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a b s t r a c t

A new methodology for rigorous Bayesian learning of high-dimensional stochastic dynamical models
is developed. The methodology performs parallelized computation of marginal likelihoods for multiple
candidate models, integrating over all state variable and parameter values, and enabling a principled
Bayesian update of model distributions. This is accomplished by leveraging the dynamically orthogonal
(DO) evolution equations for uncertainty prediction in a dynamic stochastic subspace and the Gaussian
Mixture Model-DO filter for inference of nonlinear state variables and parameters, using reduced-
dimension state augmentation to accommodate models featuring uncertain parameters. Overall, the
joint Bayesian inference of the state, model equations, geometry, boundary conditions, and initial
conditions is performed. Results are exemplified using two high-dimensional, nonlinear simulated fluid
and ocean systems. For the first, limited measurements of fluid flow downstream of an obstacle are
used to perform joint inference of the obstacle’s shape, the Reynolds number, and the O(105) fluid
velocity state variables. For the second, limited measurements of the concentration of a microorganism
advected by an uncertain flow are used to perform joint inference of the microorganism’s reaction
equation and the O(105) microorganism concentration and ocean velocity state variables. When the
observations are sufficiently informative about the learning objectives, we find that our posterior model
probabilities correctly identify either the true model or the most plausible models, even in cases where
a human would be challenged to do the same.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic dynamical systems [1] are everywhere, from
ceanic and ecological systems, power grids and communica-
ions networks, to financial markets and social networks. The
athematical tools that have been developed for investigating
tochastic dynamical systems are thus highly versatile and have
een applied in a wide range of fields [2–13].
Quantitative investigations of a stochastic dynamical system

ypically assume that the mathematical model formulated for
he system is an accurate description of its governing processes.
ncertainty in the system’s state variables are often assumed
o originate solely from uncertainty in the system’s initial and
oundary conditions, and stochastic forcings with known sta-
istical properties. This assumption of absolute model formu-
ation validity however is not always defensible. For example,
hen dealing with complex systems for which governing equa-
ions have not yet been derived from known first principles,
he assumption is surely inappropriate. In general, uncertainty in
odel formulation can originate from the choice of state variables

hemselves, from the functional forms of the model equations,
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ttps://doi.org/10.1016/j.physd.2021.133003
167-2789/© 2021 Elsevier B.V. All rights reserved.
boundary conditions or initial conditions, and from the definition
of the (spatial) domain of integration. Both the deterministic and
stochastic components of the model formulation can be uncer-
tain. In what follows, when possible, we will refer to model
formulation uncertainty simply as model uncertainty.

Model uncertainty can be difficult to quantify and is thus
often ignored. This is not damaging when model uncertainty is
insignificant. For example, when we model ballistic dynamics on
Earth, one can have confidence in Newton’s laws of motion. In
other cases however, it can lead to significant underestimation
of uncertainty. [14,15], and [16] review poignant examples from
statistics in which ignorance of model uncertainty resulted in
overconfidence in state estimates, which subsequently led to
tragically flawed conclusions.

Ignoring model uncertainty is also antithetic to the scientific
method, which entails the comparison of competing hypotheses
by means of observations. If multiple models are considered, the
observations used to perform inference with one model can also
be used to learn the relative validity of each of the models. This
process of model learning can reveal valuable insights regarding
the fundamental mechanisms of the system. If model uncertainty
is ignored however and only one model – one hypothesis – is
assumed, this opportunity for scientific discovery in the classic

sense is forfeited.

https://doi.org/10.1016/j.physd.2021.133003
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.1. Progress to date

Several methods have been obtained to handle the coupled
ssues of model uncertainty and model learning in stochastic
ynamical systems. Directed search methods for model learning
ypically proceed by first performing state variable inference for
large set of candidate models, then scoring the inferred state
ariables relative to observations using metrics derived from
requentist statistics. Computational schemes are employed to
earch through expansive sets of plausible candidate models, with
he search process directed by results from successive rounds
f candidate evaluations. A premier example of this strategy
s [17]. In this work, the authors employed a heuristic opti-
ization scheme known as symbolic regression [18] to search

hrough a space of algebraic expressions with the goal of find-
ng the fundamental physical laws that govern several simple
ynamical systems, such as single and double pendula. The au-
hors were able to identify conservation laws for energy and
omentum without any prior information regarding the laws’

unctional forms. Their approach is highly versatile but excep-
ionally demanding in terms of computational cost, even for the
ow-dimensional systems they considered. Model learning for the
ouble pendulum system, a non-linear system with two state
ariables, required over 30 h of computational time in a 32-core
arallelized implementation. Extensions of their approach, and
ther directed search model learning methods (e.g. [19–23]), to
igh-dimensional systems will likely prove to be computationally
hallenging.
Hierarchical Bayesian modeling is a general approach to han-

ling model uncertainty whereby full stochastic dynamical mod-
ls are represented as hierarchies of simpler, analytically tractable
ub-models [24,25]. If these sub-models are properly formulated,
nference can be performed separately for each by exploiting
heir conditional independences, with the sub-models aggregated
fterwards to achieve global model learning. An oceanographic
pplication of this approach is demonstrated in [26], where the
uthors used a hierarchical Bayesian model to formulate a stochas-
ic dynamical model of the surface wind streamfunction over
region of the Labrador Sea using satellite surface wind ve-

ocity data. The aggregate wind model was decomposed into
ub-models for observational data, boundary conditions, and the
umerical streamfunction, which enabled the quantification of
oundary condition uncertainties on the posterior distribution
f streamfunction values. An ecological application of this hier-
rchical Bayesian modeling is [27], where the authors predict
he spatial distribution of ground flora based on sparse data.
ub-models were formulated that enabled the incorporation of
eographic covariates, a source of model uncertainty that, when
ccounted for, significantly enhanced flora distribution predic-
ions. Further applications of hierarchical Bayesian modeling to
roblems of spatiotemporal statistics include [28–31], and [32].
ultiresolution Bayesian modeling, a variation of the approach

or application to signal and image processing, is reviewed in [33,
4], and [35]. In [36], an extension of the hierarchical formulation
o graphical models allows for more complex interdependencies
etween model components, at the cost of more computationally
ntensive inference algorithms.

Though many model learning techniques, such as the directed
earch methods, can be effective when system dimensions are
mall and candidate model spaces are readily explored, computa-
ional difficulties arise when they are applied to high-dimensional
ystems, such as those encountered in geosciences [37,38].
educed-order modeling (ROM) techniques [39,40] are designed
o find low-dimensional representations of high-dimensional
odels, for which model uncertainty quantification and inference
re more readily performed. They include proper orthogonal
2

decomposition (POD) [41–43], centroidal Voronoi tessellation [44]
neural networks [45,46], Volterra series [47], kriging [48], dy-
namic data-driven ROMs [49], certified reduced basis methods
[50], empirical emulators [51,52], error subspace statistical esti-
mation [53,54] and its use in adaptive modeling [55–57], and the
dynamically orthogonal (DO) evolution equations [58–60].

Machine learning methods have been applied recently to the
discovery of model equations. The sparse regression-based meth-
ods (SINDy) [61,62] are promising as they do not require prior
knowledge, but they often need large data sets. Variations of
SINDy have been obtained such as weak SINDy to learn PDEs [63],
adaptive generation of features to expand the library of mod-
els [64], and extensions to Bayesian identification [65]. Methods
such as DeepMOD/DL-PDE/DLGA-PDE [66–70] leverage neural
networks to eliminate the need for data with high temporal
resolution. Some methods use genetic algorithms [71] and rein-
forcement learning [72–74] to search in the space of potential
models. However, most of these methods do not provide uncer-
tainty estimates for the discovered models. Schemes have also
combined prior knowledge about underlying governing equations
for model recovery and refinement. For example, [75] successfully
used Gaussian processes to learn the values of the parametric
response of partially-known differential equations. PDENet [76],
which connects differential operators and convolutional filters
to learn spatial derivatives, can now relax the need for prior
information about the form of the PDE by using a symbolic neu-
ral network [77]. Finally, physics-based machine learning have
been combined with POD reductions [78] and Long Short-Term
Memory networks have resolved improperly modeled dynamics
[79].

The challenges for many methods however are to predict and
evolve the probability distribution of high-dimensional fields ac-
curately, capturing nonlinear dynamics and non-Gaussian statis-
tics, to assimilate the observed information with Bayes rules in
accord with all prior uncertainties, and to accurately marginalize
for the posterior distribution of the models and thus achieve
rigorous Bayesian learning of model formulations.

1.2. Problem statement

System: We consider a system with state vector X ∈ RNX

governed by an uncertain stochastic dynamical model M with
uncertain parameter vector Θ ∈ RNΘ , where NX and NΘ ∈

N are the dimensions of the state and parameter vectors. For
realizations x, θ, and Mn of X , Θ , and M respectively, we have,

dx(t; ω)
dt

= Mn [ x(t; ω), θ(ω), t; ω ] (1)

Mn ≡
(
Dn, SGn, BCn, ICn

)
, (2)

here t denotes time, ω an index over stochastic realizations (a
andom event), Dn the set of stochastic dynamical equations, SGn
he geometry (e.g. spatial domain), BCn the boundary conditions,
nd ICn the initial conditions. All of the model components rep-
esented in (2) are allowed to be uncertain. They can all contain
ncertain formulations (e.g. candidate functions for the model,
omain shape, BC or IC). The joint probability distribution over X ,
, and M is denoted pX,Θ,M(x, θ,Mn) and is time-dependent.
Observations: Stochastic observations Y ∈ RNY are available

t data times. Their probability distribution is conditionally inde-
endent of both the model and parameters, given state variables

Y |X,Θ,M(y |x, θ,Mn) = pY |X (y |x) ≡ L (y | x) ∀x ∈ RNX , (3)

here NY ∈ N is the dimension of the observation vector, y a
ealization of the observation vector, and L (y | •) the observation
likelihood function or observation model for the system.
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Denoting by N
(
• ; µ , Σ

)
a multivariate Gaussian distribu-

tion with mean µ and covariance Σ, a particular observation
likelihood function we will use is,

L (y | x) = N
(
y ; Hx , R

)
∀x ∈ RNX , (4)

where H ∈ RNY ×NX is the linear observation matrix and R ∈

RNY ×NY the observation covariance matrix. This is equivalent to,

Y = HX + V ,

where V ∈ RNY represents zero-mean Gaussian noise with
covariance R.

Goal: Our goal is to address the three challenges, specifically:

1. Efficiently evolve pX,Θ,M(x, θ,Mn) in time, accounting for
all forms of uncertainty encapsulated in (1) and (2).

2. When observations are available, use (3) and perform the
Bayesian update of the joint probability distribution,

pX,Θ,M(x, θ,Mn) → pX,Θ,M|Y (x, θ,Mn |y)

3. Finally, obtain marginal distributions, especially the model
distribution pM(Mn) and its Bayesian update when obser-
vations are available,

pM(Mn) → pM|Y (Mn |y)

. Methodology

We now define the computations needed for Bayesian model
earning including marginal likelihoods and then develop our rig-
rous Bayesian learning for high-dimensional nonlinear stochas-
ic dynamical models.

