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Highlights
• Combined decision theory and time-optimal S-PDEs in uncertain, dynamic, strong flows.
• Risk of being suboptimal given the uncertain time-optimal path predictions minimized.
• Multiple error and cost metrics used for rigorous risk evaluation and minimization.
• Applied planning in stochastic front, double-gyre QG flow and flow exiting a strait.

Abstract

We combine decision theory with fundamental stochastic time-optimal path planning to develop partial-differential-equations-
based schemes for risk-optimal path planning in uncertain, strong and dynamic flows. The path planning proceeds in three
steps: (i) predict the probability distribution of environmental flows, (ii) compute the distribution of exact time-optimal paths for
the above flow distribution by solving stochastic dynamically orthogonal level set equations, and (iii) compute the risk of being
suboptimal given the uncertain time-optimal path predictions and determine the plan that minimizes the risk. We showcase our
theory and schemes by planning risk-optimal paths of unmanned and/or autonomous vehicles in illustrative idealized canonical
flow scenarios commonly encountered in the coastal oceans and urban environments. The step-by-step procedure for computing
the risk-optimal paths is presented and the key properties of the risk-optimal paths are analyzed.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the use of autonomous platforms such as Autonomous Underwater Vehicles, gliders, floats,
drones, and Unmanned Aerial Vehicles has rapidly increased, for both underwater and aerial applications. These
vehicles operate in dynamic environments with strong and uncertain currents/winds that affect their motion. To pilot
these vehicles efficiently between any two locations, it is important to utilize environmental predictions to plan paths
that optimize travel time, energy consumption, data collection and/or safety. Such environmental predictions are,
however, often uncertain and path planning has to rigorously account for these probabilistic predictions, if available.
Recently, we developed governing stochastic partial differential equations and their efficient stochastic Dynamically
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Orthogonal (DO) counterparts for time-optimal path planning in uncertain, strong and dynamic flow fields [1]. With
these equations, we can forecast the probability distribution of reachability fronts and time-optimal paths. Such
probabilistic predictions raise important new questions: What is the optimal path choice under such uncertainty?;
Can/should concepts from rational decision making be utilized for informing this optimal choice?; What is an
appropriate risk measure and optimality criterion for such choices?; Can such paths be computed efficiently? We
answer these questions in the present paper.

The present work is based on fundamental differential equations that govern the evolution of the reachability
and time-optimal paths in strong and dynamic currents [2], and is related to energy-optimal paths [3,4]. These
equations were used to compute optimal paths, both in realistic data-driven simulations [5,6] and with real
vehicles [7]. They were also employed to solve pursuit evasion problems [8,9]. The input probabilistic predictions
of flow fields are obtained from the variance-optimal reduced-order stochastic dynamically orthogonal equations
[10–12]. The resulting stochastic PDEs (S-PDEs) for time-optimal path planning have some advantages [1]: (i)
for a given stochastic environmental flow prediction, the stochastic time-optimal paths are exact; (ii) the computed
paths naturally avoid stationary and dynamic obstacles; and (iii) the probability of a location being reachable (or
non-reachable) is directly predicted.

From the probability distribution of time-optimal paths, we have to assess the risks and make a decision of risk-
optimal paths. This subject of decision making under uncertainty has been well studied in the fields of economics
and management. One widely used model is the expected utility theory and its several variants as reviewed in [13].
The key ingredients of this model are the evaluation of the utility cost of the outcome due to a decision and the
probability of that outcome. The expected utility theory can be utilized in a prescriptive or normative framework to
inform optimum decision making under complex decision scenarios and can be customized to fit the risk behavior
of users [13–15]. Specific utility functions are also available for different risk behaviors [e.g.,16–18].

Our goal here is to combine a principled risk optimality criterion grounded in decision theory with our stochastic
dynamically orthogonal level-set equations to develop efficient computational schemes to predict risk-optimal paths
from the distribution of stochastic time-optimal paths. We also seek to apply the new schemes to several stochastic
flow scenarios, analyze the effects of different risk metrics and criteria, and discuss the properties of risk-optimal
paths.

The remainder of the present paper is organized as follows. Next, we provide a brief review of prior path planning
results. In Section 2, we develop the theory and schemes for risk-optimal path planning. In Section 3, we apply the
new schemes to compute risk optimal paths for a variety of stochastic flow scenarios. In Section 4, we conclude
and provide future research directions.

1.1. Previous progress in optimal path planning

Traditionally, path planning has focused on land-based robots in stationary environments [e.g.,19–21]; however,
a major challenge for marine and aerial platforms is the effects of the uncertain, strong and dynamic currents/winds.
Several authors have extended many of the algorithms for static environments to plan paths of autonomous vehicles
in dynamic environments (for reviews, see e.g., [2] and [22]). These applications include graph based search methods
such as the modified Dijkstra’s algorithm [23], A∗-search [24], RRTs [25], kinematic tree-based navigation [26],
stochastic planners with uncertain edge weights [27], and stochastic surface response methods [28]. Other
techniques such as nonlinear optimization methods [29,30], sequential quadratic programming [31], evolutionary
algorithms [32,33], fast marching methods [34,35], wave front expansion [36,37] have been used with varying
degrees of success. Monte Carlo methods to account for uncertainties and compute statistics of optimal trajectories
have been used with potential field methods [38] and two point boundary value problems [39]. Partially Observable
Markov Decision Processes (POMDP) have been utilized for computing policies of robots moving in uncertain
environments [40]. MDP and graph search methods have also been recently utilized for accounting for forecasting
uncertainties while planning [41]. We refer to [42,43] and references therein for a detailed review of all these results,
and to Blythe [44] for an early review and outlook of decision-theoretic planning.

Previous attempts to combine expected utility theory with robot motion planning in dynamic environments
have been limited. Rapidly-exploring Random Trees (RRTs) with utility-based random trees have been used for
single-query robot planners [45]. Here, the authors leverage the solution of a local linear dynamics, quadratic
cost, and Gaussian noise (LQG) control problem to predict a path distribution from which a path that minimizes
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the expected cost is computed through incremental sampling refinement. In Boddy and Dean [46], the authors
propose an expectation driven iterative refinement approach with a heuristic, but without providing any algorithms
or applications. In Burns and Brock [47], the expected utility of a path to be collision free is utilized with A∗

search to iteratively identify paths that maximize utility. The authors estimate the probability of an obstacle free
path by noisy sensing and demonstrate the planning algorithm with a simple laboratory experiment. A maximum
expected-utility-based central arbiter for the Distributed Architecture for Mobile Navigation (DAMN) framework
has been developed and showcased for land robots [48]. The commands for future motion under DAMN are then
decided by choosing the trajectory that maximizes the expected utility of steering the robot through obstacle free
regions. In Pereira et al. [22], a risk-aware planner based on a minimum expected risk criterion and using a Markov
Decision Process has been demonstrated to plan collision free paths for gliders in simulations and field experiments.
The planning was then aware of currents, but did not actively use them to optimize travel parameters. For Unmanned
Aerial Vehicles (UAV), De Filippis et al. [49] have developed an algorithm that utilizes collision risk maps and
graph search algorithm to plan paths to minimize such risk. In Rudnick-Cohen et al. [50], the planning algorithm
minimizes the risk to persons on the ground when a UAV flies over inhabited areas. Another focus of researchers
has been to minimize the risk of capture of autonomous vehicles moving in environments with static and known
threats, for example optimal paths that avoid radars by a graph search scheme [51], or by solving Boundary Value
Problems [52].

