — R.

Remark 1 Let & € C(R2). Let 91£(xp) and d_&(xp) denote
the sets of super- and sub-differentials (Bardi and Capuzzo-
Dolcetta 2008; Clarke et al. 1998) of & at x¢. Then, q €
04+&(xq) (resp. 0_&(xp)) if and only if there exists a function
y € C1(Q) such that y (xg) = £(Xo), Vy(X9) = q and the
function y — £ has a strict local minima (resp. maxima) at
XQ.

Definition 1 (Generalized gradient) Let & be locally Lip-
schitz at xop. For any u € R”, let £8(xo; u) denote the
generalized directional derivative of & at xg (Clarke et al.
1998). The set of generalized gradients of & at X is the
non-empty set

3E(x0) ={qeR" :VueR" q-u<&xpw}. (20
Definition 2 (Regular function) & is said to be regular at
Xo € € if it is Lipschitz near xo and admits directional
derivatives éd (xp;u) for all u € R”, with £8(xg;u) =
&4 (xo; w).

Properties of regular functions

1. If& is continuously differentiable at X, then it is regular
at xg. Furthermore, Ed(xo; u) = VE(Xp) -u = £8(xp; u)
for allu € R”.

2. If & is convex and Lipschitz near X, then it is regular at
x 0.

3. Let & be regular at xg € 2. Then,

9-&(X0) = 95(X0) . 1)

Definition 3 (Viscosity solution) Let F > 0 and let V(x, 1)
satisfy assumptions (3), (4), Consider the Hamilton-Jacobi
equation

%f+F|V¢I+V(X,t)~V¢>=O in Qx(0,00), (22)

with initial conditions
9(x,0) =v(x), (23)

where v :  — R is Lipschitz continuous. A function ¢ €
C(R2 x [0, 00)) is a viscosity subsolution of Eq. 22 if for
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every (x,t) € 2 x (0, 00) and (q, p) € 0+9 (X, t),

p+Flq+Vx,1)-q<0. (24)

A function ¢ € C(2 x [0, 00)) is a viscosity supersolution
of Eq. 22 if for every (x,t) € Q x (0,00) and (q,p) €
_p(x, t),

p+Flq+V(Xx,1)-q>0. (25)

¢ is said to be a viscosity solution of Eq. 22 if it is both a
viscosity subsolution and a viscosity supersolution.

Theorem 1 (Frankowska 1989) A locally Lipschitz function
¢ : 2 x (0, 00) — R is a viscosity solution to Eq. 22 if and
only if for every (x,t) € Q x (0, 00),

max {p+ Flq|+V(&x,1)-q} =0 (26)
(q,p)€dp (x,1) P q 4
and for all (q, p) € 0—¢(x, t),
p+Flq+Vix,1)-q=0. 27)

Theorem 2 (Clarke et al. 1998) [Lebourg’s Mean Value
Theorem] Let S C R be an open set. Let x, y € S and sup-
pose that f : S — R is Lipschitz on an open set containing
the segment [x, y]. Then, there exists 0 < A < 1 such that

M —fx)=gx(y—x),
for some g € 0f (z), where z = Ax + (1 — A)y.

(28)

Theorem 3 (Clarke et al. 1998)/Chain Rule] Let Q1 C R"
and Qy S R™ be two open sets with m,n € N. Let g :
Q1 — Q0 be continuously differentiable near x € 21, and
let F : Q» — R be Lipschitz near g(x). Then, f := Fogis
Lipschitz near X and

If(x) S (2X)"IF (g) ,

where * denotes the adjoint.

(29)

Appendix B: Theoretical results

We now state a lemma that provides a monotonicity result
related to ¢, the viscosity solution of the Hamilton-Jacobi
Equation (22). According to this result, the generalized gra-
dient of ¢ is non-positive on trajectories Xp (ys, t), along
dXp(ys,
dt

the direction ( t), 1) for t > 0. This lemma is then

used to prove Theorem 4, which establishes the relation-
ship between reachable sets and the viscosity solution of a
modified level set equation.

Lemma 1 Let Q@ C R” be open, F > 0 and let V(x,t)
satisfy assumptions (3), (4). Let ¢ be the viscosity solution
to Eq. 22. Let the trajectory ip (ys, t) satisfy (1) with initial
conditions X p(¥ys, 0) = ys. Then,



Ocean Dynamics (2014) 64:1373-1397

dXp(ys, t) o
p+ Pdts .q<0 V(qp) €dpXp(ys ), 1)

(30)

< dX t
ol (Xp(ys,t),t; ( P;tys’ ), 1)) <0 Vr>0.