.1. Bayesian model learning

.1.1. Candidate models
A common approach to represent model uncertainty is to

ormulate a finite set of candidates for the true model. These can-
idates or beliefs may be derived from first principles, inspired by
revious observations, or based on a combination of theoretical
nd empirical prior knowledge. A discrete probability distribution
M(•) can be defined over the set of candidate models to rep-
esent the probabilities that each of the candidates are the true
odel. Each candidate model can be used to predict the evolution
f the system’s state, independent of the other models, producing
tate variable probability distributions that are conditional on the
andidates being the true model. If the candidates are assumed
o be independent, a state variable probability distribution that
ccounts for the uncertainty in the formulation of the system’s
odel can be estimated at any time as simply the weighted
verage of these conditional distributions,

X (x) =

NM∑
n=1

pX |M(x |Mn) pM(Mn) ∀x ∈ RNX , (5)

here pX (•) is the state variable distribution, NM ∈ N the total
umber of candidate models, Mn the nth candidate model, and
X |M(•|Mn) the state variable distribution conditioned on Mn

(the nth model-conditional state variable distribution). Versions
of (5) have been used before and are known by many names,
including Bayesian model averaging [15,80,81], multimodel es-
timation [82,83], multimodel fusion [84], and (multimodel or
super-) ensemble modeling [85–87]. If the candidate models Mn
are correlated or if the space of model formulation/structures is
continuous (instead of discrete as in (5)), the distribution (5) be-
comes a correlated weighting or an integral over the continuous
model formulation/structures. Our formalism directly extends to
these cases.
3

If (5) holds, its linear nature w.r.t. candidate models leads
to several useful properties (see [88]). First, marginal distribu-
tions for subsets of state variables can be found as weighted
averages of the corresponding model-conditional marginal dis-
tributions, i.e. if x =

[
x1 x2

]T with x1 and x2 mutually exclu-
sive, we have pX1(x1) =

∑NM
n=1 pX1|M(x1 |Mn) pM(Mn). Sec-

nd, the state variable mean can be found as a weighted aver-
ge of the model-conditional state variable means, i.e. E [X ] =
NM
n=1 E [X |Mn ] pM(Mn).

.1.2. Joint state and model learning
When observations of state variables are made, both the

odel-conditional state variable distributions and model dis-
ribution within (5) can theoretically be updated using Bayes’
heorem [89],

X |Y ,M(x |y,Mn) =
pY |X,M(y |x,Mn)

pY |M(y |Mn)
pX |M(x |Mn)

∀x ∈ RNX , ∀n ∈ {1, . . . ,NM} , (6)

pM|Y (Mn |y) =
pY |M(y |Mn)

pY (y)
pM(Mn)

∀n ∈ {1, . . . ,NM} . (7)

In (6), the model Mn plays the role of a ‘given parameter’. The
distributions pX |M(•|Mn) and pX |Y ,M(•|y,Mn) are the prior
and posterior conditional state variable distributions for the nth
candidate model, while pM(•) and pM|Y (•|y) are the prior and
posterior model distributions, respectively.

If the candidate models are assumed independent, as in (5),
the posterior model-conditional state variable distributions and
model distribution can be combined to form the posterior state
variable distribution,

pX |Y (x |y) =

NM∑
n=1

pX |Y ,M(x |y,Mn)pM|Y (Mn |y) ∀x ∈ RNX .

(8)

Equation (6) represents Bayesian state variable inference and
can be performed for each model-conditional state variable dis-
tribution independently, ignoring model uncertainty. Techniques
for state variable inference abound, ranging from the Kalman
filter [90,91] to particle filters [92], Markov chain Monte Carlo
(MCMC) algorithms [93], and forward–backward algorithms [94].
State variable inference and data assimilation have roots in op-
timal estimation theory e.g. [95–97] and control theory [98,99],
with now many applications in environmental sciences and engi-
neering (e.g. [12,24,100–105]).

Equation (7) represents Bayesian model learning. The com-
parison of the posteriors for each Mn, pM|Y (Mn |y), is Bayesian
ypothesis testing for competing models and each pM|Y (Mn |y)
s often referred to as model evidence. Though cosmetically sim-
ler than (6), (7) is in fact the more challenging of the two
ayesian updates to perform. The chief difficulty lies in the calcu-
ation of the marginal likelihood pY |M(y |Mn), which represents
he strength of the observational evidence for Mn, i.e. the like-
ihood of model Mn, for all states X . While pY |X,M(y |x,Mn) is
quivalent to the observation likelihood function L (y | x) – the

function that defines the probability distribution for observations
when state variables are known – an explicit expression for the
likelihood pY |M(y |Mn) is not available. Instead, pY |M(y |Mn)
(the probability distribution for the observation vector realization
conditioned on a given candidate model) must be found through
difficult, very large-dimension integrations [14,24,106],

pY |M(y |Mn) =

∫
pY |X,M(y |x,Mn) pX |M(x |Mn) dx
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∫
L (y | x) pX |M(x |Mn) dx ∀n ∈ {1, . . . ,NM} .

(9)

Note that although pY |M(y |Mn) also appears in (6), there it
erves only as the normalization constant for the posterior condi-
ional state variable distribution and its explicit calculation is usu-
lly side-stepped by Bayesian state variable inference schemes.
ikewise, pY (y) appearing in (7) is not of concern for learning,
as it serves only as the normalization constant for the poste-
rior model distribution. Once all marginal likelihoods have been
found, pY (y) can be computed as simply their weighted summa-
tion,

pY (y) =

NM∑
n=1

pY |M(y |Mn) pM(Mn) . (10)

2.2. Marginal likelihood computation

Several approximations have been used to calculate the inte-
gral in (9). A simple one used in control theory is to approximate
both L (y | •) and pX |M(•|Mn) as Gaussian distributions, in
which case an analytical expression for (9) can be found [82,83].
This handles poorly non-Gaussian state variable distributions as
well as high-dimensional systems with large covariance matrices.
When the functional forms of L (y | •) and pX |M(•|Mn) do
not allow for the analytical calculation of the integral in (9), an
alternative is to use closed-form approximations of the integral
that are exact in the limit of infinite observations [16]. The accu-
racy of these approximations generally increases as the density
of L (y | •) pX |M(•|Mn) increases near its maximum (i.e. the
more the density peaks, the better). These asymptotic approxi-
mations are thus best-suited for systems featuring unimodal state
variable distributions and large numbers of observations. Unfor-
tunately, in high-dimensional, nonlinear systems such as those
encountered in oceanography and meteorology, multimodality
and sparse observations are the norm (e.g. [10,103,107–110]).

For cases where analytical solutions to (9) are not available
and asymptotic approximations are inappropriate, computational
techniques are used. They include importance sampling [111,
112], bridge sampling [113], path sampling [114], annealed im-
portance sampling [115], and nested sampling [116,117]. Though
these methods are generally robust to variations in the functional
forms of L (y | •) and pX |M(•|Mn), they remain limited in the
dimension of the systems they can handle, e.g. O(102) [114].
This falls short of the O(105–109) state variables frequently en-
countered in geophysical sciences [37]. In order to perform our
Bayesian model learning, the major challenge is thus to obtain
inference schemes that efficiently reduce dimensions, capturing
and exploiting dominant nonlinear dynamics and non-Gaussian
statistics, and that accurately compute the marginal likelihood
integral in (9). This is addressed next.

2.3. Bayesian learning schemes

To enable principled Bayesian model learning for high-
dimensional nonlinear stochastic dynamical systems using (9),
we utilize the DO evolution equations and the Gaussian Mix-
ture Model (GMM)-DO filter. The DO equations achieve an opti-
mal dynamic dimension-reduction [60] and evolve the dominant
model-conditional state variable distributions introduced in (5).
The GMM-DO filter [118,119] is first employed to perform the
Bayesian updates (6) of the model-conditional distributions in
the evolving DO subspaces. In doing so, reduced-dimension state
augmentation is used to also update and learn uncertain model

parameters. The marginal likelihoods (9) are then calculated

4

analytically using the GMMs in the DO subspace of each candidate
model, providing the structural flexibility to represent nonlinear
multimodal state variable distributions. Finally, these marginal
likelihoods are used to perform the Bayesian update (7) of the
model distribution, thus accomplishing Bayesian model learning.
Each of these components is outlined next, with an integrated
account provided at the end. A compendium of the notation is
provided in Table 3.

2.3.1. DO evolution equations
The DO differential equations provide an instantaneously opti-

mal dynamic reduction of nonlinear stochastic differential equa-
tions [59,60,120,121]. The stochastic dynamical state vector is
truncated using a DO expansion (a generalized, time-dependent
Karhunen–Loeve decomposition [122]),

x(t; ω) ≈ x(t) +

NDO∑
i=1

φi(t; ω) x̃i(t) , (11)

where x(t) ∈ RNX is the state vector mean, x̃i(t) ∈ RNX the ith
of NDO orthonormal basis vectors, and φi(t; ω) ∈ R the ith of NDO
zero-mean stochastic processes. The basis vectors and stochas-
tic processes are referred to as the DO modes and coefficients,
respectively. The DO modes define a stochastic subspace VDO =

span
{
x̃i(t)

}NDO
i=1 embedded in RNX within which the majority of the

state uncertainty resides. At any given time, a reduced-dimension
probability distribution for the NDO coefficients then efficiently
represents the full probability distribution for the NX state vari-
ables, as (11) relates the two sets of variables through an affine
transformation.

To evolve the probability density of the state vector, equations
for the terms in the expansion (11) are obtained from the original
stochastic dynamical model equations governing the evolution of
the state vector
dx(t; ω)

dt
= M [x(t; ω); ω] . (12)

We assume for now that the true model for the system is known
and hence use M in (12) as opposed to the Mn used in (1). Specif-
ically, evolution equations for x(t), x̃i(t), and φi(t; ω) [59] are
btained by insertion of (11) into (12), constraining the evolution
f the DO vectors to directions orthogonal to VDO

dx̃i(t)
dt

⊥ VDO ⇔

⟨
dx̃i(t)
dt

, x̃j(t)
⟩

= 0 ∀i, j ∈ {1, . . . ,NDO} ,

(13)

where the operator ⟨a, b⟩ represents the vector inner product
of a and b. Using (13) in conjunction with the expansion (11)
and stochastic dynamical model (12), the DO evolution equa-
tions can be derived for the state vector mean, DO vectors, and
coefficients,

dx(t)
dt

= E [M [x(t; ω); ω] ] , (14)

dx̃i(t)
dt

=

NDO∑
j=1

C−1
(i,j) PV⊥

DO

[
E
[
φj(t; ω)M [x(t; ω); ω]

] ]
∀i ∈ {1, . . . ,NDO} , (15)

dφi(t; ω)
dt

=
⟨
M [x(t; ω); ω] − E [M [x(t; ω); ω] ] , x̃i(t)

⟩
∀i ∈ {1, . . . ,NDO} , (16)
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here E [ • ] represents the expectation operator, PV⊥
DO

[ a ] repre-
sents the projection of the vector a onto the space orthogonal to
DO

V⊥
DO

[ a ] = a − PVDO [ a ] = a −

NDO∑
k=1

⟨
a , x̃k(t)

⟩
x̃k(t)

and C−1
(i,j) is the (i, j)th entry of the inverse of the DO coefficient

covariance matrix C(i,j) = E
[
φi(t; ω)φj(t; ω)

]
.

