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A stochastic optimization methodology is formulated for computing energy-optimal paths from among 

time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differ- 

ential equations, the methodology rigorously leverages the level-set equation that governs time-optimal 

reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the rela- 

tive vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthog- 

onal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reach- 

ability fronts and corresponding distribution of time-optimal paths. An optimization is then performed 

on the vehicle’s energy-time joint distribution to select the energy-optimal paths for each arrival time, 

among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced 

stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. 

These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in 

part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its 

accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In partic- 

ular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical 

solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the in- 

ner workings and nuances of the energy-optimal path planning, considering different mission scenar- 

ios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi- 

geostrophic double-gyre ocean circulation. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The use of autonomous underwater vehicles (AUVs) including

ropelled vehicles, gliders, and surface crafts is growing in a wide

ange of applications such as oil and gas exploration, ocean floor

apping, search and rescue, security, and coastal and global ocean

onitoring, conservation and forecasting ( Stommel, 1989; Bach-

ayer et al., 2004; Bellingham and Rajan, 2007 ). Due to uncertain-

ies, ocean sampling is often at the heart of such underwater oper-

tions. For coupled sampling and exploration missions (e.g., Bhatta

t al., 2005; Curtin and Bellingham, 2009; Bahr et al., 2009; Ramp

t al., 2009; Haley et al., 2009; Leonard et al., 2010; Schofield et al.,

010 ), long endurance and low energy cost are crucial require-

ents. Specifically, there is a need to increase the capability of ve-

icles to operate for long periods of time at sea, often either by
∗ Corresponding author. Tel.: +16173245172; fax: +16173243541. 
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eveloping more efficient power supplies ( Bellingham and Rajan,

007 ) or by utilizing the environment to reduce energy consump-

ion ( Webb et al., 2001 ). Similar needs arise in other applications

here the environment can play a significant role such as in the

avigation of land robots, drones, airplanes, etc. Conserving fuel

y designing energy-efficient paths leads to cost savings, longer

perational time, and environmental protection. In this work, we

resent a methodology based on stochastic level-set partial dif-

erential equations (PDEs) that rigorously predicts energy-optimal

aths in deterministic dynamic flows. Although ocean applications

re emphasized, the methodology is valid for a wider class of en-

ironments. 

The task of designing a path for a mobile agent that navigates

rom a start point (s) to a desired final point (f) by optimizing one

r more of the travel time, energy expended, data collected, and

ehicle safety, is commonly referred to as path planning. It is an

rea of active research in many domains (e.g., Hwang and Ahuja,

992; LaValle, 2006; Sheu and Xue, 1993; Latombe, 1991; Kavraki

t al., 1996; Lermusiaux et al., 2015 ). In the ocean domain, the ef-

ect of dynamic currents on the motion of vehicles is significant.

http://dx.doi.org/10.1016/j.ocemod.2016.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2016.01.006&domain=pdf
mailto:deepakns@mit.edu
mailto:pierrel@mit.edu
http://dx.doi.org/10.1016/j.ocemod.2016.01.006
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Fig. 1. Consider planning the path of a vehicle between x s and x f in a flow 

field v ( x , t ). Our goal is to compute minimal energy paths (speed functions F ( •) 

and headings ˆ h (•) ), optimizing among the distribution of time-optimal paths for 

each F ( •). 
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Typical propelled AUVs have an endurance of 12–25 h and speeds

up to 5 knots, and typical gliders have an endurance of a few days

to months and speeds up to 1 knot ( Sherman et al., 2001; Rud-

nick et al., 2004; Schofield et al., 2007 ). As such strong currents

can be comparable to the speed of propelled AUVs ( Schmidt et al.,

1996; Elisseeff et al., 1999 ) and common currents can be two-to-

three times faster than glider speeds. The energy budget of gliders

directly depends on flow conditions, the largest energy expendi-

ture often being skin friction ( Eriksen et al., 2001 ). For our energy-

optimal planning, a main challenge is thus to develop accurate and

efficient algorithms that intelligently utilize the favorable currents

and avoid the adverse currents, so as to optimize endurance and

energy consumption. Another challenge is to rigorously incorpo-

rate the variability of ocean fields, combining ocean modeling and

observations with PDE-based optimization. This challenge is espe-

cially relevant for the case of vehicles that once deployed have lit-

tle or no human interventions. As such, there is an opportunity to

capitalize on ocean prediction systems (within their predictive ca-

pability) so as to forecast the energy-optimal paths even prior to

the deployment of vehicles. 

Our goal is to develop a rigorous and efficient methodology that

computes energy-optimal relative speeds and headings for navigat-

ing between two locations in a dynamic flow field, optimizing from

among time-optimal paths (see Fig. 1 ). Some of the questions that

inspired our work include the following. Can energy-optimal paths

in complex ocean currents be computed at all? Should this com-

putation be posed as a stochastic PDE-based optimization prob-

lem? Can dynamic model-order reductions be employed? What are

the overall accuracy and costs of the methodology? What are the

energy-optimal paths in fundamental ocean flows? Even though

path planning for robotic systems has received much attention

( Latombe, 1991; LaValle, 2006; Lolla, 2012 ), answering such ques-

tions for large-dimensional, strong and unsteady ocean flows is

challenging. 