€29

The proof of this Lemma may be found in Lolla et al.
(2014c).

Theorem 4 Let 2 C R” be an open set, V(X,1) : Q X
[0,00) — R”" satisfy (3), 4), and F > 0. Let T°(y) :
Q — R denote the optimal first arrival time at'y. Let
the trajectory ip (ys, t) satisfy (1) with initial conditions
)~(p (¥s,0) = ys. Let ¢°(x,t) be the viscosity solution to
the Hamilton-Jacobi equation (9) with initial condition (10).
Then,

1. ¢°Xp(ys.1).1) < Oforallt > 0.
2. If ¢° is regular at (X% (ys, 1), t) for all t > 0 and X%

satisfies
dXs, q°

=F V(X% (ys. 1), 1), >0, 32
i = F g TYXBOS 0.0, 1 (32)

for some (q°. p°) € 8¢° (X% (¥s. 1). 1), then

T(y) = Infir : ¢°(y, t) =0}, (33)

where inf denotes the infimum.

4. The optimal trajectory to y¢ € S satisfies (11)
whenever ¢° is differentiable at (X} (ys,t),t) and
Vo (X%, )| # 0.

5. If F > max |V(X,t)|, then T°(y) is the viscosity

xeQ,1>0

solution of the 7110dified Eikonal equation

FIVT°WI+ V(. T°(y) - VT°(y) -1 =0,y € Q.
(34)

Proof 1. The viscosity solution to Eq. 9 is locally Lips-
chitz (see Tonon (2011), Bianchini and Tonon (2012),
and Cannarsa and Sinestrari (2004)). We now argue
that ¢% (1) := ¢°(Xp(¥s, 1), 1) is locally Lipschitz for
all t > 0. Qbserve that ¢% (1) = ¢°(gp(t)) where
gp(t) := Xp(ys, 1), 1). Since gp(t) is co~ntinu0usly

differentiable in (0, 00) with *¢ = (7,1} and

¢° is locally Lipschitz, ¢% () is also locally Lipschitz
in (0, co) by the chain rule stated in Theorem 3.
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Let #; > 0 be fixed. Since ¢ is locally Lipschitz,
there exists an open interval around #; in which ¢
is Lipschitz. Thus, for any #, > #; in this interval,
Lebourg’s Mean Value Theorem (Theorem 2) implies
there exist 3 € (¢1, o) and s € ¢4 (t3) such that

Op () — Pp(t1) =5 X (12 —11). (33

Using the chain rule of Theorem 3 again (* denotes the
adjoint),

A% (13) C (gp(t3))" 39° (gp(13))
_ ip+q' dipéys,u)
t
L (@, p) € 0¢°Xp(ys. 3),13)} . (36)

Hence, any s € d¢% (#3) can be written as

. diP (Y& t3)
dr '

for some (q, p) € 3¢°(Xp(ys, 13), 13). From Eq. 30,

dXp(ys, 13) <
dr -
implying that for any s € 9¢%(13), s < 0. Using this
result in Eq. 35 yields ¢%(r2) < ¢%(t1) for all 11, 1.
Since d);’) is locally Lipschitz in (0, co), we conclude
that ¢%(¢) is non-increasing on (0, co). Moreover,
since ¢} is continuous on [0, 00), with ¢%(0) = 0
(from Eq. 10) and non-increasing in (0, co), we have
¢5(t) = p(Xp(ys, 1), 1) < Oforall 7 > 0.
When the trajectory X9 (ys,t) is regular, i.e., when
¢° is regular at points (X% (ys, 1), ) for all + > 0,
Eq. 21 implies 9_¢° (X% (ys, 1), 1) = 0¢° (X% (ys, 1), 1)
for all + > 0. Since ¢ is the viscosity solution to
Eq. 9, we obtain from Theorem 1 that for any ¢ > 0,
p+ Flql + V(X% (ys, 1), 1) - q = 0 for all (q,p) €
-9’ (X% (ys, 1), 1) = 0¢° (X% (ys, 1), t). Specifically,
for the member (q°, p°) of 9¢°(X% (ys, t), t) that sat-
isfies (32), the definition of generalized gradient (20)
implies

dX%, (¥,
¢%* (X‘;(ys,t),t;( Py ’),1))

> po g

= p° + FIq°| + V(XS (ys, 1), 1) - q°
—0. (38)

s=p+q (37)

rp+q- 0

Combining this result with Eq. 31, we obtain

¢°8 (X(;’(Y& 1), t; (dxf’étys’ t), 1)) =0.