Briefly, the main issue with several of the above methods is that they are inaccurate, or apply specific heuristics,
or are computationally intractable in strong, dynamic, and uncertain flows. Also, several methods do not rigorously
utilize environmental predictions for planning. Additionally, accurate accounting of uncertainties requires large
ensemble sizes for convergence of Monte Carlo methods, making them computationally very expensive for real-time
use. The focus of previous works utilizing expected utility theory has been mostly on minimizing the risk of collision
within uncertain environments. They have not yet been utilized for rigorous risk-optimal planning with PDEs in
stochastic dynamic environments.

2. Theory and schemes

2.1. Problem statement

The risk-optimal path planning problem in uncertain flows can be formulated as follows (Fig. 1). Consider a
domain D with a spatial index x, temporal index t , probabilistic sample space Ω , random event ω ∈ Ω , and
probability distribution function pΩ (•). For a vehicle P navigating from start xs to a target x f in a stochastic flow
v(x, t; •), we denote the time-optimal path distribution by XP (xs, t; •) and the time-optimal heading distribution by
ĥ(t; •). We define risk-optimal paths as the time-optimal paths that minimize the expected utility cost of following
a path that is possibly sub-optimal in the uncertain environment. Next, we develop the theory to compute such
risk-optimal paths.

2.2. Theory of risk-optimal paths

Risk-optimal paths can be obtained in three steps. First, v(x, t; •) is computed by solving the DO stochastic
environmental flow equations (Appendix A.1; [11,53]). Second, XP (xs, t; •) and ĥ(t; •) are computed by solving the
stochastic dynamically orthogonal level-set Hamilton Jacobi equations (A.7) followed by the stochastic backtracking
equation (A.5). We developed and applied these equations in [1]. Third, a risk metric is selected, the risk of all
path choices XP (xs, t; •) is evaluated, and the risk-optimal path X∗

P (xs, t) computed by minimizing the risk. Here,
we focus on all aspects of this third step.

To evaluate and minimize the risk of following a wrong path from among the distribution of time-optimal paths,
we employ the expected utility hypothesis [e.g.,13,16]. The risk corresponding to a path choice is the expected
utility cost of that choice being sub-optimal due to the uncertain environment. The utility cost depends on the error
incurred due to the sub-optimality and the cost a decision maker assigns to this error, in accordance with their risk
profile or chosen risk metric. Mathematically, we can formulate the risk evaluation and minimization problem as
follows.

The time-optimal path XP (xs, t;ωl) or heading time-series ĥ(t;ωl) corresponding to a random event ωl ∈ Ω is
exact for the environmental realization v(x, t;ωl); however, its use in another environmental realization v(x, t;ωm)
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Fig. 1. Schematic of minimum-risk time-optimal path planning setup: The goal is to compute the time-optimal path with minimum risk
under uncertainty for a vehicle P navigating from xs to x f in an uncertain flow field v(x, t;ω). The effective velocity, U experienced by
the vehicle is the vector sum of the vehicle’s forward motion F(t)ĥ(t) and the background flow V .

would be sub-optimal, and potentially infeasible. Let the trajectory achieved by following the waypoints or
headings of the optimal path for ωl in ωm be XP (xs, t;ωl |ωm). We define the error incurred due to this path
as e(XP (xs, t;ωl |ωm)) and the cost C(XP (xs, t;ωl |ωm)) = f (e(XP (xs, t;ωl |ωm))) to quantify the effect of this
sub-optimality on the decision maker. Here, e is an error function selected by the operator as the error metric of
choice and f is a utility cost function corresponding to the risk profile of the decision maker. These functions e
and f are discussed and defined in Section 2.3. Thus, the risk of utilizing the time-optimal path XP (xs, t;ωl) is
the expected cost, i.e,

R(XP (xs, t;ωl)) =

∫
Ω

C(XP (xs, t;ωl |ωm))pΩ (v(x, t;ωm)) dωm . (1)

Then, the risk-optimal path is computed by optimization as

X∗

P (xs, t) = arg min
XP (xs ,t;ωl )

R(XP (xs, t;ωl)) . (2)

Of course, there can be many time-optimal paths that have the same risk R(XP (xs, t;ωl)) in Eq. (1). Similarly, the
risk-optimal path X∗

P (xs, t) defined in Eq. (2) can also be multi-valued.

2.3. Schemes for risk evaluation and minimization

The specific choice of the error incurred due to sub-optimality e and the form of utility cost function f determine
the risk evaluation and risk-optimal path selection. For brevity of notation, we use hereafter elm for the error
e(XP (xs, t;ωl |ωm)) and Clm for the cost C(XP (xs, t;ωl |ωm)). There can be several error metrics e corresponding
to the operational parameters of interest and multiple analytical forms of the utility cost function f corresponding
to different risk tolerance profiles of different decision makers, e.g., the pilot or mission designer [13,18]. Next, we
present the schemes we consider.

2.3.1. Error metric elm

The purpose of the error metric in our problem is to quantify the difference between following a prescribed path
(specified as waypoints or a heading time-series) in an environment for which it is sub-optimal and following the
true optimal path for that environment. We consider vehicle operations where the objectives are either achieving the
optimal set of provided waypoints or the optimal heading time-series. In both operational modes, the optimal path
can always be followed in the environment flow realization for which it is truly optimal, i.e., for which it reaches
the target x f in fastest time. For a vehicle programmed to achieve waypoints, the ability to traverse a non-optimal
path depends on whether the currents are always weaker than the vehicle’s forward thrust or not. If this is the
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case, then all prescribed paths are feasible in finite time and differ from the optimal path mainly in total travel
time. If not, then the vehicle does not have local controllability and may get advected away from the desired path.
Sometimes it may not be able to reach x f at all and thus needs to be aborted. If a vehicle programmed to achieve
the optimal heading time-series for a given environment is operated in an environment for which these headings
are sub-optimal, the vehicle will in general end up at a different end location than its intended target.

To quantify the physical dissimilarity between the paths XP (xs, t;ωl |ωm) and XP (xs, t;ωm), we employ the
Fréchet distance δF [54,55] as the error metric Eq. (3a). A zero value of the Fréchet distance means that the
paths are coincident and higher values progressively imply more dissimilarity. Alternative error metrics are possible
for vehicles programmed with waypoint objectives or heading objectives. For example, for a vehicle programmed
with waypoint objectives, the sub-optimal trajectory reaches the target in time T (x f ;ωl |ωm) instead of T (x f ;ωm).
Thus, the error metric could be |T (x f ;ωl |ωm) − T (x f ;ωm)| (Eq. (3b)). For a vehicle programmed with a heading
objective, an appropriate error metric could be the error in arrival location. Specifically, following XP (xs, t;ωl |ωm),
the vehicle ends up at x′

f instead of x f and the error metric is the distance |x f − x′

f | (Eq. (3c)). In summary, the
above error metrics are

elm = δF (XP (xs, t;ωl |ωm),XP (xs, t;ωm)) , (3a)

elm = |T (x f ;ωl |ωm) − T (x f ;ωm)| , (3b)

elm = |x f − x′

f | . (3c)

Mathematically, all the above metrics defined in Eq. (3) have the property that if the path followed was the
exact time-optimal path for the realized environment then the error is zero. For non-optimal paths, the error gets
progressively higher with the degree of sub-optimality.

