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Abstract—Onboard probabilistic forecasting and data assimi-
lation is challenging for unmanned autonomous platforms. Due
to the operational constraints, efficient adaptive reduced order
models (ROMs) are needed. To extend the duration for which
Dynamic Mode Decomposition (DMD) predictions are accurate,
we utilize and augment incremental methods that update the
reduced order state but also adapt the DMD. Our adaptive
ROM methods are dynamic and stochastic. They update the state,
parameters, and basis functions, in response to the changing fore-
casts, possibly computed in remote centers, and to observations
made by the autonomous platforms and by other assets. For the
latter, to allow learning even when observations are sparse and
multivariate, we employ Bayesian data assimilation. Specifically,
we extend the Gaussian Mixture Model - Dynamically Orthogonal
(GMM-DO) filter to stochastic DMD forecasts and Bayesian
GMM updates of the DMD coefficients, state, and parameters,
learning from the limited gappy observation data sets.

Index Terms—reduced order model, Dynamic Mode Decom-
position, stochastic models, autonomous marine vehicles, data
assimilation, autonomy

I. INTRODUCTION

Significant challenges for unmanned autonomous platforms
at sea include predicting the likely scenarios for the ocean
environment, quantifying regional uncertainties, and updating
forecasts of the evolving dynamics using their observations [1],
[2]. Due to the operational constraints such as onboard power,
memory, bandwidth, and space limitations, efficient adap-
tive reduced order models (ROMs) are needed for onboard
predictions. Dynamic Mode Decomposition (DMD) [3][and
references therein], a data-driven dimensionality reduction
algorithm, can be used for accurate predictions for short
periods in ocean environments [4]. To extend the duration for
which DMD predictions are accurate, we utilize incremental
methods that update the reduced order state but also adapt the
DMD [5], [6]. The resulting adaptive ROM methods become
dynamic and stochastic, and they update the state, parameters,
and basis functions, in response to the changing forecasts,
possibly computed in remote centers.

Once at sea, multivariate ocean observations are made
by autonomous platforms as well as by other assets. These
data are often limited and gappy, especially for the in situ
measurements. To control errors and improve the accuracy
of onboard forecasts, the ROMs should assimilate and learn
from these observations. To capture all of the information
contained in the sparse observations, principled Bayesian data

assimilation methods [7]–[10] should be utilized for such
onboard assimilation. Bayesian filtering requires probabilistic
predictions, hence the need for stochastic ROMs. In this pro-
cess, these ROM predictions but the ROM subspace itself can
be updated [9], [11], [12]. For this adaptive data assimilation,
we employ the Gaussian Mixture Model - Dynamically Or-
thogonal (GMM-DO) filter [13]. To predict prior probabilities
for the full dynamical state, the GMM-DO filter uses the
stochastic Dynamically Orthogonal (DO) field equations [14]
or their ensemble approximation [15], and the corresponding
adaptive stochastic subspace, effectively approximating the
Fokker–Planck equation. At assimilation times, the DO sub-
space realizations are fit to semiparametric Gaussian Mixture
Models (GMMs) using the Expectation-Maximization algo-
rithm and the Bayesian Information Criterion. Bayes’s law is
then efficiently carried out analytically within the evolving
stochastic subspace. We extend this approach to stochastic
DMD forecasts and Bayesian GMM-DO updates of the DMD
state and parameters, learning from the limited gappy obser-
vation data sets.

A. Adaptive ROM Methods for Forecast Dissemination

Classic DMD uses a set of fixed time snapshots to gen-
erate modes and coefficients that can be utilized to provide
reduced order model forecasts given some initial conditions.
The reduced modes and coefficients are however limited to
linearly approximating the underlying dynamics of the time
snapshots that they were generated from. Therefore, over a
longer time period, in which the nonlinear ocean forecasts
computed in remote centers significantly change, the accuracy
of the DMD reduced order models onboard the autonomous
platforms deteriorates [4].

There are various adaptive methods used to keep the DMD
reduced order model relevant over longer periods [5], [6].
These methods allow the update of DMD modes and coef-
ficients with new time snapshots that can be communicated
to the unmanned autonomous platforms. However, due to the
operational bandwidth limitations, it is infeasible to send the
full-dimensional time snapshots to them. Instead, we propose
the incremental Low-Rank DMD (iLRDMD) framework in
which we: i) project the full-dimensional time snapshots onto
a set of Proper Orthogonal Decomposition (POD) basis [4],
ii) on a shorter time period, communicate these projected
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coefficients to the autonomous platforms to perform adaptive
DMD, and iii) provide forecasts. To keep the projection onto
the POD basis optimal over time, we utilize incremental POD
methods [16] which are communicated to the autonomous
platforms less frequently. Under this framework, we reduce
the communication and computational load by operating in
the space of basis projected coefficients.