Since ¢° is regular at (X% (ys, 1), ) by assumption, we
then also have

¢! (X(}a(ys, ), 1; <dXPgS’ t), 1)) =0. (39)
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For any h > 0, the definition of ¢¢ implies

¢p(t+h)—¢3 (1) ‘
h

¢° (X5 (ys,t4+h),1+h) —¢° (X5 (ys.1),1)
h

. (40)

Since ¢ is locally Lipschitz, 3C > 0 such that for
h > 0 small enough,

‘d)(X‘;,(ys,t—i-h),t—i-h) — ¢° (X‘;,(ys,t)—i-hdz(;;’,t-‘rh)‘

= C[Xg 0t ) = X500 = 1
— Cloh)| . @)

where o(h) € R" denotes a vector whose
individual terms are o(h). Adding and subtracting
@¢° (X(;) + hdz(t” 4+ h) from the numerator of Eq. 40

and using the triangle inequality, we obtain
o (1+h) =95 (1)

h
dX9 (ys.1)
¢° (X‘;<ys,z>+h e
<

—= h

,t+h> —¢° (X% (¥s,1).1)

+C

o(h) ‘

n |-
The first term on the right converges
to:¢0d (X‘;,, t; (dfi(t%, 1)) as h | 0 and by Eq. 39, its
value is zero. The second term uniformly converges to
zero as h | 0, by definition. This implies

o |PPEED =80
R0 h -
and consequently that
9(t +h) — % (¢
lim¢P( +h) = p (1) =0. (42)

10 h

Since Eq. 42 holds for all + > 0, ¢% is right differ-
entiable in (0, oo) and the value of the right-derivative
is zero for all + > 0. This implies that ¢ is con-
stant in (0, 00). Since ¢ (0) = 0, we obtain ¢4 (t) =
¢°(X%(ys, 1), t) = 0 for all + > 0. Therefore, trajecto-
ries X(;) (ys, t) that are regular and satisfy (32) always
remain on the zero-level set of ¢°.

It has been shown in part (1) that ¢° ()~(p (ys,1),1) <0
for all + > O for any trajectory Xp (ys, t) that satisfies
(1) and the initial conditions X p(¥s, 0) = ys. There-
fore, for a trajectory Xp(ys, t) that reaches a given end
pointy € 2 at time T(y) (not necessarily optimal),

P’y T(y) =¢°Xpys, T(¥), T(y) <0.  (43)

Since this inequality holds for any arbitrary arrival time
T (y), it will also hold for the optimal arrival time

T°(y), implying

¢°(y, T°(y)) <0 forall ye Q. (44)
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For y = ys, Eq. 33 holds trivially. For any y # ys,
¢°(y,0) > 0 by Eq. 10. The continuity of ¢° and
Eq. 44 together then yield

T°(y) = Inf{z : ¢°(y, t) =0}. (45)

In part (2), we showed the existence of trajectories that
always remain on the zero level set of ¢°. Furthermore,
any point on the zero level set of ¢° belongs to a char-
acteristics of Eq. 9 emanating from yg since ys is the
only point in € where ¢? is initially zero. Therefore,
when the zero level set reaches y for the first time,
it implies the existence of a trajectory X9 (ys, ) with
X% (ys, 0) = ys that satisfies (1). For this trajectory,
(45) holds with an equality, thereby establishing (33).
Physically, this means that fastest arrival time at any
end pointy € 2 is when the zero level set of ¢ reaches
y for the first time, and equivalently that the reachabil-
ity front 07R(ys, ¢) coincides with the zero level set of
¢° at time 1.
Let yr € Q be fixed. From part (3), the optimal trajec-
tory to yr satisfies ¢° (X% (ys, 1), 1) = 0 for all + > 0.
Hence, ¢%(1) = ¢° (X% (ys, 1), t) equals zero for all
0 <t <T*(yp). Letus fixatime O < ¢t < T*(yg) such
that ¢° is differentiable at (X% (ys, t), t). The usual
chain rule then yields
0= W0 _ 007 o, dXp0s 1)
dr at dr
where the derivatives of ¢° are evaluated at
(X (¥s, 1), 1). Since ¢° is assumed to be differentiable
at this point, Eq. 9 holds in the classical sense and
Bgf = —F|Vep° X%, 1) — VX%, 1) - Voo (X%, 1).
Substituting this in Eq. 46 gives

(46)

dX;’ o * 0 * * o *
LV Xy 1) = FIVY Xy )] +V(Xp. 1) Ve (X} 1)

d
(47)