We note that the above metrics have been chosen based on our experience with real time missions with REMUS
600 AUVs [7,56,57]. Of course, other error metrics could be utilized, e.g., those based on the maximum background
flow encountered along the path, or minimum bathymetry clearance along the path, or the number of times a
vehicle has to perform a particular maneuver such as surfacing. Specific error metrics for individual missions and
vehicles can be formulated based on an accurate performance characterization of the vehicle utilized, its navigation
capabilities, fin configurations, and thresholds for satisfying navigation objectives. In the present paper, our goal is
to provide a general theory and a recipe for risk-optimal path design and prediction for any acceptable metric elm .
If a specific metric is well adapted to a given situation, one would simply need to update the definition of elm ; the
rest of our schemes would still apply.

2.3.2. Analytical forms of the cost function f
The cost function f maps the error elm to a cost Clm that specifies the utility cost associated with the choice l

when the environment is m. The analytical form of the cost function f is important to characterize the risk profile of
vehicle operators and appropriately compute the risk that will be utilized to order the choices [15]. For a risk-neutral
preference of choice, the marginal increase in cost for a marginal increase in error should be relatively indifferent
to the shape of the cost function. On the other hand, for a risk-seeking preference, the marginal increase in cost
for a marginal increase in error should decrease monotonically with error, and for a risk-averse preference, the
marginal increase in cost for a marginal increase in error should increase monotonically with error. Such a property
ensures that for the former, higher errors are penalized less, whereas for the latter, higher errors are penalized more
compared to a risk-neutral preference. In the rational utility theory, these risk-neutral, risk-seeking, and risk-averse
preferences are modeled by utilizing linear, concave, and convex functions respectively [13,18,58].

In our applications we utilize the functions,

f (elm) = elm , (4a)

f (elm) = log2(1 + elm) , (4b)

f (elm) = elm + 0.5 ∗ e2
lm , (4c)

respectively to model risk-neutral, risk-seeking, and risk-averse preferences. Other linear, concave, and convex
functions such as felm = elm , e0.5

lm , and −1 + 2elm are also valid cost functions. To formally quantify the degree of
risk aversion and choose an appropriate f , the Arrow–Pratt coefficient of absolute risk aversion applied on the errors,
Ar (elm) = f ′′(elm)/ f ′(elm) may be utilized [13], where the numerator measures the concavity and the denominator
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Table 1
Risk-optimal path planning: Algorithm.

I. Probabilistic flow prediction
1. Predict the distribution of the velocity field vDO (x, t;ω) by solving the discrete stochastic DO environmental

flow equations (e.g., DO-NS Eq. (A.3) or DO-PEs [53]) to obtain the DO mean v̄(x, t), DO modes ṽi (x, t),
and the DO stochastic coefficients µi (t; r ) for all i = 1 · · · ns,v and r = 1 · · · nr .

II. Stochastic time-optimal path planning
1. Compute the distribution of the stochastic reachability fronts φDO (x, t;ω) by solving the stochastic DO

level-set equations (Eq. (A.7)) with v̄(x, t), ṽi (x, t), µi (t; r ) for all i = 1 · · · ns,v and r = 1 · · · nr .

2. Compute discrete time-optimal paths XP (xs , t; r ) and time-optimal headings ĥ(t; r ) for all r = 1 · · · nr using
the backtracking equation (Eq. (A.5)).

III. Risk evaluation and optimization
1. Simulate the trajectories XP (xs , t; l|m) for waypoint objective XP (xs , t; l) or heading objective ĥ(t; l) for all

l = 1 · · · nr .

2. Compute the error matrix elm as defined in Eq. (3) for all l,m = 1 · · · nr .

3. Compute the cost matrix Clm = f (elm ) corresponding to the cost functions as defined in Eq. (4) for all
l,m = 1 · · · nr .

4. Compute the risk of choosing the path XP (xs , t; l) as Rl =
1

nr

∑nr
m=1 Clm .

5. Find l that minimizes Rl . Then, return the risk optimal path X∗

P (xs , t) = XP (xs , t; l).

IV. Iterate
1. If there is evidence that the number of DO realizations r = 1 · · · nr or adaptive sizes of the DO environmental

or level-set subspaces, ns,v or ns,φ Appendix A, are not sufficient to describe the probability density of
v(x, t; •) or of XP (xs , t; •), augment the number of realizations or subspace sizes, and iterate.

normalizes this concavity. Such normalization is necessary as the utility representation is unique only up to affine
transformations. For the same reason, the absolute value of the cost bears no significance to the risk optimization
and only the relative cost of one choice with respect to another choice affects the risk optimization [59]. Therefore,
in our applications (Section 3) we normalize the cost to lie between zero and one.

We note that an operator can assign specific cost values f (elm) and risk values (Eq. (1)) to specific realization
mismatches elm . For example, the time-optimal vehicle for realization l could get caught in an unexpected current
or wind field realization m of magnitude that is larger, at a certain place x and time t , than the maximum vehicle
speed. In such a situation, the optimal vehicle l is not controllable in the flow m. One may then simply utilize the
above theory (Eq. (2)) since it applies to all situations and assign the cost as computed from the chosen function
f (elm). This is what will be done here. Other more risk-averse operators could however assign specific higher cost
and risk values to realization l. For example, they could replace f (elm) by the cost of the supremum of the possible
finite error metric values elm . If they have no tolerance for such risk of unexpected lack of controllability (i.e. they
abort the mission in such cases), they would directly eliminate these too risky optimal l from the samples considered
in the risk-optimization (Eq. (2)).

2.4. Algorithm

The algorithm to implement the theory and schemes developed in Section 2.2–2.3 has four major steps as
summarized in Table 1. See Table B.2 for our notation. A subscript DO is used to indicate that a DO decomposition
has been applied to the corresponding stochastic variable.

In extreme cases, it is possible that after applying steps I to III to compute the risk-optimal path, further evidence
emerges that the number of realizations nr , and/or the subspace sizes ns,v or ns,φ is not sufficient. For example,
the probability distribution of the dynamic background flow might evolve such that more modes are required for
improved accuracy or, the number of realizations needed to accurately describe the path probability distribution
could be larger than the number of realizations required for the flow field. In such situations, one can increase
the number of realizations or subspace sizes, and even iterate. Due to the nonlinear nature of the path planning
equations, it is not always possible to simultaneously fix the optimal numbers of realizations or subspace sizes before
computation. Adaptive schemes that update these numbers during the computation are then most useful [12,60,61].
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Fig. 2. Simulated stochastic steady-front crossing test case: Physical domain and non-Gaussian PDF of the flow strength: (a) In a square
physical domain of non-dimensional side lengths 100 × 100, an idealized stochastic steady front is modeled as a zonal-jet with uncertain
strength, flowing from west to east between y = 40 and y = 60. (b) The PDF of the flow strength is a Gaussian Mixture Model with two
Gaussians with non-dimensional mean, standard deviation, and mixture weight of (10, 3, 0.65) and (20, 1, 0.35), respectively.