Numerical implementations of the deterministic (14) and (15)
can be based on classic solvers [121,123]. The stochastic evolution
of the DO coefficients (16) can be carried out using Monte Carlo
(MC) sampling methods, whereby NMC ≫ NDO samples are
drawn from the initial coefficient distribution and evolved by
solving (16) as an ODE of dimension NDO for each sample [123].
These evolved samples can constitute a rich description of this
distribution since NMC ≫ NDO.

2.3.2. GMM-DO filter
The affine transformation (11) between DO coefficients and

state variables can be written as

x(t; ω) ≈ x(t) +

NDO∑
i=1

φi(t; ω) x̃i(t) = x(t) + X (t)φ(t; ω) , (17)

where X (t) ∈ RNX×NDO is a matrix whose columns are DO vectors
and φ(t; ω) ∈ RNDO a realization of the vector of DO coefficients
Φ. The GMM-DO filter takes advantage of (17) and proceeds as
follows [118,119].

When observations are made (3), the prior probability distri-
bution for DO coefficients in the DO subspace is approximated
using a GMM,

pΦ(φ) ≈

NGMM∑
j=1

πΦ,j × N
(
φ ; µΦ,j , ΣΦ,j

)
∀φ ∈ RNDO , (18)

here NGMM is the to-be-determined number of GMM compo-
ents, πΦ,j the jth component weight, µΦ,j the jth component

mean vector, and ΣΦ,j the jth component covariance matrix. This
approximation is found by performing a semiparametric fit to the
Monte Carlo samples used to numerically evolve the stochastic
coefficients. Specifically, the expectation–maximization (EM) al-
gorithm [124] is used to find maximum likelihood estimates for
the parameters πΦ,j, µΦ,j, and ΣΦ,j, while the number of GMM
components NGMM is selected using the Bayesian information
criterion (BIC) [125].

Due to (17), the prior GMM for Φ (18) equivalently represents
a prior GMM for X ,

pX (x) ≈

NGMM∑
j=1

πX,j × N
(
x ; µX,j , ΣX,j

)
∀x ∈ RNX , (19)

where

πX,j = πΦ,j (20)

µX,j = x + XµΦ,j (21)

X,j = XΣΦ,jX T (22)

re the jth component weight of the prior state variable GMM,
th component mean vector, and jth component covariance ma-
rix, respectively. Further, if the Gaussian observation likelihood
unction,

(y | x) = N
(
y ; Hx , R

)
, ∀x ∈ RNX (23)

s first defined in (4) is used, the Bayesian update of the GMM
rior (19) is another GMM by conjugacy [118]; the posterior state
5

ariable distribution is thus,

X |Y (x |y) =

NGMM∑
j=1

πX |Y ,j × N
(
X ; µX |Y ,j , ΣX |Y ,j

)
∀x ∈ RNX ,

(24)

ith parameters

πX |Y ,j =
πX,j × N

(
y ; HµX,j , HΣX,jHT

+ R
)∑NGMM

k=1 πX,k × N
(
y ; HµX,k , HΣX,kHT + R

) ,

µX |Y ,j = µX,j + Kj
(
y − HµX,j

)
,

ΣX |Y ,j =
(
I − KjH

)
ΣX,j ∀j ∈ {1, . . . ,NGMM}

and gain matrices defined by

Kj = ΣX,jHT(HΣX,jHT
+ R

)−1
∀j ∈ {1, . . . ,NGMM} .

Though analytically accessible, the posterior GMM state vari-
able distribution (24) cannot be directly computed nor stored for
systems (12) of high dimension. A key advantage of the GMM-DO
filter is that the update of (19) is equivalently obtained from the
following update of (18):

pΦ|Y (φ |y) =

NGMM∑
j=1

πΦ|Y ,j × N
(
φ ; µΦ|Y ,j , ΣΦ|Y ,j

)
∀φ ∈ RNDO ,

(25)

here

πΦ|Y ,j =
πΦ,j × N

(
ỹ ; H̃µΦ,j , H̃ΣΦ,jH̃T

+ R
)∑NGMM

k=1 πΦ,k × N
(
ỹ ; H̃µΦ,k , H̃ΣΦ,kH̃T + R

) ,

µΦ|Y ,j = µ′

Φ|Y ,j −

NGMM∑
k=1

πΦ|Y ,k × µ′

Φ|Y ,k ,

ΣΦ|Y ,j =

(
I − K̃jH̃

)
ΣΦ,j , ∀j ∈ {1, . . . ,NGMM}

and the transformed observation vector realization, transformed
observation matrix, transformed gain matrices, and intermediate
component mean vectors are defined by,

ỹ = y − Hx ,

H̃ = HX ,

K̃j = X TKj ,
′

Φ|Y ,j = µΦ,j + K̃j

(
ỹ − H̃µΦ,j

)
∀j ∈ {1, . . . ,NGMM} . (26)

his posterior GMM coefficient distribution (25) is equivalent
o (24) through (17) if the state vector mean is also updated
ccording to,

x(t+) = x(t−) + X
NGMM∑
k=1

πΦ|Y ,k × µ′

Φ|Y ,k .

We first note that whereas the explicit calculation of (24) is
infeasible, the calculation of (25) is untroublesome. Critically, no
matrices of size larger than NX × NDO ≪ NX × NX are manip-
ulated in the update (25), rendering the analytical Bayesian up-
date of the DO coefficient distribution computationally tractable
for high-dimensional systems. Finally, new Monte Carlo samples
are drawn from the posterior GMM coefficient distribution (25),
which are dynamically evolved with the DO evolution equations
until new observations are made and the efficient GMM-DO filter
is applied again.
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.3.3. Reduced-dimension state augmentation
Parameter uncertainty in stochastic dynamical models can

e directly coupled to state uncertainty using state augmen-
ation [95]. The conceptual premise of state augmentation is
imple: treat all uncertain parameters as time-invariant uncer-
ain state variables. Concatenating vectors of state variables and
arameters, using the notation in Table 3, then leads to the

ugmented state vector XΘ (t) =

[
X(t)
Θ

]
∈ RNX+NΘ , whose

realizations are given by xΘ (t; ω) =

[
x(t; ω)
θ(ω)

]
. The augmented

stochastic dynamical model is then,

dxΘ (t; ω)
dt

=
d
dt

[
x(t; ω)
θ(ω)

]
=

[
M [x(t; ω); ω]

0

]
= MΘ [xΘ (t; ω); ω] . (27)

Reduced-dimension state augmentation utilizes an expansion as
(11) for the augmented state vector,

xΘ (t; ω) =

[
x(t; ω)
θ(ω)

]
≈

[
x(t)
θ

]
+

NDO∑
i=1

φi(t; ω)
[
x̃i(t)
θ̃i(t)

]

= xΘ (t) +

NDO∑
i=1

φi(t; ω) x̃Θ,i(t) , (28)

where xΘ (t) ∈ RNX+NΘ is the mean of the augmented state
vector, x̃Θ,i(t) ∈ RNX+NΘ the ith augmented DO vector, θ ∈

RNΘ the mean of the parameter vector, and θ̃i(t) ∈ RNΘ the
parameter elements of the ith augmented DO vector. Given (27),
DO equations as in Section 3.2 (i.e. (14)–(16)) can be used to
evolve the augmented state vector mean, augmented DO vectors,
and DO coefficients defined in (28).

State augmentation also enables joint Bayesian inference of
state variables and parameters using the GMM-DO filter. The
observation likelihood L (y | •) is augmented to an equivalent
likelihood function

LΘ (y |xΘ ) = L
(
y |

[
INX 0

]
xΘ

)
∀xΘ ∈ RNX+NΘ (29)

that simply ignores the parameter elements of the augmented
state vector. If the original state likelihood function is a Gaus-
sian function, as assumed by the GMM-DO filter in (23), the
augmented likelihood becomes

LΘ (y |xΘ ) = N
(
y ; H

[
INX 0

]
xΘ , R

)
= N

(
y ; [ H 0 ] xΘ , R

)
= N

(
y ; HΘxΘ , R

)
∀xΘ ∈ RNX+NΘ (30)

and the GMM-DO filter can be applied as usual using the aug-
mented observation matrix HΘ = [ H 0 ] ∈ RNY ×(NX+NΘ ) in
place of the original observation matrix H. As long as some of
the augmented DO vectors in (28) feature both nonzero state
variable and parameter elements – i.e. as long as there is some
finite correlation between state variables and parameters – the
probability distribution for parameters will be jointly updated
with the probability distribution for state variables when the
GMM-DO filter updates the distribution for the shared DO coef-
ficients. After this GMM-DO update, the integration of (27) and
(28) will utilize the updated parameter mean and evolve the
joint state-parameter probability distribution in accord with the
dynamics until the next observation.

In summary, reduced-dimension state augmentation extends
both the DO evolution equations and the GMM-DO filter to enable
joint uncertainty evolution and inference of state variables and
parameters. In what follows, the augmented state vector XΘ (and
realization x ) will be denoted as simply X (and x), but X in
Θ c

6

general encapsulates both state variables and parameters coupled
through state augmentation.

2.3.4. GMM-DO marginal likelihood computation
We now show that for the GMM state variable distribu-

tions, Gaussian observation models, and likelihood function of the
GMM-DO filter, an analytical solution for the marginal likelihood
integral (9) is available. Specifically, using (23) and (19) for
L (y | •) and pX |M(•|Mn) respectively, we obtain,

pY |M(y |Mn) =

∫
L (y | x) pX |M(x |Mn) dx

=

∫
N

(
y ; Hx , R

)
×

⎛⎝NGMM∑
j=1

πX |Mn,j × N
(
x ; µX |Mn,j , ΣX |Mn,j

)⎞⎠ dx .