B. Data Assimilation for Adaptive Stochastic DMD

Data assimilation (DA) is the process of quantitatively
estimating dynamically evolving fields by melding informa-
tion from observations with that predicted by computational
models. Many DA algorithms exist, some more efficient than
others [17], [18]. Due to operational constraints onboard au-
tonomous platforms, efficient algorithms to predict uncertainty
and assimilating data are needed. Extending the GMM-DO
filter ideas, we show how forecasts made using DMD can
be updated by Bayesian data assimilation. One computational
advantage is the linear approximation made in the DMD
model; it allows easy forward integration and maintains the
GMM properties. We analyze the accuracy of such stochastic
DMD predictions by comparison with other nonlinear stochas-
tic methods. Additionally we compared these results to those
of the Ensemble Kalman Filter (EnKF) [19].

II. METHODOLOGY

A. Adaptive ROM

We now describe the three main components of the iL-
RDMD framework: i) establishing the relationship between
the DMD operator in the full-dimensional state space to the
DMD operator in the low-rank representation space, ii) the
incremental update algorithm of the DMD operator, and iii)
the incremental update algorithm of the set of tailored POD
basis that forms the low-rank representation space.

1) Low-rank DMD: Many applications deal with high-
dimensional state x ∈ RnX that have a low-rank representation
under some tailored basis. [4] has shown that using projection
using POD basis in particular, is effective in inexpensively
communicating and reconstructing the high-fidelity ocean
forecasts that are often available for specific marine applica-
tions. The iLRDMD expands this idea and relates the DMD
operator computed in the high-dimensional state space, AX,
to that computed in the low-rank representation space, AS.
We establish the relationship between the DMD operators in
the high-dimensional state and low-rank representation space
similarly to the result of [20] on compressed sensing DMD.
Given a full-dimensional state xj and x′j for j = 1, . . . , k,
where x′j = xj+1, we define the matrices

Xk = [x1,x2, · · · ,xk], X′k = [x′1,x
′
2, · · · ,x′k], (1)

and the DMD operator as the best least squares fit to

X′k = AXk
Xk. (2)

The DMD operator in the full-dimensional state space AX can
then be computed as

AXk
= X′kX

†
k, (3)

where X†k is the Moore-Penrose pseudoinverse of Xk.
Under a set of tailored POD basis ΨnS ∈ RnX×nS , where

nS is the number of retained modes, the full-dimensional state
has a low-rank representation,

xj = ΨnScj , x′j = ΨnSc′j , j = 1, . . . , k, (4)

and matrices Ck and C′k ∈ RnS×k are defined similarly to
their full-dimensional counterparts in (1). Note that since the
POD modes ΨnS are orthonormal, cj and c′j can be computed
from the high-dimensional state xj ,x

′
j by projecting them onto

the POD modes as

cj = ΨT
nSxj , c′j = ΨT

nSx′j , j = 1, . . . , k. (5)

The DMD operator in the low-rank representation space can
then also be defined as

ASk = C′kC
†
k. (6)

From (4) we can rewrite Xk and X′k as,

Xk = ΨnSCk, X′k = ΨnSC′k. (7)

Substituting (7) in (2) gives,

ΨnSC′k = AXk
ΨnSCk, (8)

right multiplying the pseudoinverse of Ck on both sides gives,

ΨnSC′kC
†
k = AXk

ΨnS . (9)

Substituting (6) into (9), we obtain

ΨnSASk = AXk
ΨnS . (10)

This establishes the relationship between the DMD operators
defined in different spaces. The relations in (10) can be further
expanded to relate the DMD values and vectors of ASk to that
of AXk

, which are the eigenvalues and eigenvectors of the
DMD operators. Right multiplying (10) by the eigenvectors
of ASk , ΦSk ,

ΨnS (ASkΦSk) = AXk
ΨnSΦSk , (11)

then using the eigenvalue problem formulation of ASkΦSk =
ΛSkΦSk , where ΛSk is the diagonal matrix with entries as
the eigenvalues of ASk , (11) can be rewritten as,

ΛSk (ΨnSΦSk) = AXk
(ΨnSΦSk) . (12)