Using Eq. 1,

d?f; . V¢0(X* , t)
= Fp0) h* (1) - Voo (X%, 1) + V(X5 1) - VO (X5, 1)
S FIVe*Xp, D+ VX3, 1) - Vo Xy, 1),

equality holding iff Fa(r) = F and h*() =

V© (X%,1) N . . .
|V¢"(X£,t)|’ for |[V¢? (X%, t)| # 0. Using this result in
Eq. 47 yields
dX; Voo (X%, t
g ¢(* )+V(X*,t).
dt Voo (X%, 1)l

Under the assumption F > supy.q ,>o{IV(X, 7)[}, the
start point ys belongs to the interior of the reachable set
R(ys, t) forall t > 0, i.e., for any r > 0, there exists
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€ > 0 such that all points X’ satisfying |ys — X'| < ¢
are members of R(ys, #). This condition is equivalent
to the “small time local controllability” condition dis-
cussed in the study of Bardi and Capuzzo-Dolcetta
(2008) as a result of which, T° is continuous in . See
(Bardi and Capuzzo-Dolcetta 2008) for a formal proof
of this statement. Let us fix y € Q2. By definition, 7°(y)
satisfies

T(y) = ggg{T”(’i) +h}, (48)

where Y € Qis a point such that there exists a trajectory
Xp(ys, t) satisfying (1) and the limiting conditions

Xp(ys, TG =¥, Xp@s, TG +h) =y. (49

In order to show that 7 is a viscosity solution to
Eq. 34, we show that it is both a viscosity subsolution
and a supersolution to Eq. 34.

Viscosity subsolution From Definition 3 and Remark
1, T° € C(R2) is a viscosity subsolution to Eq. 34 if at
every y € Q and for every C! function 7, : @ — R
such that 7;(y) = T°(y) and t; — T° has a local minima
aty,

FIVt;()I+ V(. T°(y) - Vzs(y) — 1 <0. (50)

Since t; > T in a neighborhood of y, we obtain for
h > 0 small enough,

,(y) — . (y) < T°y) — T°(y) .

Moreover, for this choice of / and the resulting y, (48)
implies

T()(y) E T()(’S;) + h .
Combining the above two inequalities yields
Ly -t <T°(y-T°G) <h. (1)

Since t; is differentiable at y, Taylor’s theorem may be
used to expand 7, (¥) near y.

Ts(i) =15(y) + V1, (y) - G_Y)+0(|y_YI)
=5 — [0 Ve - K7 di +o(F - yl).

(52)
Inserting Eq. 52 in Eq. 51 and dividing by A,

1 T°G®+h aX v _
f Vi (y) - de_O(Iy yb <1
h To®F) dr h

As h | 0 and after noting that the second term on the
left vanishes under this limit, we obtain

dXp )
V(y) - dr (¥s: T°(y)) = 1. (53)

VTi(y)-

1393

One can see that Eq. 50 is satisfied trivially when
[Vzs(y)| = 0. Thus, we may assume Vs (y)| # O.

Since (53) holds for any valid choice of dfft” , we may

X Vi,
choo.se Xr (ys. T(y)) = F|V;8;\ + V(y. T(y)) to
obtain

Vi - (F Y9 + Ve 10))
= FIVT,)| + V(. T°0) - V(¥ < 1,

thereby establishing (50). Therefore, 7° is a viscosity
subsolution to Eq. 34.

Viscosity supersolution T° is a viscosity supersolu-
tion to Eq. 34 if at any y € Q and for every C! function
% : @ — Rsuch that t°(y) = T°(y) and t° — T has
a local maxima at y,

FIVT' (W) + V(. T°(y)) - VT’ (y) = 1 > 0. (54)

For any 0 < h < T°(y), there exists y € € satis-
fying T°(y) + h = T°(y) and a trajectory Xp(ys, 1)
satisfying (1) and the limiting conditions

Xp(ys, T°D) =5, Xp¥s: T°(y) =y. (55)

Of course, the optimal trajectory leading to y is a valid
choice for Xp (ys, ). For & > 0 small enough,

h=T°0y)—-T°) <t°@y) —°® . (56)

As in the earlier sub-section, we may use Taylor’s
theorem to expand 7°(y) near y to obtain

Ty =MV G-y +o(y—yD
=) — [y V) - B dr o (F ). (57)

Inserting (57) in Eq. 56 and dividing by 4,

1 (T°®+h dX v —
/ vy XP g OIS s
h T"@ dr h

Observe that from Eq. 1,

dXp(ys, 1)
t

d < FIVEWI+VXp(ys. ). 1)-VT'(y) .
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Taking limits of Eq. 58 as & | 0 gives

X . .
1 <Vi(y)- dtP (ys. T°(y)) < FIVE'WMI+V({G. T°()-VTi(y) ,

which proves that 7 is a viscosity supersolution of
Eq. 34. Therefore, T is a viscosity solution to Eq. 34.