3. Applications

In this section, we showcase the above theory and schemes by applying them to three environmental flows
of increasing complexity. In the first, we consider an autonomous vehicle crossing a simulated stochastic steady
front (in the ocean or atmosphere) similar to what we have used previously [1,2,4], but now with a bi-modal
Gaussian Mixture Model (GMM) PDF for the uncertain flow strength and risk-optimal paths. In the second, we
consider a stochastic quasi-geostrophic wind-driven double-gyre flow, as in [1], but now add the risk evaluation and
optimization. In the third, we consider an autonomous vehicle navigating in an uncertain simulated flow exiting
a strait/estuary (in the coastal ocean) or wind blowing through a widening constriction of an urban canopy (such
as from a narrow street onto a wide street both lined with tall buildings). In all cases, the goal is to predict the
risk-optimal path among the stochastic time-optimal paths. These test cases are pertinent not only for showcasing our
methodology and for conducting numerical tests, but also for serving as canonical examples to analyze risk-optimal
planning in realistic environmental flow scenarios in the future.

3.1. Stochastic steady front with uncertain flow strength

The first stochastic flow scenario we consider – a steady front with a non-Gaussian uncertain flow strength
described by a GMM PDF – is an idealization of missions where an AUV or glider crosses a front or channel.
Fig. 2a shows the domain and Fig. 2b shows the PDF of the flow strength. The domain is a non-dimensional square
basin of size 100 × 100 with an uncertain jet flowing from east to west and confined between 40 < y < 60. The
direction of flow is considered known and only the strength is uncertain. The PDF of the flow strength is a GMM
of two Gaussian components with non-dimensional mean, standard deviation, and mixture weights of (10,3,0.65)
and (20,1,0.35) respectively. A single ns,v = 1 mode is sufficient to describe the variability in the flow. We utilize
nr,v = 5000 realizations sampled from the GMM distribution of the stochastic coefficient corresponding to mode
1. Note that we consider a non-symmetric PDF for the flow strength (different from the uniform PDF used in [1])
in order to illustrate the key aspects of our risk-optimal planning. This completes step I of Table 1.

Next, we simulate the stochastic reachability and time-optimal path distribution for a vehicle with non-
dimensional speed 20 starting at (50,20) and heading to a target at (50,80). The start point is depicted by a circular
marker and the target by a star marker in all our figures. Eq. (A.7) is solved to obtain the distribution of stochastic
reachability fronts. In Fig. 3a–e, five discrete snapshots during the evolution of the reachability front are shown.
Each realization of the reachability front is colored by the jet strength of the corresponding flow realization. Fig. 3f
shows the distribution of the time-optimal paths computed by solving Eq. (A.5). This completes step II of Table 1.
Next, we compute the risk-optimal paths (step III of Table 1).



398 D.N. Subramani and P.F.J. Lermusiaux / Computer Methods in Applied Mechanics and Engineering 353 (2019) 391–415

Fig. 3. Stochastic steady-front crossing: (a)–(e) Stochastic reachability front evolution at five discrete times colored by the non dimensional
flow strength of that realization of the stochastic steady-front and (f) time-optimal path distribution for the vehicle crossing the steady front
of uncertain flow strength, colored by the non dimensional arrival time at the target. In each panel, the circular black marker is the start
location and the star black marker is the target.

3.1.1. Risk-optimal paths
Waypoint objective. For vehicles programmed to follow waypoint objectives, we simulate the trajectories
XP (xs, t; l|m) obtained by following the path XP (xs, t; l) in the flow v(x, t; m) for all l,m = 1 · · · nr,φ . This
simulation is completed efficiently in parallel. The error metric matrix is then computed by Eq. (3) and normalized
to lie between 0 and 1 (Section 2.3.2). The utility cost matrix Clm for the required cost-functions can then be
computed from elm by Eq. (4). This completes steps III.1 to III.3 of Table 1.

Fig. 4 row 1 shows the utility cost matrix for a risk-seeking cost function (column a), risk-neutral cost function
(column b), and risk-averse cost function (column c). The l-axis of the cost matrix corresponds to the waypoint
objective choice and the m-axis corresponds to the realizations of the flow field in which the choice l is utilized. The
risk of the waypoint objective choices is then computed by marginalizing over m and obtaining the risk curve shown
in row 2. The red point is the minimum risk choice. This completes steps III.4 and III.5 of Table 1). The realizations
l are ordered according to the flow strength to aid visualization. For this bimodal GMM PDF of flow strength, the
risk-seeking choice is the time-optimal path corresponding to the mean of the Gaussian with bigger mixture weight.
The risk-neutral choice corresponds to a realization at the edge of the two mixtures and the risk-averse choice is a
realization in the Gaussian with the smaller mixture weight. The risk curve also reflects the bi-modal nature of the
flow strength PDF. In row 3, each waypoint objective choice is colored by its risk, and the risk-optimal trajectory
(waypoint objective) is also shown in red, to match the red point in row 2.

The three risk-optimal waypoint objective choices corresponding to different risk behaviors are shown together
in Fig. 5a. Physically, the risk-averse path is western most initially, followed by risk-neutral and risk-seeking. The
more western the initial path is, the more the flow strength for that realization, see, e.g., [3,62]. The risk-seeking
path is the true time-optimal path for a weaker flow strength than the risk-neutral path, which in turn is the true
time-optimal path for a weaker flow strength than the risk-averse choice. The errors due to following these risk-
optimal choices are shown by the PDF of elm for the optimal l in Fig. 5b. To recollect, the error elm is the Frechet
distance between following the risk-optimal waypoint objectives (for the different cost functions) in all realizations
of the stochastic flow environment and the true time-optimal path for that flow realization. Note that all the aborted
missions have been assigned the maximum error value. The probability of the errors being low is highest for the
risk-optimal path for a risk-seeking cost objective, but following this path also has the highest probability of the
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Fig. 4. Computation of risk-optimal paths with waypoint objectives for the stochastic steady-front crossing: Rows 1, 2, and 3 correspond to
steps III.3, III.4, and III.5 respectively of Table 1. Columns a, b, and c correspond to risk-seeking, risk-neutral, and risk-averse behaviors,
respectively. The cost matrix has been normalized (Section 2.3.1). To facilitate visualization, the waypoint objective choices l have been
sorted, in rows 1 and 2, by the strength of the flow realization for which it is the exact time-optimal path. In row 3, each path is colored
by the risk associated with following that waypoint objective. Here, the risk-optimal path is shown in a light shade of red; it corresponds
to the dot in row 2 marked with the same shade of red.