Therefore, from (12), ΛSk is the eigenvalue and ΨnSΦSk

is the eigenvector of AXk
. This essentially lets one to con-

struct the DMD operator using the low-rank representation
snapshots and recover the DMD vectors and values of the
full-dimensional DMD operator.
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2) Weighted Incremental DMD: In classic DMD methods,
the DMD modes and values are static in time. Therefore, as
the underlying dynamics change in time, the classic DMD’s
predictive accuracy diminishes. [5], [6] propose two ways of
incrementally updating the DMD operator with new snapshots.
In this paper, we chose to utilize the weighted incremental
DMD (iDMD) method of [5] as it is applicable even when
the Sherman-Morrison identity is unavailable. Both of the
aforementioned update methods include a weighting factor
ρf ≤ 1, which is used to slowly phase out the old snapshots
in the ”memory” of the DMD operator as shown in (13).
Additionally, we deliberately used cj as defined earlier, in the
iDMD formulation below, because the iLRDMD framework
looks to incrementally build the DMD operator in the low-rank
representation space ASk . The formulation provided below is
modified from [5] for consistency of notations and brevity.

C
ρf
k = [ρk−1

f c1, ρ
k−2
f c2, · · · , ck]

C
′ρf
k = [ρk−1

f c′1, ρ
k−2
f c′2, · · · , c′k].

(13)

Assume C
ρf
k and C

′ρf
k as defined in (13) and the DMD

operator ASk from C
′ρf
k = ASkC

ρf
k are known. The weighted

incremental DMD algorithm finds ASk+1
given new snapshots

ck+1 and c′k+1. The DMD operator at k + 1-th snapshot,
ASk+1

, would be defined from C
′ρf
k+1 = ASk+1

C
ρf
k+1 where

C
ρf
k+1 = [ρkfc1, ρ

k−1
f c2, · · · , ρfck, ck+1] = [ρfC

ρf
k , ck+1]

C
′ρf
k+1 = [ρkfc

′
1, ρ

k−1
f c′2, · · · , ρfc′k, c′k+1] = [ρfC

′ρf
k , c′k+1].

(14)

The DMD operator ASk+1
is then updated from ASk as

ASk+1
= ASk +

(
c′k+1 −ASkck+1

)
vGk,2

Σ
C
ρf
k+1

U∗
C
ρf
k+1

,

(15)
where the components of the update equation are given as

U
C
ρf
k+1

= U
C
ρf
k

UGk
, Σ

C
ρf
k+1

= ρfΣGk
,

V
C
ρf
k+1

=

[
V

C
ρf
k

VGk,1

vGk,2

]
, (16)

with SVD of C
ρf
k is given by C

ρf
k = U

C
ρf
k

Σ
C
ρf
k

V∗
C
ρf
k

. Fi-

nally, the components UGk
,ΣGk

, [VGk,1
; vGk,2

] are obtained
from

Gk
∆
= [Σ

C
ρf
k

, ρ−1
f U∗

C
ρf
k

ck+1] = UGk
ΣGk

[
VGk,1

vGk,2

]∗
.

(17)
3) incremental POD: As the underlying dynamics change

significantly, the set of tailored basis that the high-dimensional
state is projected on may not be as optimal. Therefore, the
amount of information that the POD-projected coefficients
contain may not be sufficient to incrementally build an ac-
curate DMD operator. In such a case, it is crucial to be
able to update the basis at which the high-dimensional state
themselves are projected onto, using methods such as [16].
Below, we provide a simple identity that the algorithm for

brevity and refer to [16] for specifics of implementation the
algorithm. Note that the left singular vectors of the SVD is
equivalent to the POD modes [3]. Letting the rank-nS SVD
of matrix Xk as defined in (1) be

Xk ≈ UXk
ΣXk

VT
Xk
, (18)

the SVD of matrix Xk+1 =
[
Xk xk+1

]
would be[

UXk
ΣXk

VT
Xk

xk+1

]
=

[
UXk

(I−UXk
UT

Xk
)xk+1/p

] [ΣXk
UT

Xk
xk+1

0 p

] [
W 0
0 1

]
,

(19)
where p is defined as

p = ||xk+1 −UXk
UT

Xk
xk+1||. (20)

4) iLRDMD Framework: The iLRDMD framework inte-
grates the three main components outlined to provide adap-
tive DMD forecasts with reduced communication bandwidth
costs. It achieves this by using the tailored set of POD
modes to obtain the low-rank representation of the high-
dimensional snapshots, which are communicated in batches
to the platforms. The platform utilizes these batches of low-
rank representation to incrementally update the DMD operator
in the low-rank space Ak

S with the iDMD algorithm. Then
a forecast in the high-dimensional space is made using the
previously established relationship between ASk and AXk

,
until the new batch of low-rank representation is communi-
cated to the platform. Finally, as the underlying dynamics
change significantly over a longer period of time, the iLRDMD
framework utilizes the incremental POD algorithm to keep the
tailored set of POD modes relevant in time.