(31)

ere, since we are again considering model uncertainty, we use
n in place of M to represent a realization of the uncertain
odel. Since the integral in (31) is taken over all values of x

state variables and parameters), a linear transformation of the
ntegration variable can be performed without changing the value
f the integral. Then, using the linear transformation properties of
aussian distributions, (31) is rewritten as

Y |M(y |Mn) =

∫
N

(
y − Hx ; 0 , R

)⎛⎝NGMM∑
j=1

πX |Mn,j

× N
(
Hx ; HµX |Mn,j , HΣX |Mn,jHT )⎞⎠ dHx

=

∫ NGMM∑
j=1

πX |Mn,j × N
(
y − Hx ; 0 , R

)
×N

(
Hx ; HµX |Mn,j , HΣX |Mn,jHT )

dHx . (32)

Interchanging integration and summation, then factoring,

Y |M(y |Mn) =

NGMM∑
j=1

πX |Mn,j ×

∫
N

(
y − Hx ; 0 , R

)
× N

(
Hx ; HµX |Mn,j , HΣX |Mn,jHT )

dHx

=

NGMM∑
j=1

πX |Mn,j×
[
N

(
• ; 0 , R

)
∗ N

(
• ; HµX |Mn,j , HΣX |Mn,jHT ) ]

(y) , (33)

here ∗ represents the convolution operator, defined as:
[
f (•)∗

(•)
]
(t) =

∫
f (t − τ )g(τ ) dτ . The convolutions in (33) yield new

aussian distributions whose means and variances are equal to
he sums of the means and variances of the two component
istributions [126]:

Y |M(y |Mn) =

NGMM∑
j=1

πX |Mn,j

× N
(
y ; HµX |Mn,j , HΣX |Mn,jHT

+ R
)
. (34)

Analogous to (24), the analytically accessible (34) cannot be
irectly computed for systems of high dimension due to the
rohibitive size of the state variable GMM component covariance
atrices involved. Fortunately, using the GMM-DO approach,

omputing (34) is possible, again because of (17). Substituting the



P. Lu and P.F.J. Lermusiaux Physica D 427 (2021) 133003

p

p

w
a
d
N
f
l
t
v
n
l
u
r

2

e

A
i
b
t
g

2

I
2
p
i
i
t
w
c
e
d

I
3
(
f
B
b
u
n
v
c
t
p
o
c
u

e
p
a
c
l
t
l
c

R
e
p
i
t
a
c

rior GMM-DO fit in the DO subspace, (20)–(22), into (34) yields,

Y |M(y |Mn) =

NGMM∑
j=1

πΦ|Mn,j

× N
(
y ; H

(
x + XµΦ|Mn,j

)
, H

(
XΣΦ|Mn,jX T)HT

+ R
)

=

NGMM∑
j=1

πΦ|Mn,j × N
(
ỹ ; H̃µΦ|Mn,j , H̃ΣΦ|Mn,jH̃T

+ R
)
,

(35)

here the definitions in (26) have been used. The explicit evalu-
tion of the Gaussian functions in (35) is computationally expe-
ient. None of the matrices involved exceed NY × NX in size and
Y is typically orders of magnitude smaller than NX , especially
or systems featuring infinite-dimensional state fields (or their
arge-dimensional discretized versions) [127]. Furthermore, all
he quantities in (35) are computed during the Bayesian state
ariable inference of the GMM-DO filter, thus necessitating no
ew computations. Finally, (35) can be used to calculate marginal
ikelihoods for all candidate models, which can subsequently be
sed to perform Bayesian update of the model distribution as
epresented by (7).

.4. Summary

Our principled Bayesian learning of stochastic dynamical mod-
ls consists the following four-steps:

1. Model formulation. Formulate a set of candidate models:
for each, specify stochastic dynamical equations, spatial
geometry, boundary conditions, and initial conditions, as
represented in (2).

2. Uncertainty initialization.

(a) State variable and parameter uncertainty initialization.
For each candidate model, specify an initial joint
probability distribution for state variables and pa-
rameters. Initialize the augmented state vector DO
expansion (28) for each candidate (mean, modes
and coefficients). Computational procedures to do so
when initial distributions are Gaussians or GMMs are
discussed in [59,128] and in [129–131] for multivari-
ate realistic ocean applications.

(b) Model uncertainty initialization. Define an initial dis-
crete probability distribution over the set of can-
didate models, i.e. assign the probability that each
candidate model is the true model.

(c) Initial Bayesian uncertainty quantification. As needed,
compute the initial probability distribution for state
variables and parameters that accounts for model
uncertainty using (5).

3. Uncertainty evolution.

(a) Model-conditional uncertainty evolution. Use the DO
Eqs. (14)–(16) to evolve the augmented state vector
means, modes, and coefficients for each candidate
model.

(b) Prior Bayesian uncertainty quantification. As needed,
compute the prior probability distribution for state
variables and parameters that accounts for model
uncertainty using (5).
7

4. Learning.

(a) State variable and parameter inference. When an ob-
servation is made, use the GMM-DO filter to perform
a Bayesian update of the DO coefficient distribution
for each candidate model.

(b) Marginal likelihood calculation. Compute marginal
likelihoods for all candidate models using (35).

(c) Model learning. Use (7) and the marginal likelihoods
to perform a Bayesian update of the model distribu-
tion.

(d) Posterior Bayesian uncertainty quantification. As
needed, compute the posterior probability distribu-
tion for state variables and parameters that accounts
for model uncertainty using (5).

graphical representation of this four-step procedure is provided
n Fig. 1. NDO and NGMM are both time- and model-dependent
ut for simpler notation, this is not explicitly represented in
he Figure. Similarly, the number of candidate models NM is in
eneral a function of time, but this too is omitted.

.5. Remarks

ndependence between candidate models. All operations in Steps
a, 3a, 4a, and 4b (i.e. the left half of Fig. 1) are performed inde-
endently for each candidate model and can thus be completed
n parallel. Another important consequence of this independence
s that idiosyncratic variations of the DO evolution equations and
he GMM-DO filter can be applied to any of the candidate models
ithout affecting the others. For example, each candidate model
an employ a different stochastic subspace dimension for the
xpansion (28), and some can dynamically evolve this subspace
imension [120,121].

ndependence from model distribution. The operations in Steps 2a,
a, 4a, and 4b are also independent of the model distribution
i.e. no arrows point from the right half of Fig. 1 to the left). In
act, as long as the marginal likelihoods of Step 4b are stored, the
ayesian update of the model distribution in Step 4c need not
e performed unless the state variable distribution with model
ncertainty accounted for is needed (i.e. Steps 2c, 3b, and 4d are
eeded). New candidate models can thus be added to the set of
iable candidates, even after Steps 2a, 3a, 4a, and 4b have been
arried out for existing candidates. One simply needs to respecify
he initial model distribution to include the new candidates, then
erform the independent steps afresh for the new candidates
nly. The marginal likelihoods generated for the new candidates
an be combined with those already stored to perform Bayesian
pdates of the new model distribution.
Note that model learning can occur either immediately after

ach observation or only after all observations are made. Com-
utational resources and the utility of real-time state variable
nd parameter distributions that account for model uncertainty
an guide the choice. If real-time distributions are crucial, model
earning should be performed at all observation times in order
o carry out Steps 3b and 4d. If it is not, model learning may be
eft for post-processing. The present methodology allows for both
ourses of action.

ecursive model learning. Our model learning procedure can be
xtended to a form of ‘recursive model learning’ that is similar to
arameter inference. In this case, when the model distribution
s updated at each observation time, the model itself can be
reated as a parameter: we would then sample model uncertainty
s we sample parameter uncertainty. Consequently, the set of
andidate models could be updated with time, e.g. using the
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Fig. 1. Four-step procedure for Bayesian learning of stochastic dynamical models.
GMM-DO filter, and these updates would then influence model
predictions at future times. With this extension, model learning
and state inference would not be independent: updates to the
set of candidate models would influence the dynamic evolution
of the state variables, just as updates to parameter distributions
influence state variables in the present learning.

In sum, the present methodology is a versatile rigorous ap-
proach to Bayesian learning of stochastic dynamical models. Ap-
plications to two nonlinear systems are presented next.

3. Flow past an obstacle

The flow past a cylinder or idealized island is a classic fluid
dynamical system. Its simplest rendition is a two-dimensional
flow around an impermeable fixed circular obstacle, with an
incompressible and Newtonian fluid, and a uniform and steady
flow at an infinite distance away from the obstacle. This sys-
tem has been extensively studied due to both its simple for-
mulation and the startling intricacy of the fluid flow patterns it
can evoke [132–137]. The key parameter is the non-dimensional
Reynolds number [138],

Re =
V∞L
ν

, (36)

here V∞ is the fluid velocity at infinity from the obstacle, L
he projected width of the obstacle, and ν the dynamic viscos-
ty of the fluid. For Re below approximately 40, the fluid flow
ownstream of the obstacle is symmetric, with a pair of stable
ecirculation zones appearing behind the obstacle for Re greater
han 5. These recirculation zones increase in size with increasing
e. At Re greater than 40, the recirculation zones become unstable
nd exhibit periodic, asymmetric vortex shedding. This results
8

in dynamic flow patterns known as von Kármán vortex streets
downstream of the obstacle. Systems featuring Re greater than
200 exhibit more complex aperiodic patterns while Re greater
than 105 result in turbulent flow [139].

Countless variations of this system have been investigated,
involving non-Newtonian fluids [140], rotating obstacles [141],
oscillating obstacles [142], noncircular obstacles [143], multiple
obstacles [144], and three-dimensional fluids and obstacles [145].
The system and its variants have also been used for multiple
purposes, one of which being practical models of real systems
found in both natural and engineered environments [146].

3.1. Stochastic flow past an obstacle system

The first stochastic dynamical system considered for our
Bayesian model learning (Section 2) is a stochastic variation of the
flow past a cylinder. The two-dimensional (2D) spatial domain
is shown in Fig. 2, with fluid flow proceeding left to right in
the positive r1 direction. Uncertainty in the fluid velocity field is
introduced in three ways: (1) initial velocity field; (2) Reynolds
number; and (3) shape of the obstacle.

For Re between 40 and 200, the vortex shedding frequency and
morphology are predictable. The phase of vortex shedding how-
ever is highly unpredictable, as shedding is triggered chaotically
by asymmetric perturbations of the otherwise symmetric fluid
domain. Even mild uncertainty in the initial conditions can thus
lead to substantial uncertainty in the shedding phase, leading to
substantial uncertainty in the velocity field. With uncertainty in
Re, both the frequency and morphology of vortex shedding are
uncertain (higher Re correspond to greater shedding frequencies
and vortices of higher energy, see [88,147]).
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Fig. 2. 2D spatial domain of the stochastic flow past an obstacle system.
All lengths and coordinates are non-dimensional. The bounding area for the
uncertain obstacle is indicated by the dashed square. The observation array
consists of the nine locations at the center of the domain.

Finally, uncertainty in the shape of the obstacle can also lead to
significant uncertainty in the velocity field. As exhibited in Fig. 3,
different obstacle shapes result in different downstream fluid
flow patterns. Even when projected widths are identical, different
shapes can lead to different vortex shedding frequencies and mor-
phologies for the same Re. For our Bayesian learning, five shapes
are hypothesized, with spatial dimensions as given in Fig. 4. The
details of the flow patterns for these five shapes differ (Fig. 3).
Specifically, the circle and square exhibit both similar near-field
and far-field vortex shedding patterns, but with slight varia-
tions in vortex intensities (most notably in the near-field). The
other three shapes also exhibit similar near-field vortex shedding
patterns, but the far-field pattern of the downstream-pointing
triangle differs markedly from those of the upstream-pointing
triangle and diamond. These differences can be exploited to learn
the correct obstacle shape.

3.2. Description of the learning experiments

3.2.1. Model formulation
The five shapes lead to five possible configurations for the

spatial domain in Fig. 2. Each of these domains represents a
distinct candidate model for the system, with each candidate
9

assumed to be equally likely a priori (i.e. a uniform initial model
distribution is used). We now describe their components (2).