Fig. 5. Stochastic steady-front crossing: Risk-optimal paths and error distributions for the waypoint objectives. (a) The risk-seeking, risk-
neutral, and risk-averse optimal paths for the waypoint objectives. (b) The PDF of error elm due to following the risk-optimal waypoint
objective XP (xs , t; l), quantifying the degree of sub-optimality due to following the risk-optimal paths.
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Fig. 6. Stochastic steady-front crossing: Risk-optimal headings and error distributions for the heading objectives. (a) The risk-seeking,
risk-neutral, and risk-averse heading objective choices in a polar plot with time along the radial axis. (b) The PDF of errors elm due to
following the risk-optimal heading objectives ĥ(t; l).

Fig. 7. Stochastic steady-front crossing: Error visualization (path distribution) for the risk-optimal heading objective choice. Each realized
path corresponds to a particular flow realization and is colored by the discrete Frechet distance between that path and the true time-optimal
path for the realized environmental flow. (a), (b), and (c) show the errors due to following risk-seeking, risk-neutral, and risk-averse choices,
respectively. The PDF of these errors is shown in Fig. 6b.

mission being aborted. On the other hand, the probability of aborting the mission is the lowest for the risk-optimal
path for a risk-averse cost function. The risk-neutral cost objective results in lower probability extreme errors and
higher probabilities for errors with medium magnitude. Overall, depending on the risk tolerance of the operator,
one of the risk-optimal choices will be appropriate. An aggressive operator may want to bet with the risk-seeking
choice, whereas a conservative operator may choose the risk-averse choice and an ambivalent operator may choose
the risk-neutral choice.

Heading objective. For vehicles programmed to follow heading objectives, we simulate the trajectories
XP (xs, t; l|m) obtained by following the heading objective ĥ(t; l) in the flow v(x, t; m) for all l,m = 1 · · · nr,φ .
Similar to the waypoint objectives, steps III.2 to III.5 of Table 1 can be completed to obtain the risk-optimal
heading objective choices. For brevity of presentation, we only show the risk-optimal heading choice and the error
characteristics for these choices here.

Fig. 6a shows the computed risk-optimal heading choices for the three cost functions. The heading angles are
represented on a polar plot with north being zero and angles increasing in the clockwise direction (east is 90, south
180, and west 270 degrees respectively). The radial axis is non-dimensional time. Fig. 6b shows the PDF of the
error due to following the risk-optimal heading choice. The error is measured in the same way as for the waypoint
objectives described above. The optimal heading for this jet-crossing test case has two changes, one on entering the
jet and one on exiting, see, e.g., Lolla et al. [62] and Subramani et al. [3]. The initial heading is most western for
the risk-averse path, followed by risk-neutral and then risk-seeking. The more western heading anticipates stronger
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Fig. 8. Stochastic wind-driven double-gyre flow: The mean, standard deviation, and skewness of the velocity fields are shown in the first
three rows, respectively. Perturbation from the DO mean of two representative realizations are shown in the last two rows. All fields are
shown for three discrete times (columns), at the beginning, middle, and end of the planning horizon.

flow. In this scenario, as there is no flow except in 40 < y < 60, the heading angle is exactly how the vehicle

moves relative to the ground. Hence, we see that the optimal heading choices also mirror the characteristics of the
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optimal waypoint choices. Following the risk-optimal heading choice in a flow for which it is sub-optimal results
in the vehicle missing its target.

Fig. 7 shows the trajectories obtained by following the risk-optimal heading choices in all the flow realizations,
colored by the Frechet distance of that path and the true time-optimal path for that flow. The risk-seeking heading
objective choice results in paths that are close to the true time-optimal path in more flow realizations than the
risk-neutral and risk-averse choices. On the flip side, the risk-seeking choice also leads to paths that are far from
the true time-optimal paths in more flow realizations than the other two choices. As before, the risk averse choice
leads to more certain errors with medium magnitude.

Remark. If the flow strength for this test case was weaker than the relative vehicle speed and had a symmetric
PDF, then all the risk-optimal paths coincide and correspond to the mean of the flow field (not shown here). In
this case, the vehicle is fully controllable and all mission plans reach the target and no mission would get aborted.
Additionally, in such cases, the trajectories XP (xs, t; l|m) = XP (xs, t; l) and no new simulation is required for
computing elm . Simulations and results with this assumption of full controllability are shown in [53].

3.2. Stochastic wind-driven double gyre

As our second illustration, we consider a stochastic wind-driven double gyre, ensuring continuity of our
development [1]. The stochastic flow is obtained by solving the quasi-geostrophic DO equations (A.3), with ns,v = 5
DO modes and nr,v = 5000 DO realizations for 13.5 days. The domain is 1000 km × 1000 km discretized into a
100 × 100 regular finite volume grid, with ∆x = ∆y = 10 km. A deterministic zonal wind forcing is applied to
drive the double gyre dynamics initialized with uncertain barotropic velocity components. Fig. 8 shows the mean,
standard deviation, and skewness of the velocity fields at three discrete times T = 0, 6.75, and 13.5 days. The
perturbations from the DO mean of two extreme realizations are also shown, showing that significant perturbations
in opposite directions are considered. These two extremes and the other 4998 realizations are, nonetheless, all
simulated by one DO simulation using the DO mean, mode, and coefficient differential equations [1]. From the
higher order statistics of the flow fields (e.g., the skewness on Fig. 8), we also see that the flow exhibits non-
Gaussian behavior. This flow field and reachability fronts are described in [1]; here, the focus is on the risk-optimal
planning.

3.2.1. Risk optimal paths
A mission with a vehicle moving at 40 cm/s is considered. As for the previous illustration, here we compute

the risk-optimal paths for both waypoint objectives and heading objectives. We remark that the vehicle speed is
smaller than the flow field. Hence, the vehicles are not locally fully controllable in this scenario and it is important
to rigorously plan their paths, as done here utilizing exact S-PDEs.

Waypoint objectives. Results after completing step III for this test case is presented in Fig. 9, similar to Fig. 4.
The rows 1 and 2 show the utility cost matrix and the risk curve with the minimum risk choice marked in red. The
realizations l are ordered according to the DO coefficient 1 of the flow field to aid visualization. Row 3 shows all
waypoint objective choices colored by their respective risk and the risk-optimal path colored in red, to match the
red point in row 2. The columns a, b, and c correspond to the three risk behaviors: risk-seeking, risk-neutral and
risk-averse, respectively.

Similar to the two panels of Fig. 5, Fig. 10a shows the three risk-optimal paths corresponding to the three different
risk behaviors and Fig. 10b shows PDF of elm for the optimal l. Due to the strong flow in this test case, following
the sub-optimal path has a high probability of aborting the mission. Here, the optimal paths for the different cost
functions are physically close to each other. The optimal path for the risk-averse cost function has marginally
better error characteristics than the other two. This illustration shows that our method can be utilized in complex
stochastic flow scenarios and compute objective risk-optimal paths efficiently. It also shows that improvements in
the forecast of the environmental condition, especially reducing the uncertainty in the velocity forecasts is essential
for path planning in strong and dynamic flows. To compare the risk-optimal results when an assumption of complete
controllability is made, we refer to Subramani [53].
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Fig. 9. Computation of risk-optimal paths with a waypoint objective for the stochastic wind-driven double-gyre flow: As Fig. 4, but for the
mission in the stochastic double-gyre flow field. Here, to facilitate visualization, the waypoint objective choices l have been sorted, in rows
1 and 2, by the velocity DO Coefficient 1. In row 3, each path is colored by the risk associated with following that waypoint objective.
Here, the risk-optimal path is shown in a light shade of red; it corresponds to the dot in row 2 marked with the same shade of red.