B. Data Assimilation for Adaptive Stochastic DMD

In this paper, for DA, we primarily focus on DMD with
the GMM-DO filter but also utilize DMD with EnKF for
comparison purposes. The GMM-DO filter combines the use
of Gaussian mixture models, the Expectation-Maximization
(EM) algorithm and the Bayesian Information Criterion (BIC)
to accurately approximate distributions based on Monte Carlo
data allowing for fast and effective Bayesian inference [13],
[21]. The GMM-DO filter couples these concepts with an ef-
ficient representation of the evolving probabilistic description
of the uncertain dynamical field: the Dynamically Orthogonal
field equations. By limiting attention to a dominant evolving
stochastic subspace of the complete state space, we can
determine the GMM distributions much more quickly and
efficiently compared to working in the state space. Much of
the following discussion of GMM-DO and related concepts is
derived from from [13], [22].

1) Gaussian Mixture Models: The probability density func-
tion (pdf) for a random vector X ∈ Rn that is distributed
according to a multivariate GMM is

pX(x) =
M∑
j=1

πj ×N (x; x̄j ,Pj) (21)
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subject to
M∑
j=1

πj = 1. (22)

We define the following terms as the mixture complexity (or
number of mixture components) M ∈ N, the mixture weights
πj ∈ [0, 1], the mixture mean vectors x̄j ∈ Rn, and the
mixture covariance matrices Pj ∈ Rn×n. The multivariate
Gaussian density function can given by:

N (x; x̄,P) =
1

(2π)n/2|P|1/2
exp[−1

2
(x− x̄)TP−1(x− x̄)].

(23)
GMMs provide a semi-parametric framework in which to ap-
proximate unknown distributions [23]. GMMs can essentially
be looked at as a flexible alternative to the fully parametric
Gaussian distribution where M = 1 and the kernel density
estimator [24] where M = N (the number of realization
points/ensemble members). The fully parametric Gaussian
model often forces the data into a structure that may not be
realistic and is incapable of modeling multi-modal or largely
skewed inputs. The kernel density estimator requires the
retention of all N members for inference, a computationally
expensive task. Additionally, due to the over fitting that is
associated with fitting a kernel to every member, kernel density
estimators often necessitate heuristic choosing of the kernel’s
shape parameter. For these reasons, GMMs are popular due
to their efficiency and accuracy at representing complex dis-
tributions. For large complexity and small covariance, as a
matter of fact, a GMM model converges uniformly to smooth
distributions [25]. An example of the three distribution types
described above (from [13]) is shown in Fig. 1.

Fig. 1. Parametric (Gaussian) distribution, GMM, and Kernel Density
approximation of 20 samples generated from mixture of uniform
distributions: pX(x) = 1

2
U(x;−8,−1) + 1

2
U(x; 1, 8) where

U(x; a, b) = 1
b−a

is the continuous unifrm probability density
function for random variable X . Source [13].

2) Expectation-Maximization Algorithm: The EM algo-
rithm describes an iterative procedure for estimating the pa-
rameters of a target distribution that maximize the probability
of obtaining the available inputs, {x} = {x1, · · · ,xN}, thus
arriving at the Maximum Likelihood (ML) estimate for the un-
known set of parameters. The nice thing about ML estimators
are that they are consistent and asymptotically efficient [26].

For many realistic cases, obtaining the ML estimate by
differentiating the parametric probability distribution with re-

spect to a parameter of interest and equating to zero, gives
a nonlinear result that lacks closed form solution [27]. These
cases mean that the use of numerical optimization methods is
best.

The EM algorithm is often introduced, in the literature, as
a method to estimate ML parameters when incomplete inputs
or data is present. One crucial step is the completion of the
data (by imputing from the data that is known like techniques
presented in [28]). This data completion allows for the
ML solution to be much more tractable and computationally
efficient. The competed data problem normally allows for a
closed form solution to the estimation problem and allows us
to obtain the ML estimation parameters by a simple partial
differential. For more detailed description see [29], [30],
and [23].