Dn — The same set of stochastic dynamical equations is used
or each of the candidate models: the 2D Navier–Stokes PDEs for
n incompressible, Newtonian fluid in non-dimensional form

∂v1

∂t
= −

∂(v2
1)

∂r1
−

∂(v1v2)
∂r2

+
1

Re(ω)

(
∂2v1

∂r21
+

∂2v1

∂r22

)
−

∂p
∂r1

,

(37)
∂v2

∂t
= −

∂(v1v2)
∂r1

−
∂(v2

2)
∂r2

+
1

Re(ω)

(
∂2v2

∂r21
+

∂2v2

∂r22

)
−

∂p
∂r2

,

(38)
∂v1

∂r1
+

∂v2

∂r2
= 0 , (39)

here v1 = v1(r, t; ω) and v2 = v2(r, t; ω) denote the r1 and r2
omponents of the non-dimensionalized velocity field v(r, t; ω),
espectively [148]. The Reynolds number for the system Re(ω) is
n uncertain parameter to be inferred. The non-dimensionalized
ressure field, p = p(r, t; ω), is solved for implicitly from the
elocity field using the continuity Eq. (39).
SGn — The spatial geometries for the five candidate models

ave their own obstacle shape (Fig. 4). The projected widths of all
he obstacles are identical and are all 1 non-dimensional length
nit. For numerical implementation, the spatial domain for each
f the candidate models is discretized using a regular rectangular
rid of 320 and 120 elements along the r1 and r2 directions
espectively (∆r1 = ∆r2 =

1
20 ). This spatial discretization

results in approximately 320 × 120 r1-velocity and 320 × 120
2-velocity state variables for each of the candidate models, with
light variations due to the different surface areas of the five
ossible obstacle shapes. The augmented state vector for any of
he candidate models is then

Θ (t; ω) =

[
v1(t; ω)
v2(t; ω)

]
, (40)
Re(ω)
Fig. 3. Fluid flow patterns for realizations of the stochastic flow past an obstacle system featuring different obstacle shapes, all at the same non-dimensional time
and with a Re of 75. The projected width of all the obstacles is identical. Phase shifts indicate different vortex shedding frequencies.
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Fig. 4. Five possible obstacle shapes: circle, square, upstream-pointing triangle, downstream-pointing triangle, and diamond. All lengths are non-dimensional. The
bounding area for each shape is the area indicated in Fig. 2.
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where v1(t; ω) and v2(t; ω) are the vectors of r1-velocity and
2-velocity state variables, respectively. The dimension of each
ugmented state vector, NX + NΘ , is thus of order 105.
BCn — Stochastic Dirichlet conditions are used for the left

omain limits for all five candidate models

= (V∞(ω), 0) =

(
Re(ω)
Re′

, 0
)

for r1 = 0 , (41)

here V∞(ω) denotes the stochastic non-dimensionalized inlet
luid velocity and Re′

=
V ′L′
ν

is a constant comprised of the
non-dimensionalizing velocity and length constants V ′ and L′ as
ell as the dynamic viscosity of the fluid ν. V ′, L′, and ν are
hosen to be 1, 1, and 1

80 , respectively. For all candidate models,
eterministic Neumann conditions are used for the top, bottom,
nd right domain limits,

∂v

∂r2
= 0 at r2 = 0 and r2 = 6 ,

∂v

∂r1
= 0 at r1 = 16 ,

Deterministic Dirichlet conditions impose no-slip conditions on
the surfaces of the obstacles.

ICn — For each of the five candidate models, an initial uni-
form distribution from 50 to 100 is assumed for Re(ω). The
mean of this distribution—Re = 75—corresponds to a mean
non-dimensionalized inlet fluid velocity of 75

80 , using (41). Initial
eans of the fluid velocity for each of the candidate model
patial domains are found by numerically solving the continuity
q. (39) with this mean inlet velocity and the other boundary
onditions given above. Figs. 5 and 6 illustrate the stochastic
ystem at the initial non-dimensional time (t = 0). For each can-
idate model, a covariance matrix is constructed for the velocity
ields that respects symmetry about the r2 = 3 centerline using
he boundary-mollified spatial covariance method [59]. Discrete
arhunen–Loève transforms are performed on these covariance
atrices to initialize eight pairs of augmented DO vectors and
oefficients for each candidate model. The symmetry properties
f this procedure lead to unbiased initialization of uncertainty in
ortex shedding phase (i.e. no information regarding the phase
f vortex shedding is assumed at the start), as shown in Fig. 6. In
he wakes behind the obstacles, the velocity standard deviations
each 25 to 50 percent of the total velocity magnitude, confirming
he large uncertainty in the initial velocity field. For each candi-
ate model, a ninth augmented DO vector is used that contains
nly a single nonzero entry for the uncertain Re(ω), for a total DO
ubspace dimension NDO = 9.

3.2.2. True solution generation
We generate a true solution for the learning experiments

using a circular obstacle and a Reynolds number of 80. A deter-
ministic initial velocity field satisfying the continuity Eq. (39) is
first constructed, with arbitrary asymmetries introduced to in-
duce vortex shedding. The evolution of the velocity and pressure
fields is computed by numerically solving the Navier–Stokes Eqs.
(37)–(39) using our second-order finite-volume scheme [149]
10
Table 1
Numerical properties for the stochastic flow past an obstacle system.
Property NM NX NΘ NY NDO NMC ∆r1 ∆r2 ∆t T

Value 5 ∼75,000 1 18 9 104 1/20 1/20 1/120 50

with a regular rectangular grid of 320 and 120 elements along the
r1 and r2 directions, respectively, and a non-dimensional time-
tep of ∆t =

1
120 up to a final non-dimensional time T = 50. This

deterministic solution is a realization of the stochastic flow past
an obstacle system, representing the true obstacle shape, true
Reynolds number, and true dynamical velocity field that are to
be jointly learned.

3.2.3. Observations and learning parameters
Every 1 non-dimensional time unit (i.e. every 120 time-steps),

noisy observations of both r1-velocity and r2-velocity are made
t nine locations (Fig. 2), for a total of NY = 18 scalar data
t every data time. A single non-dimensional time unit for this
ystem corresponds to a phase shift of about 5π

13 when Re =

0. Unbiased Gaussian noise is applied to the observations with
standard deviation equal to approximately 10% of the mean

luid velocity, which are then used by the GMM-DO filter to
erform joint model-conditional inference of the velocity state
ariables and Reynolds number, for each of the candidate models.
he observation matrix H in Eq. (23) selects the velocity state

variables at the nine data locations and the covariance matrix R
s diagonal of elements equal to the variance of the observation
oise.
As in [118], the BIC and EM algorithm are used to select the

ptimal number of GMM components NGMM at each data time.
ypical BIC-optimized values for NGMM were found to lie between
0 and 60 for the present experiments. Marginal likelihoods
or the candidate models are calculated using (35) after every
MM-DO filtering step and the model distribution is updated
sing (7).

.2.4. Numerical method
For each of the candidate models, the augmented state vector

ean, DO vectors, and DO coefficients are governed by the DO
qs. (14)–(16) for the Navier–Stokes Eqs. (37)–(39) with stochas-
ic boundary conditions (41). They are numerically integrated
sing the finite-volume methodology developed in [123], with a
on-dimensional time-step of ∆t =

1
120 . A total of NMC = 104

Monte Carlo samples is used for the stochastic evolution of the
DO coefficients. The numerical properties used are summarized
in Table 1.

3.3. Learning results

Figs. 5 and 6 showed the system at t = 0, before observations
are made. The fluid velocity field of the chosen true deterministic
simulation (Fig. 5, top left) is in a time-periodic state. Regular
asymmetric vortex shedding is occurring downstream of the ob-
stacle, with a period of approximately 5.4 non-dimensional time
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Fig. 5. The stochastic flow past an obstacle system at non-dimensional time t = 0. Left column: Observations are made from a deterministic simulated truth featuring
he circular obstacle (top), with observation locations indicated on the true state field in light blue. The bounding area for the obstacle in the Bayesian mean of the
andidate model states is labeled with a question mark since the obstacle shape is uncertain. The initial distributions for the continuous Re(ω) and for the discrete
model obstacle shape are shown below, above the velocity magnitude colorbar. Right column: Model-conditional velocity field means, for each of the five candidate
models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
units. Each of the five model-conditional velocity field means
(i.e. x in (11)) for the candidate models is symmetric about
the r2 = 3 centerline, indicating no bias towards any partic-
ular vortex shedding phase. The Bayesian mean of these five
model-conditional velocity fields (i.e. the mean of pX (•) in (5)
r equivalently the mean of the five x of the candidate models)
s consequently also symmetric. The model-conditional Re distri-
utions are uniform, as is the model distribution, i.e. pM(•) in

(5). The model-conditional velocity standard deviations are also
symmetric about the r2 = 3 centerline. Crucially, these initial
model-conditional flow uncertainties are not small, the largest
standard deviations reach the total flow variability.

Figs. 7 and 8 illustrate the system after 10 non-dimensional
time units and 10 observation episodes. Each of the candidate
models performs 10 Bayesian GMM-DO data assimilation (see
Sections 2.3.2 and 2.3.3, details not illustrated here). As a result,
all five of the model-conditional velocity field means are begin-
ning to align in phase with the true velocity field (Fig. 7, right
column). Consequently, the Bayesian mean of these conditional
velocity field means is also beginning to align in phase with the
true field (Fig. 7, left column, top two panels), though the energy
11
of the vortices in this Bayesian mean is still lower than that of
those in the true field. The Reynolds number distribution is be-
ginning to shift towards the true Re of 80. Finally, the probability
of one of the incorrect candidate models, the one featuring the
downstream-pointing triangular obstacle, has fallen quickly. The
Bayesian learning identifies that it is indeed the obstacle most
dissimilar dynamically to the true circular one: it has a large
frontal area and downstream-pointing edges.