Heading objectives. Step III of Table 1 is completed for vehicles programmed to follow heading objectives in
this stochastic double gyre flow field and final results are shown in Fig. 11, similarly to Fig. 6. Fig. 11a shows the
risk-optimal heading objectives depicted as time-series of angles on a polar plot and Fig. 11b shows the PDF elm for
the optimal l. The general direction of the heading is set by the mean flow and is along the north and north–north
west for this test case. The flow variability is responsible for the deviations of the headings for different flow
realizations. The optimal choices for the three cost functions are different with error characteristics and PDF shapes
typical of each cost function. The bi-modal nature of the error PDF mirrors the PDF of the underlying flow field,
see Subramani et al. [1].

In Fig. 12, we show the trajectories obtained by following the risk-optimal headings in all the flow realizations.
Here, the paths are colored by the Frechet distance between the obtained trajectory and the true time-optimal path in
that flow realization. For this flow field, the variability in the paths obtained by following the risk-optimal heading
choice is wide around y = 0.5, but the end points for all trajectories lie in a small region around the target.
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Fig. 10. Stochastic double-gyre flow: Risk-optimal paths and error distributions for the waypoint objectives. As Fig. 5 but for the mission
in the stochastic double-gyre flow field.

Fig. 11. Stochastic double-gyre flow: risk-optimal headings and error distributions for the heading objectives. As Fig. 6, but for the mission
in the stochastic double-gyre flow field.

Fig. 12. Stochastic double-gyre flow: Error visualization (path distribution) for the risk-optimal heading objective choice. As in Fig. 7, but
for the mission in the stochastic double-gyre flow field. Fig. 11b shows the PDF of these errors.
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3.3. Stochastic flow exiting a strait

As our third illustration, we present risk-optimal planning in a stochastic flow scenario encountered in the
coastal oceans and in urban environments. In the coastal oceans, a jet exiting a strait (or an estuary) into a wider
channel creates eddies and meanders downstream [63]. In urban environments, the wind blowing through narrow
constrictions between buildings into an open area also creates similar dynamics. Such flows can be idealized as
sudden expansion flows studied extensively in fluid dynamics [64–66]. We consider a 6 km × 1 km channel with
a narrow inlet constriction of length 1/3 km on the west. A uniform jet with a mean velocity of 50 cm/s is exiting
the constriction into the wider channel. The initial conditions of the 2D-in-space barotropic velocity components
in the channel are uncertain and sampled from a Gaussian covariance kernel with a decorrelation length scale of
1 km. The simulation is conducted by solving the quasi-geostrophic DO equations (A.3), with ns,v = 10 DO modes
and nr,v = 10,000 DO realizations. The stochastic flow is allowed to develop for 1500 min by which time the flow
forms recirculation zones and breaks to either the north or south of the centerline, depending on the initial uncertain
perturbations. By that time, the nonlinear dynamics causes the initial Gaussian uncertainty to become non-Gaussian.
For our risk-optimal planning, we consider the flow for the next 100 min.

Fig. 13 shows the mean field, the first three DO velocity modes, and the marginal PDF of the DO velocity
coefficients at three discrete times T = 0, 50, and 100 min. As can be seen, the uncertainty in the flow field
is highly dynamic and non-Gaussian, but the mean flow is nearly steady. Fig. 14 shows the standard deviation,
skewness, and kurtosis of the velocity field at three discrete times. Also shown are two representative realizations
with the jet breaking to the south or north. This completes step I of Table 1.

3.3.1. Stochastic reachability and time-optimal path distribution
Our path planning problem is to predict the risk optimal paths of a vehicle with a nominal relative speed of

25 cm/s traveling from the start point (depicted by a circle in Fig. 15) to three target locations A, B, and C (depicted
by stars in Fig. 15). Using the velocity DO mean, modes, and coefficients computed above as inputs, we solve the
stochastic DO level set equations (A.7) to compute the distribution of the stochastic reachability fronts. Fig. 15
shows the evolution of the stochastic reachability front at six discrete times, T = 16, 33, 50, 66, 83 and 100 min.
In each panel, the reachability fronts are colored by the DO velocity coefficient 1 of the stochastic flow field. The
strong inlet flow does not allow the vehicles to enter into the inlet constriction as can be seen by the reachability
front not growing inside the inlet. The flow uncertainty creates the spread in the reachability front between T = 33
min and T = 66 min, and hence there is significant variance in the arrival time at targets A and C. Thereafter,
the spread in the reachability fronts reduces and between T = 66 min and T = 100 min the band of stochastic
reachability fronts is narrow. The time-optimal path distribution is computed from the stochastic reachability fronts
and backtracking equation. (A.5).

Fig. 16 shows the distribution of the time-optimal paths to the three targets, each colored with the arrival time
at that target. In summary, the time-optimal paths to target B have high physical variability but low variability in
the arrival time, whereas the paths to targets A and C have high variability in both the physical paths and arrival
times. This completes step II of Table 1.

3.3.2. Risk optimal paths
For each of the three targets, we complete step III of Table 1 to obtain the risk optimal paths (for both waypoint

and heading objectives, separately), similarly to the two previous test cases.

Waypoint objectives. As previously, we complete step III of Table 1 for waypoint objectives, for all three targets.
Here, in Fig. 17, we show only the final risk-optimal paths and corresponding error PDFs for the three cost functions,
and three targets. Column 1 shows the computed risk-optimal paths that minimize the risk-seeking, risk-neutral,
and risk-averse cost functions for all the three targets (rows (a) to (c)). Column 2 shows the PDF of the errors
due to following the computed risk-optimal waypoint objectives corresponding to the paths in column 1. Due to
the complex and dynamic nature of the path uncertainty, the different risk-optimal paths show interesting behavior.
For target A, the risk-seeking and risk-neutral paths are physically very close to each other and have similar error
PDFs. They correspond to crossing or exiting the main uncertain jet, respectively (either errors can be small or
large). For the risk-averse path, the errors are still bimodal, but of expected medium magnitude. For targets B and
C, it is however the risk-neutral and risk-averse paths that are physically closer. This is because the risk-seeking
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Fig. 13. Stochastic flow exiting a strait: Mean (in cm/s), Modes #1, #2, #3, and Coef. #1, #2, #3 are shown at three discrete times at the
beginning, middle, and end of the planning horizon. (Top three rows): The mean and modes velocity streamlines are overlaid on a colorplot
of their magnitude. (Bottom three rows): The coefficients are shown by their marginal PDF. The circular marker is the start point for the
path planning mission and the star markers are the targets A, B, and C.

path “trusts” the uncertain jet and eddies much more, and so remains in the stronger current zones more. Its error
distribution indeed shows the possibility of very large errors and/or mission abortion with relatively flat and wide
PDF. For all targets, the shapes of the error PDFs of the three risk-optimal paths have similarities to the error PDF
in other test cases. Crucially, our rigorous probabilistic prediction and risk-optimal path planning framework allows
computation of such complex risk-optimal paths very efficiently.
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Fig. 14. Statistics and representative realizations of the stochastic flow exiting a strait: The standard deviation and skewness of the velocity
fields are shown in the first two rows. Two representative realizations are shown in the last two rows. All fields are shown for three discrete
times (columns), at the beginning, middle, and end of the planning horizon.