3) Bayesian Inference Criterion: For simplicity, when de-
scribing GMMs, the mixture complexity, M , is often assumed
to be known and constant. In reality the optimal mixture
complexity is often unknown. Determining the best complexity
of a GMM can be complicated and there are several methods
that exist [23], [31], [32]. For our purposes we utilize the
Bayesian Inference Criterion (BIC) that, when minimized,
allows us to choose the best mixture complexity, M , that
optimally represents the distribution.

4) Dynamically Orthogonal Field Equations: To employ
the discussed GMM with EM and BIC efficiently we now
discuss the DO equations. The Dynamically Orthogonal (DO)
Field Equations [33], [34] are a closed reduced set of evolution
equations for general stochastic continuation fields described
by stochastic partial differential equations (SPDEs).

The DO equations allow for the stochastic subspace and
the stochastic coefficients to be dynamically evolved in time
after being initialized based on the initial pdf and evolved.
This presents a significant advantage compared to the proper
orthogonal decomposition (POD) [35], [36] and polynomial
chaos [37], which both fix in time parts of their truncated
expansion. For the purpose of this paper, we replace this
evolution in time with a different evolution in time, namely
the DMD forecast.

5) DMD with GMM-DO Filter: The following is a brief
description of DMD with the GMM-DO filter. For a more
detailed description of GMM-DO including comparisons and
discussions of similar methods see [22]. Note that the discus-
sion of the initial conditions and forecast step differs from [22]
and [13] because we use the DMD of the ensemble forecast for
our forecast. GMM-DO is an efficient technique that preserves
non-Gaussian statistics and respects non-linear dynamics [13].

a) Forecast: The forecast that we use is based on DMD
of the ensemble [4]. The approach allows for efficient ex-
traction and forecasting which is advantageous for use where
computing power and storage is limited. With an ensemble
of N simulations used as training inputs, projected DMD
is applied to extract the POD modes Ur, DMD modes Φ,
and the DMD eigenvalues λi for i = 1, · · · , r where r is
the reduced rank of the training inputs determined by the
DMD algorithm. The DMD coefficients bq for q ensemble
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members, are determined based on initial conditions of each
realization/ensemble member. Forecast at time k is then made
by the following:

xfq,k = xfq (k) ≈ Φ exp (Ωk) bq q = 1, · · · , N, (24)

where Ω is a diagonal matrix of discrete time eigenvalues
where the diagonal entries are λi

∆tsnap
for i = {1, · · · , r} and

∆tsnap is the time between snapshots. If no observations are
made at time k then the DMD forecast xfq,k is used by the
vehicle as the forecast at time k. If, however, observations
are available (either made by the platform or communicated
to the platform) then GMM-DO is used for data assimilation.
We start by placing the DMD forecasts into a matrix Xf

k ;

Xk =

 | | |
x1
k x2

k · · · xNk
| | |

. (25)

We then determine the modes, χk, and the subspace coeffi-
cients {γk} = {γ1,k, · · · ,γN,k}:

xfk = x̄fk + χfkγ
f
k , (26)

via a mean subtraction and SVD giving us:

χkΣ
f
kV

f
k

T
= SVD(xfk − x̄fk), (27)

and define the subspace coefficients as {γk} ≡ Σf
kV

f
k

T . Here,
χk ∈ Rn×s is the matrix of modes forming an orthonormal
basis for the subspace at time k.

b) Observation: Presently, we employ a linear observa-
tion model:

Yk = HXk + Υk, Υ ∼ N (vk; 0,R), (28)

where Yk ∈ Rp is the observation random vector at time
k, H ∈ Rp×n is the linear observation model, and Υ ∈ Rp
is the noise vector (assumed to be Gaussian). Note that the
observation vector is denoted yk ∈ Rp and the realized noise
vector is denoted vk ∈ Rp.

c) GMM-DO Update: The update occurs at a discrete
time instant and for simplicity we omit the time index k in
the following. During the update, the modes are presently
unchanged by the observations and thus no prior/forecast or
posterior/analysis notation is used on the modes χ. The goal
is to update the mean state x̄f and the ensemble members
{γf} = {γf1 , · · · ,γ

f
N} according to (28) and the observations

y to get the GMM-DO posterior estimate:

xaq = x̄a + χγaq , q = {1, · · · , N}. (29)

GMM representations of prior ensemble set: at discrete time
when new set of observations or measurements are obtained,
the EM algorithm and BIC allow us to conclude the GMM that
best expresses the ensemble set within the stochastic subspace
which is significantly less expensive than doing this in the full
state space. The parameters of the GMM are denoted:

πfj ,µ
f
j ,Σ

f
j , j = 1, · · · ,M, (30)

where πfj ∈ [0, 1] are the component weights, µfj ∈ Rs is the
mean vector of mixture component j in stochastic subspace,

and Σf
j ∈ Rs×s is the covariance matrix of mixture component

j in stochastic subspace.
The best mixture complexity is decided by the BIC succes-

sively fitting GMMs of increasing complexity using the EM
algorithm until a minimum BIC is determined. The end result
is a GMM that is best fit to the ensemble set in the stochastic
subspace. The resulting prior pdf can be written as follows:

pΓf (γf ) =
M∑
j=1

πfj ×N (γf ;µfj ,Σ
f
j ). (31)

A very important property of the GMM-DO filter is that the
GMM can be expanded into the state space by:

x̄fj = x̄f + χµfj (32)

and

Pf
j = χΣf

jχ
T . (33)

The mixture weights remain unchanged when expanding to
the state space. The GMM prior distribution in the state space
then takes on the form:

pXf (xf ) =

M∑
j=1

π ×N (xf ; x̄fj ,P
f
j ). (34)

A crucial property of GMM-DO is that the same distribution
would have been obtained if we had performed the fitting to
the state space (but the fitting in the subspace is done at a
fraction of the cost).

Bayesian Update: Since the dimension of the subspace is
much less than the state space (s� n), for realistic problems
performing a GMM-DO filter update step is computationally
feasible in the subspace. The following is the update step that
determines the posterior distribution in the stochastic subspace
pΓa(γa) but would be equivalent to evolving the distribution
in the full state space because the modes χ are unchanged
(proof is shown in [13], [22]).

Using the GMM-DO filter we utilize our observation to
determine the posterior analysis GMM parameters:

πaj ,µ
a
j ,Σ

a
j j = 1, · · · ,M.

Generating the posterior ensemble set: We complete the
update by utilizing the same idea as in the ESSE Scheme
A [38] by generating a posterior ensemble set in the stochastic
subspace {γa} = {γa1 , · · · ,γaN} in accordance with the a
posteriori GMM, pΓa(γa), that has the parameters πaj , µaj ,
Σa
j for j = 1, · · · ,M .
Now we have arrived at the posterior DO representation for

the state vector based on Bayesian data assimilation of the
observation y at time k as:

xaq,k = x̄ak + χkγ
a
q,k, q = {1, · · · , N}. (35)
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d) DMD Coefficients Updates: Now that the update is
complete and a posterior ensemble set is obtained, we can
then utilize the DMD modes, Φ and the new ensemble set to
obtain new DMD coefficients, bq . If time k is set to 0 for
simplicity of notation, the coefficients are:

bq = Φ†xaq,k, q = 1, · · · , N, (36)

and the forecast at some time t in the future is:

xfq,t = xfq (t) ≈ Φ exp (Ωt) bq q = 1, · · · , N. (37)

III. APPLICATION RESULTS

We use a 2D flow behind an island/cylinder as a bench-
mark test case to validate and develop the iLRDMD adaptive
ROM algorithm as well as the DMD with DA schemes. The
benchmark test case was run with a Reynolds number of 200
that was determined by a free stream velocity of 2 m/s, the
diameter of the island at 1 m, simulation time step of 0.01 s
and domain of 20 m×3 m, leading to 171×21 grid points. The
results from this simulation were saved every 20 simulation
time-steps as columns of the snapshot matrix and regarded
as the ’true’ snapshots. The underlying dynamics undergoes
significant change in this test case as the laminar flow develops
into flow with vortex shedding. A snapshot of the vorticity
field is shown in Fig. 2 to exemplify a sample vorticity field
(top plot) and two sensors (bottom plot) for flow behind an
island/cylinder at Re = 200. Sensor one, labeled s1, is plotted
in a blue solid line and sensor 2, labeled s2, is plotted in an
orange dotted. After the simulations converge to steady-state
vortex shedding, snapshots are collected at regular intervals of
20∆t or 0.2s.

Fig. 2. Example of vorticity field (top plot) and two sensors (bottom plot)
for flow behind an island/cylinder at Re = 200. Sensor one, labeled s1, is
plotted in a blue solid line and sensor 2, labeled s2, is plotted in an orange
dotted line.