In Fig. 8, the predicted model-conditional velocity standard
deviations for each candidate model (left column) have decayed
when compared to their initial values (see Fig. 6). Importantly,
these predicted standard deviations agree with the differences
between the model-conditional velocity field means and the true
field (see Fig. 7). The five model-conditional Re distributions
(right column), that can be obtained by marginalization (see
Section 2.1.1), show that each model refines its initial uniform
distribution but with a different mean Re estimate. This is due
to the model biases (wrong obstacle shape) and remaining field
errors (e.g. phases, frequency, and strength of eddy shedding).
For example, the upstream-pointing triangle has a too low Re
mean estimate while the downstream-pointing triangle has a too
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Fig. 6. As Fig. 5, but showing model-conditional uncertainties at non-dimensional time t = 0. Specifically, model-conditional velocity field standard deviations for
ach of the five candidate models are displayed on the left. Model-conditional Reynolds number distributions for each of the five candidate models are displayed
n the right.
igh Re mean estimate, in each case to compensate for the wrong
hedding (e.g. Strouhal number).
Figs. 9 and 10 illustrate the system after 50 non-dimensional

ime units and 50 observation episodes and Bayesian GMM-
O assimilation. Phase alignments between the five conditional
elocity field means and the true field have all improved sig-
ificantly and hence the Bayesian velocity field mean is now
argely consistent with the true velocity field (Fig. 9, left column,
op two panels). The Reynolds number distribution has peaked
round the true Re of 80, but small secondary peaks (e.g. around
4 and 86) are also visible, indicating again that some of the
odels are biased. Importantly, our Bayesian learning accurately
aptures such non-Gaussian distributions. Finally, the candidate
odel featuring the circular obstacle is now by far the most
lausible model for the system, as indicated by the highly peaked
odel distribution.
In Fig. 10, the predicted model-conditional velocity field stan-

ard deviations for all five candidate models have decreased
12
significantly, with the greatest decreases exhibited by the circular
obstacle (the true model) and the square obstacle (the candidate
model ‘closest’ to the circle, as seen in Fig. 3). Again, these
predicted standard deviations agree with the actual errors of the
model-conditional velocity field means (see Fig. 9). Since the five
obstacle shapes produce different vortex shedding frequencies
(Strouhal number) for the same Re however (see Fig. 3), the
five model-conditional Re distributions have further concentrated
around different values. For the candidate model with the circular
obstacle, the conditional Re distribution has simply concentrated
around 80, the true Re. For the other candidates though, the
conditional distributions have concentrated around values that
allow the candidates to better match the shedding frequency of
the true field despite featuring incorrect obstacle shapes. The
tendencies after 10 Bayesian assimilation have strengthen after
50 assimilation: the downstream-pointing triangle and square
have a too high Re mean, with the square the closest to the truth,
while the upstream-pointing triangle and diamond have too low
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Fig. 7. As Fig. 5, but at non-dimensional time t = 10 (i.e. after 10 observation episodes).
e mean, with the diamond the closest to the truth. This clearly
xplains that the model biases (wrong obstacle shape) lead to the
ulti-modal Re distribution seen in Fig. 9 and to the variations

n the now smaller error fields (due to the wrong eddy shedding
roperties, e.g. Strouhal number).

.3.1. Learning metrics
Three metrics are used to evaluate the success of our Bayesian

earning methodology for the flow past an obstacle. The first
etric is the root mean square error (RMSE) between the velocity
tate variables of the deterministic simulation from which obser-
ations are made – i.e. the true velocity state variables – and the
redicted Bayesian mean of the candidate model velocity state
ariables (see Section 2.1.1). A RMSE approaching 0 indicates
uccessful state inference. The second metric is the integral of
he predicted Bayesian probability distribution for the Reynolds
umber of the system from 77.5 to 82.5, a range that is centered
n the Re of the deterministic simulations – i.e. the true Reynolds
umber – and encompasses only 10% of the total initial prior
ange assumed for the Reynolds number. This metric is referred
o as the true Re probability and is calculated by marginalization
f the augmented state vector (40) (see Section 2.1.1). A true Re
13
probability approaching 1 indicates successful parameter infer-
ence. The third metric is simply the predicted probability for the
model of the deterministic simulation from which observations
are made – i.e. the true model – within the model distribution. A
true model probability approaching 1 indicates successful model
learning (since in our example, the true model is among the
candidate models). This ‘probability of the model’ metric easily
extends to cases where the truth is not part of the candidate mod-
els (e.g. is a linear combination) or is a probabilistic combination
of several candidate models.

Fig. 11 illustrates the time progression of the three Bayesian
learning metrics introduced above. The RMSE approaches 0, the
true Reynolds number probability approaches 1, and the true
model probability approaches 1, all indicating successful learning.
Even though the nine velocity observations are very sparse in
time and space, and the learning space is high-dimensional, our
multivariate GMM-DO Bayesian learning can jointly learn the full
velocity field, the Reynolds number, and the shape of the obstacle.

Of course, Bayesian learning should not always lead to prefect
identification of the true model, true state variables, and/or true
parameters. The goal is to evolve the prior and posterior proba-
bilities of the fields, parameters, and model formulations, given
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Fig. 8. As Fig. 6, but at non-dimensional time t = 10 (i.e. after 10 observation episodes).
he observations available and their uncertainties. The quality of
he learning depends on the observations collected and on the
roperties of the stochastic dynamical system including its initial
nd boundary conditions. If the observations are not sufficiently
nformative about the learning objectives, the Bayesian machine
hould thus indicate that it cannot learn much. It is only when
he exact posteriors indicate successful model identification that
his should also be the posterior estimate and conclusion of our
MM-DO Bayesian learning.

.3.2. Other learning experiments
Many similar learning experiments were performed, including

ith simulated truths featuring the other four obstacle shapes.
irst, an interesting result was that model learning proceeded
uch more quickly for some of the shapes (e.g. the downstream-
ointing triangular obstacle) than for others (e.g. the circular
bstacle), suggesting that some of the shapes are more distinct
mong the five possible obstacles than the others. Outcomes
ere all consistent with known dynamical properties of flows
ehind such shapes [e.g.150,151] Of course, this rate of learning
aried with the dynamics, uncertainty, and observations selected.
14
Second, this exemplifies how our GMM-DO Bayesian model learn-
ing (Section 2) can be used as a statistical determinant of the
similarity or dissimilarity among stochastic dynamical models.
For example, we can say that for the considered Reynolds number
range, initial state uncertainty, and observations available, the
upstream pointing triangle, square, and diamond obstacles are
the ‘closest’ to the circular obstacle. Finally, we confirmed the
convergence of our GMM-DO Bayesian posteriors by repeating
learning experiments with an increasing number of DO modes
and coefficients (not shown), until the results converged to those
shown.

4. Microorganism tracer

While they share a means of physical ocean transport, the
many species of phytoplankton and zooplankton in the world’s
oceans each grow and decay according to unique biological (re-
action) dynamics. These microorganisms are of great importance
to geochemistry and climate science [152–154] and critical to
the health of many species and ecosystems [155–158]. Assuming
the continuum hypothesis holds, one can define a microorganism
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oncentration. The stochastic dynamical evolution of a microor-
anism passively advected within a fluid domain can then be
escribed by the general equation,

∂ρ

∂t
= −v · ∇ρ  

advection

+ κ∇
2ρ  

diffusion

+ Fρ (ρ, r, t; ω)  
biology(reaction)

, (42)

here ρ = ρ(r, t; ω) is the microorganism concentration field
er unit mass of fluid, κ the diffusivity of the microorganism
ithin the fluid, and Fρ the reaction (biological behavior) term

for the microorganism [159]. The reaction term commonly in-
volves fields of chemical compounds necessary for growth and
of other organisms that act as predators, preys, or competitors
for resources. Physical factors also often matter, such as tem-
perature, light abundance, and pressure. If the microorganism is
not entirely immotile, motility terms are also included. Learning
accurate reaction terms is thus central to marine ecosystems [11,
57,160].

4.1. Stochastic microorganism tracer system

The second stochastic dynamical system considered for our
Bayesian model learning (Section 2) is an advection–diffusion–
reaction (ADR) Eq. (42) for a single marine microorganism pas-
sively advected by a stochastic flow. The 2D spatial domain is
15
shown in Fig. 12, with fluid flow proceeding left to right in the
positive r1 direction. The domain features a circular obstacle. This
is an idealization of flows around an island that are known to
affect plankton [e.g. 161]. A Reynolds number of 50 is chosen
for the system. The microorganism is assumed to be immotile.
Uncertainty in the fluid velocity and microorganism concentra-
tion fields is introduced in two ways: (1) initial velocity field
and (2) reaction term of the microorganism, i.e., the governing
biological formulation is itself uncertain.

As in Section 3, the phase of vortex shedding is highly sensitive
to the initial fluid velocity field. Since the concentration field is
closely coupled to the velocity field through (42), uncertainty
in velocity leads to uncertainty in concentration. The different
phase shifts of the periodic fluid flow pattern downstream of the
obstacle can correspond to substantially different fluid velocity
and microorganism concentration fields.

Additional uncertainty in the reaction term Fρ can significantly
ncrease the uncertainty in its concentration field. Basic phyto-
lankton reaction equations are assumed for the microorganism
ehavior, i.e.,

ρ (ρ, r, t; ω) = g(r, t)
ρ(ρmax − ρ)

ρmax − ρ + kg  − d(r, t)ρ  
decay

, (43)
growth
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(

here g(r, t) is the microorganism growth factor, ρmax the maxi-
um microorganism concentration, kg the growth regularization
arameter, and d(r, t) the microorganism decay factor [160]. The

values of ρmax and kg are both chosen to be 1.0. The formulation
of the growth g(r, t) and decay d(r, t) factors however is assumed
to be uncertain fields, with three possible formulations for g(r, t),

g+(r, t) = g+(t) =
(
1 + AT sin(t/Tρ)

)
G , (44)

g0(r, t) = g0 = G , (45)

g−(r, t) = g−(t) =
(
1 − AT sin(t/Tρ)

)
G , (46)

nd three possible formulations for d(r, t),

+(r, t) = d+(r) =
(
1 + ALexp

(
−(∥r − r0∥ /Lρ)2

))
D , (47)

d0(r, t) = d0 = D , (48)

−(r, t) = d−(r) =
(
1 − ALexp

(
−(∥r − r0∥ /Lρ)2

))
D , (49)

here ∥•∥ represents the L2 norm operator for any given vector
nd r0 = (3, 3) represents the center of the circular obsta-
le illustrated in Fig. 12. The temporal dependence in (44) and
46) simulates possible periodic influences in real ocean envi-
onments, such as solar light cycles or tides, while the spatial
 c

16
ependence in (47) and (49) simulates possible near-coast in-
luences, such as bathymetric changes or pollution. The growth
actor parameters G, AT , and Tρ are chosen to be 0.8, 0.5, and
0.7, respectively. The decay factor parameters D, AL, and Lρ are
hosen to be 0.1, 1.8, and 1.0, respectively. The combination of
he three growth factor forms (44)–(46) and three decay factor
orms (47)–(49) leads to a total of nine possible ADR Eq. (42) for
he microorganism. The reaction equations are purposely chosen
o lead to relatively subtle variations of the concentration field, as
xhibited in Fig. 13. This choice is to showcase that our Bayesian
earning can predict accurate posterior model probabilities and
orrectly identify the true model formulation when the data
nd dynamics enable it, even in cases where a human may be
hallenged to do the same.

.2. Description of the learning experiments

.2.1. Model formulation
Each of the nine possible sets of stochastic dynamical PDEs

2D flows and microorganism concentration) represents a distinct
andidate model for the system. Each candidate is assumed to be
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Fig. 11. Time progression of three learning metrics for the stochastic flow past an obstacle system, with observations made from the simulated truth featuring the
ircular obstacle. Metrics (RMSE of velocity field, probability of the true Re, and probability of the true model obstacle) are plotted at every 1 non-dimensional time,
mmediately after observation and learning (i.e. posterior values from the GMM-DO filter).
qually likely a priori, i.e. a uniform initial model distribution is
sed. We now describe the components (2) of these candidates.
Dn — As in Section 3, the evolution of the fluid velocity field in

he stochastic microorganism tracer system is simulated using the
on-dimensional incompressible 2D Navier–Stokes PDEs (37)–
39). This velocity forces the non-dimensional form of the general
DR PDE (42) with reaction Eq. (43). With the growth (44)–(46)
nd decay factors (47)–(49), nine distinct candidate models are
ossible. The flow parameters are here assumed to be known.
pecifically, Re in (37)–(38) is chosen to be 50 while κ in (42)
s chosen to be 0.