Appendix C: Numerical schemes

We now summarize the numerical schemes utilized to dis-
cretize and solve (9) and (12). These equations are solved
using a finite volume framework implemented in MATLAB.
The term |V¢?| in (9) is discretized using either a first order
(Sethian 1999b; Lolla 2012) or a higher order (Yigit 2011)
upwind scheme and V(x, t) - V¢? is discretized using a sec-
ond order TVD scheme on a staggered C-grid (Ueckermann
and Lermusiaux 2011).

C.1 Forward level set evolution

We discretize (9) in time using a fractional step method as
follows:

¢ —9°(x, 1) v
At)2 = —F[V¢?(x, )] (39)
$—¢ .
A =V 5) - Vé (60)
¢(x. 1+ A1) — § B -
A2 = —F|Vg| 1)

Equations 59-61 are solved only in the interior nodes
of the discretized system. For boundaries that are open
inlets/outlets or side walls (i.e., not interior obstacles nor
forbidden regions), open boundary conditions are used on
¢° and on the intermediate variables ¢ and ¢ at each time
step. Specifically, a radiation boundary condition with infi-
nite wave speed is assumed, which amounts to an internal
zero normal gradient (Neumann) condition, so the bound-
ary values are updated by replacing them with the value
of the variable one cell interior to the boundary. Obstacles
and forbidden regions in the domain are masked, i.e., (9) is
solved only at interior nodes not lying under these regions.
For points adjacent to the mask, open boundary conditions
are implemented and necessary spatial gradients are evalu-
ated using neighboring nodes that do not lie under the mask.
As a result, the value of ¢ under the mask is never used
in the computation. We note that in some situations, more
complex open boundary conditions could be used as done
in regional ocean modeling (Lermusiaux 1997; Haley and
Lermusiaux 2010). We have implemented the narrow-band
scheme of Adalsteinsson and Sethian (1995) to solve (59)—
(61).
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The reachability front 9Rge(¢) is extracted from the ¢
field at every time step using a contour algorithm. In a 2D
problem, the amount of storage required for this is not sig-
nificant because dR o () is a 1D curve which is numerically
represented by a finite number of points. We also note that
this contour extraction is not needed: We could simply store
the times when the zero contour of ¢° crosses each grid
point in order to compute the normals for the backtracking
(Yigit 2011).

C.2 Backtracking

Equation 12 is discretized using first order (Lolla 2012)
or higher-order (Yigit 2011) time integration schemes. Ide-
ally, it suffices to solve Eq. 9 until the level set front first
reaches yr. However, due to the discrete time steps, a more
convenient stopping criterion is the first time, 7, when
¢°(ye, T) < 0. Due to this, y¢ does not lie on the final
contour dRgo(T) exactly. Thus, we first project y¢ onto
R go (T). The projected h, is computed as the unit normal
to 3Ry (T) at the projected point. The discretized form of
Eq. 12,

X5 (vs, t — At) — X5 (ys, t Voo (X3, t
p(Ys ) P (¥s )=—V(X;,l)—F d°( F ) ’
At Voo (X%, 1)
0y (x,1)

(62)

is marched back in time until we reach a point on the
first saved contour and this generates a discrete represen-
tation of X (ys, ). Along the way, we project each newly
computed trajectory point, X% (ys, t — At) onto the corre-
sponding intermediate level set contour (see Lolla (2012)).
Instead of performing these projections, one can use
the two intermediate discrete level set contours between
which an unprojected trajectory point lies to interpolate
either the normal fi, at the trajectory point or a con-
tour passing through the trajectory point from which fi,
can be computed. This interpolation should be of suffi-
ciently high order to prevent potential biases that may
occur. One can also use a predictor-corrector scheme
to compute X% (ys,t — At) using the normals both
att — Arand .

As discussed in Section 4.1 and the Uniqueness remark
of Section 3.3, multiple optimal paths exist to end points
y¢ which lie on shock lines. However, as Eq. 9 is solved
numerically, yr does not lie on shock lines exactly due to
discretization errors. In fact, yg does not even lie exactly on
the final level set contour dRge(T), as mentioned above.
Consequently, solving (12) in such cases yields only one
of the optimal trajectories, depending on the numerical
errors.
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