A. Adaptive ROM Results

In the example shown in Fig. 3, we have used the u velocity
to examine key characteristics of iLRDMD and draw com-
parisons with classic DMD. We used the Pattern Correlation
Coefficients (PCC) as an aggregate value that indicates how
’good’ our predictions are when compared to the ’true’ snap-
shots from the 2D flow behind an island/cylinder simulation.

The PCC is a time mean subtracted pattern coefficient [39].
In general terms, a PCC of 1 is a perfect correlation, 0 no
correlation, and -1 a perfect anti-correlation. Both the classic
DMD and iLRDMD are initialized with laminar flow before
any eddy has occurred. It should be noted that while the
classic DMD is computed in the high-dimensional space,
the iLRDMD was computed with low-rank representations
of that. The low-rank representation was initially computed
by projecting the high-dimensional snapshots onto the set of
POD modes computed from laminar flow snapshots. In Fig.
3, the classic DMD and iLRDMD both exhibit high PCC in
the beginning when the flow is still laminar. However, once
the eddies start to form after around the 90−th snapshot,
the PCC values for both methods start to rapidly decay.
However, while PCC of the classic DMD continues to decay
further, the PCC of iLRDMD experiences some improvements
after every 20 snapshots. This is because unlike the classic
DMD operator, the iLRDMD operator is being updated with
new POD-projected, low-rank snapshots. It should be noted
that the improvements are only limited to PCC of around
0.4, because the set of POD modes computed from laminar
flow snapshots are no longer as optimal when computing
the low-rank representations of the high-dimensional state.
Therefore, the amount of information that the DMD operator
is being updated with is limited as well. In the iLRDMD
framework, this would correspond to a situation in which the
underlying dynamics have changed significantly and a new set
of tailored set of POD modes needs to be used. In Fig. 3, at
200-th snapshot, the new set of POD modes that now also
encompasses snapshots with eddies via the iPOD algorithm is
made available. The PCC value sees a significant improvement
because the DMD operator is now being updated with low-
rank, POD-projected snapshots that are projected onto a more
optimal set of POD modes.

The significant improvement at 200-th snapshot can be
better seen from Fig. 4 and Fig. 5, which show vorticity of
the ’truth’ compared with the iLRDMD predictions at 199-
th and 200-th snapshot respectively. To compute vorticity, the
iLRDMD was computed separately for u and v. In Fig. 4,
the set of POD modes that the snapshots are being projected
on is solely based on laminar flow snapshots. Thus the
iLRDMD predicted vorticity does not resemble the ’truth’
field well. However, in Fig. 5, the new set of POD modes
is communicated to the platform and the DMD operator is
updated with a new batch of snapshots projected onto this
set. This means that the DMD operator has now been updated
with POD-projected snapshots that contain information about
the eddies. Therefore, the iLRDMD predicted vorticity field
in Fig. 5 correctly resembles that of the ’truth’ field.

Importantly, in the examples shown, we used 60 modes for
the tailored set of POD modes that the high-dimensional state
was projected on. Therefore, excluding the bandwidth cost of
communicating the new set of POD modes, this amounts to
around 1.7% in bandwith cost compared to having to com-
municate high-dimensional state for a typical iDMD. Further
demonstrating the effectiveness of iLRDMD in addressing
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both the predictive accuracy of the ROMs over time and the
communication load.

Fig. 3. The pattern correlation coefficients (PCC) for classic DMD and
iLRDMD compared with the ’true’ snapshots. The DMD operator is updated at
every 20 snapshots while the set of POD basis that the low-rank representation
is computed on is updated every 200 snapshots.

Fig. 4. Vorticity plot of the ’truth’ and iLRDMD prediction at 199-th snapshot,
before the new set of POD modes are communicated to the platform. PCC
and root mean squared error (RMSE) of each u and v prediction on top.

Fig. 5. Vorticity plot of the ’truth’ and iLRDMD prediction at 200-th snapshot,
after the new set of POD modes are communicated to the platform. PCC and
root mean squared error (RMSE) of each u and v prediction on top.

B. DMD with DA Results

With our previously mentioned test case of flow behind
an island/cylinder, we generated ’true’ snapshots of the flow
with a free stream velocity of 2 m/s. To obtain a 30 member
ensemble of inputs for testing our DMD with DA schemes,
we generated an ensemble with a mean free stream velocity
of 2 m/s with perturbations added where the ensemble free
stream velocity has a standard deviation of 0.2 m/s. The
’true’ field has a Reynolds number of 200 while some of the
perturbed ensemble members have Reynolds numbers slightly

lower and some slightly higher based on the free stream
velocity. Although with the above framework we solve for
u, v, density and pressure at each grid-point, in the following
example we have used u and v to calculate the vorticity at each
point and use the ’true’ vorticity as our observed quantity.
After vortex shedding begins, we utilize our DMD of the
ensemble method to predict the future ensemble set. The test
case uses the 30 ensemble members, 25 training snapshots,
and makes predictions of the ensemble for 125 snapshots past
the last training snapshot.