SGn — Unlike the stochastic flow past an obstacle, the spatial
geometries for the nine candidate models here are identical,
as shown in Fig. 12. For numerical implementation, the spatial
domain is discretized using a regular rectangular grid of 240 and
120 elements along the r1 and r2 directions, respectively (∆r1 =

r2 =
1
20 ). This discretization results in 28,349 r1-velocity, 28,229

r2-velocity, and 28,489 microorganism concentrations for each
candidate model. The state vector for any of the candidate models
is then

x(t; ω) =

[
v1(t; ω)
v2(t; ω)
ρ(t; ω)

]
,

where ρ(t; ω) is the spatially-discretized vector of concentration
tate variables (state augmentation is not needed because all
arameters are known). The dimension of the state vector, NX ,
s thus 85,067.

BCn — For all nine candidate models, deterministic boundary
conditions for the velocity and concentration fields are used:
Dirichlet for the left domain inflow,

v = (1, 0) , ρ = 0.1 at r1 = 0 , (50)

eumann for the top, bottom, and right domain limits,

∂v

∂r2
= 0 ,

∂ρ

∂r2
= 0 at r2 = 0 and r2 = 6 ,

∂v

∂r1
= 0 ,

∂ρ

∂r1
= 0 at r1 = 12 .
17
Fig. 12. 2D spatial domain of the stochastic microorganism tracer system. All
lengths and coordinates are non-dimensional. The observation array consists of
the nine locations at the center of the domain.

and Dirichlet on the surface of the obstacle, imposing no-slip
conditions.

ICn — For each of the nine candidate models, the state vector
mean in (28) is initialized as follows. The means of the velocity
state variables are obtained by numerically solving the continuity
Eq. (39), with the boundary conditions given above. The means
of the microorganism concentration states variables are subse-
quently found by numerically solving (42) for the steady state
concentrations corresponding to these mean velocities. Figs. 14,
15, and 16 illustrate the stochastic system at the initial non-
dimensional time (t = 0). For each candidate model, a covariance
matrix is constructed for the velocity and concentration state
variables that respects symmetry about the r2 = 3 centerline, us-
ing again the boundary-mollified spatial covariance method [59].
Discrete Karhunen–Loève transforms are performed on these co-
variance matrices to initialize eight pairs of DO vectors and coef-
ficients for each candidate model, for a DO subspace dimension
NDO = 8. As for the stochastic flows past an obstacle, the sym-
metry properties of this procedure lead to unbiased initialization
of uncertainty in vortex shedding phase, as exhibited in Figs. 15
and 16.

4.2.2. True solution generation
We illustrate results with two different true solutions, each

of which has its own formulation for the microorganism and
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Fig. 13. Microorganism concentrations overlaid on fluid streamlines, for realizations of the stochastic microorganism tracer system featuring nine different
icroorganism reaction equations at non-dimensional time t = π × Tρ ≈ 2.2 (i.e. when periodic temporal effects are either maximal or minimal).
Fig. 14. The stochastic microorganism tracer system at non-dimensional time t = 0. Top row: Deterministic simulated truth state fields (left) with constant growth
0 and decay d0 factors, from which observations are made (see Fig. 2). Note the active vortex shedding and microorganism response in these truth fields. Initial
ayesian mean of the candidate model state fields (middle) and uniform model distribution illustration (right). Bottom three rows: Initial model-conditional velocity
streamline) and concentration field means for each of the nine candidate models, arranged in an array corresponding to the model distribution illustration in the
op right corner.
r
t
t

epresents the ‘truth’ for the corresponding learning experiments.
he first (at t = 0 in Fig. 14) features the constant formula-
ions for growth factor, g0, and decay factor, d0, thus a spatially
nd temporally invariant microorganism reaction equation. The
econd features the growth factor formulation
′(r, t) = g ′(t) =

(
1 + (1/2)A sin(t/T )

)
G (51)
T ρ

18
and decay factor formulation

d′(r, t) = d′(r) =
(
1 − (1/2)ALexp

(
−(∥r − r0∥ /Lρ)2

))
D , (52)

epresenting a reaction equation with intermediate spatial and
emporal variance that, importantly, is not explicitly included in
he set of candidate models formulated for the system.
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Fig. 15. As Fig. 14, but showing model-conditional uncertainties at non-dimensional time t = 0. Specifically, model-conditional velocity field standard deviations for
ach of the nine candidate models are displayed, arranged in an array corresponding to the model distribution illustration in the top right corner of Fig. 14.
Fig. 16. As Fig. 15, but for the model-conditional concentration field standard deviations.
For each truth, initial velocity fields satisfying the continuity
q. (39) are first constructed, with arbitrary asymmetries intro-
uced to induce vortex shedding. Microorganism concentrations
re initialized at 0.1. The evolution of the velocity, pressure,
nd concentration fields is computed by numerically solving the
avier–Stokes Eqs. (37)–(39) and microorganism Eq. (42), using
ur second-order finite-volume scheme [149], with a regular
ectangular grid of 240 and 120 elements along the r1 and r2
irections, respectively, and a non-dimensional time-step of ∆t =
1

120 up to a final non-dimensional time T = 80. These determin-
stic simulations are two possible realizations of the stochastic
icroorganism tracer system, each with a true microorganism

eaction equation, true dynamical velocity field, and true dynam-
cal concentration field that are to be jointly learned. They are
19
used in independent experiments whose results are illustrated in
Section 4.3.

4.2.3. Observations and learning parameters
Every 1 non-dimensional time unit (i.e. every 120 time-steps),

noisy observations of microorganism concentration are made at
nine locations (Fig. 12), for a total of NY = 9 scalar data at every
data time. A single non-dimensional time unit for this system
corresponds to a phase shift of about π

3 when Re = 50. Unbiased
Gaussian noise is applied to the observations with a standard
deviation equal to approximately 5% of the maximum microor-
ganism concentration, which are then used by the GMM-DO filter
to perform joint model-conditional inference of the velocity and
concentration state variables, for each of the candidate models.
The observation matrix H in (23) selects the concentration state
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Fig. 17. As Fig. 14, but at non-dimensional time t = 10 (i.e. after 10 observation episodes).
Table 2
Numerical properties for the stochastic microorganism tracer system.
Property NM NX NΘ NY NDO NMC ∆r1 ∆r2 ∆t T

Value 9 85,067 0 9 8 104 1/20 1/20 1/120 80

variables at the nine data locations and the covariance matrix R
s diagonal of elements equal to the variance of the observation
oise.
As in [118], the BIC and EM algorithm are used to select the op-

imal number of GMM components NGMM at every data time. Typ-
cal BIC-optimized values for NGMM were found to lie between 40
nd 60 for these stochastic microorganism experiments. Marginal
ikelihoods for the candidate models are calculated using (35)
fter every GMM-DO filtering step and the model distribution is
pdated using (7).

.2.4. Numerical method
For each of the candidate models, the state vector mean,

O vectors, and DO coefficients are governed by the DO Eqs.
14)–(16) for the Navier–Stokes Eqs. (37)–(39) and microorgan-
sm tracer Eq. (42), and their respective boundary conditions [88].
hey are numerically integrated using the finite-volume method-
logy developed in [123]. For the DO decomposition of the non-
olynomial nonlinearities of the microorganism reaction terms
43), a local linearization is employed [162,163]. These locally
inearized terms are derived in [88]. A non-dimensional time-step
f ∆t =

1
120 is used. A total of NMC = 104 Monte Carlo samples

s used for the stochastic evolution of the DO coefficients. The
umerical properties are summarized in Table 2.

.3. Learning results

We now present the results of learning experiments, first
sing true models that are one of the candidate models and
econd using a true model that is not. In each case, for learning
etrics, we employ the Bayesian state variable mean RMSE and
20
the probability of the true model or of the models near the un-
known truth (i.e. near in model space). Since the fluid velocity and
microorganism concentration state variables are all normalized
to be of order 1, they are included in RMSE calculations without
weighting. A RMSE approaching 0 and a true model probability
approaching 1 again indicate successful state and model learning,
respectively. Of course, our GMM-DO Bayesian learning aims to
predict the correct posterior probabilities, indicating successful
learning only when the exact posteriors also indicate so.

4.3.1. Constant growth and decay: Truth is one of the candidate
models

The first experiment considers the simulated truth defined by
the deterministic simulation featuring the constant growth g0 and
decay d0 factors. The goal is to learn the state of the velocity and
microorganism concentration fields jointly with the formulation
of the reaction equation when noisy observations are made from
this simulated truth. The evolution of this GMM-DO Bayesian
learning is illustrated in Figs. 14 to 18.

Figs. 14, 15, and 16 illustrated the system at t = 0, be-
fore observations are made. The fluid velocity and microorgan-
ism concentration fields of the simulated truth are in a time-
periodic state. Regular asymmetric vortex shedding is occurring
downstream of the obstacle, with a period of approximately
6.0 non-dimensional time units. The model-conditional velocity
and concentration field means for all nine candidate models are
symmetric about the r2 = 3 centerline, indicating no bias towards
any particular vortex shedding phase. The model distribution,
i.e. pM(•) in (5), is uniform. The model-conditional velocity
and concentration standard deviations are also symmetric about
the r2 = 3 centerline. Crucially, these initial model-conditional
uncertainties are not small, the largest standard deviations are
close to the total variability.

Fig. 17 illustrates the system after 10 non-dimensional time
units and 10 observation episodes. Each of the candidate models
performs 10 Bayesian GMM-DO assimilation (details not shown).
The model-conditional microorganism concentration field means
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Fig. 18. As Fig. 14, but at non-dimensional time t = 80 (i.e. after 80 observation episodes).
Fig. 19. Time progression of learning metrics for the stochastic microorganism tracer system, with observations made from the simulated truth featuring constant
rowth g0 and decay d0 factors. Metrics (joint RMSE of velocity and microorganism fields as well as the probability of the true model) are plotted at every 1
on-dimensional time, immediately after observation and learning (i.e. posterior values from the GMM-DO filter).
or all nine candidate models are beginning to align in phase with
he true concentration field. Despite the absence of velocity ob-
ervations, the conditional velocity field means for the candidates
re also beginning to align with the true velocity field, as a result
f the joint Bayesian inference of microorganism concentration
nd fluid velocity. Inference of the vortex shedding phase behind
he obstacle however is far from complete, as evidenced by the
lurred features in the Bayesian mean of these conditional con-
entration field means, when compared to those in the true field.
he true model of the system is favored by the model distribution
nd, importantly, ‘adjacent’ models – i.e. models featuring smaller
eviations in their growth and decay factor forms – have higher
robabilities than distant models.
Fig. 18 illustrates the system after 80 non-dimensional time

nits and 80 observation episodes. Agreement between the true
elocity and concentration fields and the Bayesian means of the
nferred velocity and concentration fields has improved signifi-
antly. The true model is now also the only plausible model for
he system, as indicated by the highly peaked model distribution
or the unknown but true reaction model.
21
Fig. 19 illustrates the time progression of the two learning
metrics mentioned above. The RMSE approaches zero and the
true model probability approaches one, both indicating successful
learning.