Fig. 15. Stochastic flow exiting a strait: Stochastic reachability front evolution colored by DO velocity coef. # 1. All reachability fronts are
obtained by numerical integration of the stochastic DO level-set equations with the stochastic DO velocity fields of Fig. 14 as inputs. The
circular marker is the start point for the path planning mission and the star markers are the targets A, B, and C.

Fig. 16. Stochastic flow exiting a strait: Time-optimal path distribution colored by the arrival time (in min). The distribution of exact
time-optimal paths computed from the stochastic reachability fronts using the stochastic backtracking equation.
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Fig. 17. Stochastic flow exiting a strait: Risk-optimal paths and error distributions for the waypoint objectives. As Fig. 5, but for all targets
of the missions in the stochastic flow exiting a strait flow field. Rows (a)–(c) correspond to the three target locations. Column 1 shows
the risk-seeking, risk-neutral, and risk-averse waypoint objective choices. Column 2 shows the PDF of errors elm due to following the
risk-optimal way point objectives XP (xs , t; l).

Heading objectives. The results after completing step III of Table 1 with heading objectives for this test case is
shown in Fig. 18, similarly to Figs. 6 and 11 for the other two test cases. Targets A to C are shown in three columns,
with the risk optimal headings and corresponding error PDFs in the two rows. For target A, the heading choices
for the three cost functions form a time series with angles between north and east. Initially the three choices are
similar, but the risk seeking choice changes the heading angle to near 60 degrees around T = 30 min. The risk-averse
heading choice changes the angle to 60 degrees before 40 min and the risk neutral choice changes the angle after
40 min. After this abrupt change, all the three time series smoothly transition to 15 deg around T = 60 min. Target
B lies in the mean strong flow, and the dynamic uncertainties make the headings vary significantly along the path
to B. The risk-seeking choice anticipates that the flow is steadier than the other two risk profiles leading to high
probability of extreme errors. The risk-averse choice forecasts the need to change the heading angles abruptly and
its probability of extreme errors is low. The risk-neutral choice has a more gradual angle change along the time
series and an error characteristic in between risk-seeking and risk-averse choices. For target C, the properties of
the risk-optimal heading time series is similar to that of target A, but the general direction is to the south east. The
error PDF shape and properties are analogous to those of the other cases.

Fig. 19 shows the trajectories obtained by following the risk-optimal heading objectives in all the flow
realizations. As before, each trajectory is colored by the discrete Frechet distance between that and the true
time-optimal path for that flow realization. The black path is obtained by following the heading objectives in the
realization in which it is the true time-optimal heading time series. The three columns correspond to paths obtained
by following the risk-averse, risk-neutral, and risk-seeking heading objectives to targets A, B, and C shown in the
three rows. Here, as in the stochastic double gyre test case, the paths obtained by following the risk-optimal heading
in all realizations have wide variability along the path, but the end points lie in a small region around the target.
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Fig. 18. Stochastic flow exiting a strait: Risk-optimal headings and error distributions for the heading objectives. As Fig. 6, but for all
targets of the missions in the stochastic flow exiting a strait flow field. The top row shows the risk-optimal heading time-series choices in a
polar plot with time along the radial axis. The bottom row shows the PDF of errors elm due to following the risk-optimal heading objectives
ĥ(t; l).

Fig. 19. Stochastic flow exiting a strait: Error visualization (path distribution) for the risk-optimal heading objective choice. As Fig. 7, but
for all targets of the missions in the stochastic flow exiting a strait flow field. The rows represent the paths to the three targets A, B and C
and the columns correspond to risk-seeking, risk-neutral, and risk-averse heading objective choices. Each trajectory is colored by the discrete
Frechet distance between that trajectory and the exact time-optimal path corresponding to that realization of the environment.
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4. Conclusion

We developed the theory for objective risk-optimal path planning by combining decision theory and our stochastic
time-optimal path planning with stochastic DO level-set equations. The schemes and software developed compute
risk-optimal paths for vehicles navigating in uncertain, strong and dynamic flows. Risk-optimal paths were defined
as the time-optimal waypoint objectives or heading time-series objectives that minimize the expected utility cost of
following a path that is possibly sub-optimal in the uncertain environment. Overall, the path planning proceeds in
three steps: (i) obtain predictions of the probability distribution of environmental flows, (ii) obtain predictions of
the distribution of exact time-optimal paths for the above flow distribution, and (iii) compute and minimize the risk
of following the above time-optimal paths. To quantify and compute the risk, multiple error metrics were proposed
including the discrete Frechet distance between following a prescribed path in a flow realization in which it is
sub-optimal and the true time-optimal path for that flow realization. To convert the error into a utility cost, three
functions corresponding to risk-seeking (concave), risk-neutral (linear) and risk-averse (convex) behaviors were
utilized. The algorithm was presented and applied to plan risk-optimal paths in three illustrative stochastic flow
scenarios: stochastic steady front crossing, double gyre, and flow exiting a strait.

In the first test case, the mission involved crossing a steady uncertain jet whose flow strength was a bimodal
GMM PDF. The risk-seeking path was found to be the mean of the Gaussian component with higher mixture
weight, the risk-neutral path was at the edge of the two Gaussians, and the risk-seeking path corresponded to a
realization in the Gaussian component with lower mixture weight. In the second test case, the risk-averse path
had the lowest probability of the mission getting aborted, followed by risk-neutral and risk-seeking paths. In
the third test case, risk-optimal paths were planned for three targets. For one target, the risk-seeking and risk-
neutral waypoint objectives were physically close whereas for the other two targets, it was the risk-averse and
risk-neutral paths which were physically close to each other. In all scenarios, minimizing a risk-seeking cost function
results in paths that have a higher probability of extreme errors, i.e., both low and high magnitudes. A risk-averse
path on the other hand has a high probability of errors with medium magnitude, and a low probability of either
extremes. Notably, in such complex flow situations, it is difficult to predict such behavior a priori; our method-
ology, however, allows the characterization and minimization of the risks along time-optimal paths for all flow
conditions.