For visual comparison we calculated the ensemble mean
forecast and compared it to the ’truth’ at the given time in
the future. The mean error field is calculated and displayed
as well as the PCC. Fig. 6, Fig. 7, and Fig. 8 show the true
field, DMD error field, and PCC values for 0.2 s, 5 s, and
20 s forecast, respectively. As we can see the DMD forecast
starts off with a relatively high PCC and low error fields at
short forecast times, but within 5 s the error fields are much
larger, and by 20s the DMD forecast is very poor. We can see
that due to the somewhat cyclical nature of the wake behind
the island/cylinder, persistence does a poor job but gets lucky
as the pattern repeats itself. These results are similar to what
we see in ocean modeling for DMD. This is why utilizing
efficient Bayesian data assimilation schemes that extract the
information contained in the data prove very beneficial for use
with DMD onboard autonomous platforms.

z

Fig. 6. True vorticity field 0.2 s past the last training snapshot (top plot),
DMD error field at 0.2 s past the last training snapshot, and the pattern
correlation coefficients (PCC) for persistence and DMD.

The learned dynamics are not necessarily incorrect, but
rather the initial conditions used to determine our DMD
coefficients, are not close to the ’truth’. When we assimilate
data and use this data to calculate new coefficients to make
predictions, we can drastically improve our field predictions.
In the following example we have observed the vorticity at
25 grid-points at every 0.2 s. These observations are drawn
at random from the domain (but do not necessarily have to if
the observations were made only by the vehicle itself). Fig.
9, Fig. 10, and Fig. 11 show the true field, DMD with EnKF
error field, DMD with GMM-DO error field, and PCC values
for 0.2 s, 5 s, and 20 s forecast, respectively. Here we can see
that in general the EnKF performs slightly better than DMD
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Fig. 7. True vorticity field at 5 s past the last training snapshot (top plot),
DMD error field at 5 s past the last training snapshot, and the pattern
correlation coefficients (PCC) for persistence and DMD.

Fig. 8. True vorticity field at 20 s past the last training snapshot (top plot),
DMD error field at 20 s past the last training snapshot, and the pattern
correlation coefficients (PCC) for persistence and DMD.

forecasts in most instances. On the other hand, the GMM-DO
filter performs much better than the EnKF for the duration of
our test.

Fig. 9. True velocity field 0.2s past the last training snapshot (top plot), DMD
with EnKF error field at 0.2s past the last training snapshot (second from top),
DMD with EnKF error field at 0.2s past the last training snapshot (second
from bottom), and the pattern correlation coefficients (PCC) for DMD, DMD
with EnKF, and DMD with GMM-DO.

IV. CONCLUSION AND FUTURE WORK

We explained and demonstrated our adaptive ROM meth-
ods for forecast dissemination and our data assimilation for
adaptive stochastic DMD technique. We utilized a benchmark

Fig. 10. True velocity field 5s past the last training snapshot (top plot), DMD
with EnKF error field at 5s past the last training snapshot (second from top),
DMD with EnKF error field at 5s past the last training snapshot (second from
bottom), and the pattern correlation coefficients (PCC) for DMD, DMD with
EnKF, and DMD with GMM-DO.

Fig. 11. True velocity field 20s past the last training snapshot (top plot), DMD
with EnKF error field at 20s past the last training snapshot (second from top),
DMD with EnKF error field at 20s past the last training snapshot (second
from bottom), and the pattern correlation coefficients (PCC) for DMD, DMD
with EnKF, and DMD with GMM-DO.

test case of flow behind an island/cylinder. In the future
we plan to further develop the techniques and demonstrate
their effectiveness on more realistic ocean test cases. Another
goal is to develop methods to utilize DA to update the
DMD models themselves based on data-model misfits and
subspace augmentation [9], [10]. Finally, we plan to integrate
the adaptive ROM methods we have discussed with our
data assimilation for adaptive stochastic DMD. This would
enable the autonomous platforms that are unable to receive
forecasts computed in remote centers or platforms to make
local observations that update their ROMs onboard. This could
also be used to augment and update the remote center models
that are making forecasts that are periodically sent to the
autonomous platforms.
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