4.3.2. Other learning experiments: Truth is one of the candidate
models

Many similar learning experiments were performed with sim-
ulated truths featuring other combinations of the three time-
dependent growth factor formulations (44)–(46) and three
spatially-variable decay factor formulations (47)–(49). In these
experiments, however, one of the candidate models still had the
same formulation as the true model. The results (not shown) were
analogous to those illustrated in Figs. 14–18. Of note, simulated
truths featuring growth and decay factor combinations on the
periphery of the model space (e.g. (44) and (49)) exhibited faster
learning rates than those featuring combinations near the center
of the model space (e.g. (45) and (48)). This is due to the fact
that the former have fewer ‘adjacent’ candidate models than the
latter and are hence more dynamically distinct within the set of
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Fig. 20. As Fig. 14, but for the experiment where the simulated truth uses the growth factor g ′(t) and decay factor d′(r) formulations, and is not part of the nine
candidate models.
Fig. 21. As Fig. 20, but at non-dimensional time t = 10 (i.e. after 10 observation episodes).
candidate models. Finally, we also confirmed the convergence of
our GMM-DO Bayesian posteriors by repeating several learning
22
experiments with an increasing number of modes and coefficients
(not shown), until the results converged.
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Fig. 22. As Fig. 20, but at non-dimensional time t = 80 (i.e. after 80 observation episodes).
Fig. 23. As Fig. 19, but for the experiment where the truth uses the growth g ′(t) and decay d′(r) factor formulations. Since the true model is not explicitly
represented within the set of candidate models, the probabilities of the four candidates most dynamically similar to the true model are plotted in place of the true
model probability.
4.3.3. Time-dependent growth and spatially-variable decay: Truth is
not one of the candidate models

The final experiment considers the simulated truth defined
by the deterministic simulation featuring the intermediate time-
dependent growth and spatially-variable decay factor formula-
tions g ′(t) (51) and d′(r) (52), respectively. This combination of
growth and decay is not explicitly represented as one of the nine
candidate models for the system. It is only implicitly accounted
for as a linear intermediary between the four candidate models
with the two growth factors g+(t) and g0 and the two decay fac-
tors d0 and d−(r). The goal of this experiment is to find out if the
formulation of the reaction terms (their probabilities) can still be
learned jointly with the velocity and microorganism fields from
noisy observations made from the simulated truth. The evolution
of the GMM-DO Bayesian learning is illustrated in Figs. 20 to 22.

Fig. 20 illustrates the system at t = 0, before observations are
made. The fluid velocity and microorganism concentration fields
of the simulated truth are again in a time-periodic state. As in
other experiments, the initial model-conditional velocity and mi-
croorganism means for all nine candidate models are symmetric
about the r2 = 3 centerline and the model distribution is uniform.
23
Fig. 21 illustrates the system after 10 non-dimensional time
units and 10 observation episodes. The model-conditional mi-
croorganism means for all nine candidate models are beginning
to exhibit slight asymmetries, indicating partial inference. The
model distribution is clearly favoring the candidate models that
simultaneously feature one of the two growth factors g+(t) and
g0 and one of the two decay factors d0 and d−(r) — i.e. the four
candidate models that encircle the true model. The probabilities
of the other candidate models are falling quickly.

Fig. 22 illustrates the system after 80 non-dimensional time
units and 80 observation episodes. Agreement between the true
velocity and microorganism fields and the Bayesian means of
the inferred velocity and microorganism fields has improved sig-
nificantly. The model distribution now indicates that the only
plausible models are the four candidate models that encircle the
true model. No clear favorite among the four encircling candidate
models has emerged though, strongly suggesting that the true
model is an intermediary.

Fig. 23 shows the evolution of learning metrics, specifically the
joint RMSE of the state variables’ Bayesian means as well as the
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Table 3
Notation compendium.
General

NX ∈ N Dimension of state vector
X ∈ RNX State vector
x ∈ RNX State vector realization
NΘ ∈ N Dimension of parameter vector
Θ ∈ RNΘ Parameter vector
θ ∈ RNΘ Parameter vector realization
M Stochastic dynamical model
NM ∈ N Number of candidate models
n ∈ {1, . . . ,NM} Candidate model index
Mn nth candidate model
Dn Stochastic dynamical equations of nth candidate model
SGn Spatial geometry of nth candidate model
BCn Boundary conditions of nth candidate model
ICn Initial conditions of nth candidate model
NY ∈ N Dimension of observation vector
Y ∈ RNY Observation vector
y ∈ RNY Observation vector realization

DO evolution equations

x ∈ RNX State vector mean
NDO ∈ N Dimension of stochastic subspace
i ∈ {1, . . . ,NDO} DO vector index
X ∈ RNX ×NDO Matrix of DO vectors
x̃i ∈ RNX ith DO vector
Φ ∈ RNDO DO coefficient vector
φ ∈ RNDO DO coefficient vector realization
φi ∈ R ith DO coefficient
NMC ∈ N Number of Monte Carlo samples
k ∈ {1, . . . ,NMC} Monte Carlo sample index
xk ∈ RNX kth state vector sample
θk ∈ RNΘ kth DO coefficient vector sample

GMM-DO filter

H ∈ RNY ×NX Linear observation matrix
R ∈ RNY ×NY Observation covariance matrix
NGMM ∈ N Number of GMM components
j ∈ {1, . . . ,NGMM} GMM component index
πX,j ∈ R jth (component) weight of prior state GMM
µX,j ∈ RNX jth mean vector of prior state GMM
ΣX,j ∈ RNX ×NX jth covariance matrix of prior state GMM
πΦ,j ∈ R jth weight of prior coefficient GMM
µΦ,j ∈ RNDO jth mean vector of prior coefficient GMM
ΣΦ,j ∈ RNDO×NDO jth covariance matrix of prior coefficient GMM
πX |Y ,j ∈ R jth weight of posterior state GMM
µX |Y ,j ∈ RNX jth mean vector of posterior state GMM
ΣX |Y ,j ∈ RNX ×NX jth covariance matrix of posterior state GMM
Kj ∈ RNX ×NY jth gain matrix
πΦ|Y ,j ∈ R jth weight of posterior coefficient GMM
µΦ|Y ,j ∈ RNDO jth mean vector of posterior coefficient GMM
ΣΦ|Y ,j ∈ RNDO×NDO jth covariance matrix of posterior coefficient GMM
ỹ ∈ RNY Transformed observation vector realization
H̃ ∈ RNY ×NDO Transformed observation matrix
K̃j ∈ RNDO×NY jth transformed gain matrix
µ′

Φ|Y ,j ∈ RNDO jth intermediate mean vector

Reduced-dimension state augmentation

XΘ ∈ RNX +NDO Augmented state vector
xΘ ∈ RNX +NDO Augmented state vector realization
MΘ Augmented stochastic dynamical model
xΘ ∈ RNX +NDO Augmented state vector mean
x̃Θ ,i ∈ RNX +NDO ith augmented DO vector
HΘ ∈ RNY ×(NX +NDO) Augmented linear observation matrix

Operators, functions, and indicators

E [ • ] Expectation operator
∗ Convolution operator
L (y | •) Observation likelihood function
N

(
• ; µ , Σ

)
Gaussian distribution with mean µ and covariance Σ

( · )− Prior
( · )+ Posterior
probabilities of the four candidate models most dynamically sim-
ilar to the true model. Surprisingly, the RMSE still approaches 0,
24
even though the true model is not explicitly represented by a can-
didate model. Our GMM-DO Bayesian model learning (Section 2)
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s thus capable of combining different model field estimates ac-
ording to their probabilities to obtain a Bayesian mean with
igh field accuracy. The top four model probabilities all float
bout 0.25 (uniform distribution), with none showing persistent
ominance over the others. In fact, the true model is a linear
ombination of these four models. The non-monotonic nature
f the candidate model probability time-series is attributable to
he experiment’s various asynchronous quasi-periodic features:
ortex shedding downstream of the obstacle (with a period of
bout 6.0 non-dimensional time units), time-dependent growth
actor formulation (with time constant Tρ = 0.7), and temporally-
discrete observations (with a frequency of 1 non-dimensional
time unit).

The above results indicate that interpolation within the func-
tional space of model formulations is possible. To further refine
the Bayesian learning, the inference would need to explicitly
account for the possibility of intermediary models represented by
varied combinations of growth and decay factors, e.g. as a ‘‘super
combination’’ of numerically compatible models as developed
in [147].

5. Conclusions

We developed a new methodology for Bayesian learning of
stochastic dynamical models and applied it successfully to high-
dimensional nonlinear systems. Our GMM-DO Bayesian learning
accurately evolves the prior and posterior probabilities of the
fields and parameters for each candidate model, given the ob-
servations available and their uncertainties, and analytically com-
putes the marginal likelihood of each model, enabling principled
Bayesian updates of the model distribution.

We exemplified our results in a range of experiments for
two high-dimensional, nonlinear stochastic systems: a flow past
an uncertain obstacle and a microorganism concentration un-
der uncertain advection–diffusion–reaction. Even though the un-
certainties of the state variable fields were purposely chosen
large when compared to the differences among model candidates,
our Bayesian GMM-DO learning remained capable of identify-
ing the most probable model formulations, even in cases where
a human may be challenged to do the same. We confirmed
the convergence of our GMM-GO posterior distributions with
the rank of the DO decomposition. We also showed that model
biases led to multi-modal posterior distributions that were cap-
tured by our methodology. We employed learning metrics to
quantify the progress in estimating the true state variables, pa-
rameters, and model formulation. When the observations were
sufficiently informative about the learning objectives, we found
that our posterior model probabilities, analytically marginalized
over state variables and parameters, correctly identified either the
true model or the most plausible models. The latter indicates that
interpolation within the functional space of model formulations
is possible.

The present work is a significant step towards the compre-
hensive adaptive learning of realistic stochastic dynamical sys-
tems [57]. First, our work can be extended to variable model
formulations within the context of adaptive modeling [55,57].
Given a computational budget, it is sensible to limit computa-
tional resources to high probability regions of the model space.
Consequently, as learning proceeds with a finite set of candidate
models, low probability candidates can be replaced with new
candidates that are in the vicinity of high probability candidates.
This adaptive modeling process can be performed either automat-
ically or in conjunction with a human subject matter expert [164].
Second, if candidate models are compatible, they can be com-
bined using parameters and model learning is then performed
by parameter estimation [165]. Third, in the present learning,
25
the observation locations were assumed fixed. However, obser-
vations can be targeted towards the most informative locations
for model learning [164]. Integrating adaptive sampling [57,166]
with the present Bayesian model learning methodology is another
promising direction.
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