In the future, risk-optimal planning can be integrated with probabilistic current predictions [53,67] for real-
time missions with real AUVs [7,43] or ships [23]. Machine learning techniques such as hierarchical clustering
can be utilized for grouping massive ensembles of stochastic time-optimal paths, to find representative paths,
and complete rapid risk-optimal calculations [68]. The theory, schemes, and software for rigorous risk-optimal
computations may also have diverse applications in adaptive sampling [60,69], ocean acoustics [70–72], ecosystem
management [53,73–75], and ocean energy [76], among others.
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Appendix A. Summary of stochastic time-optimal path planning

A.1. Stochastic dynamically orthogonal barotropic quasi-geostrophic equations

In this Appendix, we briefly provide the stochastic PDEs that govern the dynamics of uncertain Barotropic Quasi-
Geostrophic flows. For specifics, we refer to Ueckermann et al. [11]. The stochastic Barotropic Quasi-Geostrophic
equation, written as conservation of momentum in the Langevin form is

∂v(x, t;ω)
∂t

+ ∇ · (v(x, t;ω)v(x, t;ω)) + f k̂ × v(x, t;ω) =

− ∇ p(x, t;ω) +
1

Re
∇

2v(x, t;ω) + aτ , (A.1a)
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∇ · v(x, t;ω) = 0, (A.1b)

v(x, 0;ω) = v0(x;ω), (A.1c)

where Re is the Reynold’s number, f is the Coriolis coefficient, and a the strength of the wind stress. For the
Coriolis coefficient, we employ a β-plane approximation f = f0 + βy.

Introducing a DO decomposition to v(x, t;ω),

v(x, t;ω) = v̄(x, t) +

ns,v∑
j=1

µ j (t;ω)ṽ j (x, t) , (A.2)

where E[µ j (t;ω)] = 0, ∀ j = 1 · · · ns,v , we can derive the DO mean (Eqs. (A.3a), (A.3b)), coefficient Eq. (A.3c),
and mode equations (Eqs. (A.3d), (A.3e)) of the S-PDE Eq. (A.1) as

∇ · v̄ = 0 , (A.3a)

∂ v̄
∂t

=
1

Re
∇

2v̄ − ∇ · (v̄v̄) − Cµmµn ∇ · (ṽm ṽn) − f k̂ × v̄ − ∇ p̄ + aτ , (A.3b)

dµi

dt
= µm

⟨
1

Re
∇

2ṽm − ∇ · (ṽm v̄) − ∇ · (v̄ṽm) − ∇ p̃m − f k̂ × ṽm, ṽi

⟩
− (µmµn − Cµmµn )

⟨
∇ · (ṽm ṽn), ṽi

⟩
, (A.3c)

∇ · ṽi = 0 , (A.3d)

∂ ṽi

∂t
= Dv

i −
⟨
Dv

i , ṽk
⟩
ṽk , (A.3e)

where Dv
i =

1
Re

∇
2ṽi − ∇ · (ṽi v̄) − ∇ · (v̄ṽi ) − ∇ p̃i − C−1

µiµ j
Mµ jµmµn ∇ · (ũm ũn) ,

where we have dropped the parenthesis (x, t;ω) for brevity of notation. Here, E is the expectation operator, C is
the covariance matrix, M is the third moment, and

⟨
ψi , ψ j

⟩
is the spatial inner-product operator for any two fields

ψi and ψ j defined as
⟨
ψi , ψ j

⟩
≡

∫
D ψiψ j dx.

A.2. Stochastic dynamically orthogonal level-set equations

Here, we summarize the exact stochastic level-set equations and the efficient stochastic DO level-set equations
derived for stochastic time-optimal path planning in [1]. The stochastic reachability front for a vehicle-Q (Fig. 1)
is governed by the stochastic Hamilton–Jacobi (HJ) level-set equation

∂φ(x, t;ω)
∂t

+ F(t)|∇φ(x, t;ω)| + v(x, t;ω) · ∇φ(x, t;ω) = 0 , (A.4)

with the initial condition φ(x, 0;ω) = |x − xs| and, if needed, open boundary condition ∂2φ(x,t;ω)
∂n2

⏐⏐⏐
δD

= 0, where
n is the outward normal to the boundary δD, ω is a random event, and φ is the reachability-front-tracking scalar
level-set field (e.g., signed distance function). For every ω, the optimal arrival-time T (x f ;ω) at x f is obtained by
integrating Eq. (A.4) until the first time t such that φ(x f , t;ω) ≤ 0. The optimal trajectory XP (xs, t;ω) is then
given by the particle backtracking equation

dXP (xs, t;ω)
dt

= −v(XP (xs, t;ω), t;ω) − F(t)
∇φ(XP (xs, t;ω), t;ω)
|∇φ(XP (xs, t;ω), t;ω)|

,

0 ≤ t ≤ T (x f ;ω) and XP (xs, T ;ω) = x f . (A.5)

To arrive at the DO level-set equations, let us introduce a DO decomposition to the stochastic level-set φ as

φ(x, t;ω) = φ̄(x, t) +

ns,φ∑
i=1

Yi (t;ω)φ̃i (x, t) , (A.6)

where E[Yi (t;ω)] = 0 ∀ i = 1 · · · ns,φ .
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Table B.2
Relevant notation.

Scalar

i, j ∈ N Stochastic subspace index
Q Vehicle whose risk-optimal path is to be determined
F ∈ R Vehicle speed
nD ∈ N Dimension of D, the physical domain
nx ∈ N Number of discrete grid points in the x-direction
ny ∈ N Number of discrete grid points in the y-direction
ng ∈ N Total number of discrete grid points in D
ns,φ ∈ N Dimension of the stochastic subspace of φ, the level-set scalar field
ns,v ∈ N Dimension of the stochastic subspace of v, the velocity vector field
Yi ∈ R Random variable describing the PDF of the orthonormal level-set (φ) modes φ̃i
µi ∈ R Random variable describing the PDF of the orthonormal velocity (v) modes, ṽi
nr ∈ N Number of Monte Carlo realizations of the level-sets (and velocity vector fields)
r ∈ N Realization index

Vector

v ∈ RnDng Velocity vector field
v̄ ∈ RnDng Mean velocity vector field
ṽi ∈ RnDng DO mode i of v: Dynamically orthogonal basis for the stochastic subspace of v
φ ∈ Rng Level-Set field
φ̄ ∈ Rng Mean Level-Set field
φ̃i ∈ Rng DO mode i of φ: Dynamically orthogonal basis for the stochastic subspace of φ

The stochastic DO level-set equations are

∂φ̄

∂t
= −

[
FE[γ ] + v̄ · ∇φ̄ + Cµ j Yi ṽ j · ∇φ̃i

]
, (A.7a)

dYi

dt
= −

⟨
F(γ − E[γ ]) + Yk v̄ · ∇φ̃k + µ j ṽ j · ∇φ̄ + ṽ j · ∇φ̃k(µ j Yk − Cµ j Yk ), φ̃i

⟩
, (A.7b)

∂φ̃i

∂t
= Di −

⟨
Di , φ̃n

⟩
φ̃n , (A.7c)

where Di = −C−1
Y j Yi

[
FE[Y jγ ] + CY jµk ṽk · ∇φ̄ + E[Y jµkYi ]ṽk · ∇φ̃i

]
− v̄ · ∇φ̃i .

Appendix B. Notation

The notation for variables used in the present paper is provided here in Table B.2.
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