One type of AUV energy-optimization is based on the A 

∗ al-

gorithm ( Carroll et al., 1992; Garau et al., 2005 ). It was used by

Garau et al. (2009) to reduce the energy consumption for glid-

ers and by Lee et al. (2015) with an energy-based cost func-

tion considering environmental effects and a heuristic for a ma-

rine surface vehicle. However, the A 

∗ algorithm does not guaran-

tee optimality when a heuristic is not available and its paths be-

come infeasible in strong variable flows. Rapidly Exploring Random

Trees (RRTs) (e.g., LaValle, 1998; Kuffner and LaValle, 20 0 0 ) is a

sampling-based method used to explore the workspace for navi-

gating a robot quickly and uniformly. For underwater path plan-

ning, Tan et al. (2004) used RRTs to obtain an obstacle free path

for an AUV, but without considering currents. Rao and Williams
2009) used RRTs to generate feasible paths for gliders and an A 

∗

earch to identify a path from among RRT paths that minimizes

n energy-based linear-speed cost heuristic. However, the authors

eport that the method is not capable of identifying minimum en-

rgy paths when the flow is strong. For more on RRTs, we refer

o Bruce and Veloso, 2002; Melchior and Simmons, 2007; Jaillet

t al., 2010; Yang et al., 2010; Karaman and Frazzoli, 2011 . A re-

ated method using a kinematic-tree-based navigation planner was

eveloped by Chakrabarty and Langelaan (2013) for UAVs in un-

teady wind fields. 

The above methods are discrete node-based graph methods.

or path planning in continuous fields, fast marching methods can

e used ( Sethian, 1999a; 1999b ), including anisotropic cost func-

ions ( Petres et al., 2007 ). However, they are limited to currents

maller than vehicle-speeds ( Lolla et al., 2014c ). Continuous wave-

ront expansion methods have also been used ( Soulignac et al.,

009; Thompson et al., 2009; 2010 ). Path parameterization and

n optimization on the path parameters has been successful in

imulations for the Sicily channel ( Alvarez et al., 2004 ). The au-

hors obtain candidate paths and then optimize them through a

enetic algorithm (GA), minimizing the energy required to over-

ome a cubic-velocity drag. However, the GA and other evolution-

ry algorithms ( Chien-Chou et al., 2014 ) are not guaranteed to con-

erge in finite time and not all assumptions are applicable to com-

lex flows. Kruger et al. (2007) also employ a path parameteri-

ation but utilize a nonlinear optimization, with applications to

udson River simulations. Their weighted cost function accounts

or energy with variable engine thrust, obstacle avoidance, time of

ravel, and target visitation. Even though such nonlinear optimiza-

ion does not have the drawbacks of evolutionary algorithms, they

re constrained by the chosen path parameterization, which limits

he generality of the method and can increase computational costs.

otential field techniques used to repel vehicles away from obsta-

les ( Warren, 1990; Barraquand et al., 1992 ) were also combined

ith path parameterization and swarm optimization for energy-

ased path planning ( Witt and Dunbabin, 2008 ). The authors still

mployed heuristics and ad-hoc refinements, with successful tests

sing forecasts for Brisbane’s Moreton Bay. 

In general, path planning problems are nonlinear optimal con-

rol problems ( Bryson and Ho, 1975; McLain and Beard, 1998 ),

hich classically amount to solving 2-point boundary value prob-

ems. When the environmental flows are time-dependent fields,

uch problems are expensive and difficult to solve. Aghababa

2012) uses this approach for energy-optimal path planning by fix-

ng a maximum time to reach and solving for a path that min-

mizes an energy cost that depends on nominal velocity to the

ower of 3/2. However, the author used evolutionary algorithms

GA and ant-colony optimization) and used simple test problems

o evaluate their performance in comparison to conjugate gradient

ethods. An indirect external field algorithm for computing the

ptimal time-to-go and associated optimal feedback control loop

s tested on a time-invariant double-gyre and Adriatic sea simu-

ations by Rhoads et al. (2010) . Sequential quadratic programming

as used by Beylkin (2008) to optimize the path for a balloon

oving in a windy atmosphere by minimizing an l 2 -norm of the

ontrol. Inanc et al. (2005) , Zhang et al. (2008) illustrated that

he optimal energy-time-weighted paths computed by a heuris-

ic receding-horizon nonlinear programming problem (NLP) method

ere close to paths along Lagrangian Coherent Structures (LCS)

stimated from Monterey Bay HF-radar data. Hsieh et al. (2012) ,

ichini et al. (2014) also successfully applied collaborative tracking

f LCS in a double-gyre simulation, experimental flow tank data,

nd ocean data for the Santa Barbara Channel. Game theoretic con-

iderations were used by Sun and Tsiotras (2015) to plan paths for

ursuit–evasion games between two UAVs navigating in an exter-

al flow field. 
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Recently, a modified level-set PDE was obtained for time-

ptimal path planning of autonomous agents in any dynamic

ow field. ( Lolla et al., 2014b; 2014c; Lolla and Lermusiaux,

016 ). This Hamilton–Jacobi (HJ) PDE governs exactly and effi-

iently the forward-in-time reachability front. To generate the

ime-optimal paths, a particle tracking equation is solved backward

n time. These equations and a definition of level–sets are provided

n Appendix A . Here, we extend this deterministic PDE–based

ethodology to a stochastic PDE–based optimization to compute

inimum energy paths among time-optimal paths. A new idea is

o introduce variable and stochastic vehicle–speeds, and to per-

orm an optimization on the energy utilized by such vehicles as

hey navigate from start to end in a time-optimal fashion. The vari-

ble vehicle-speed allows for energy optimization. Another idea is

o utilize dynamic model-order reduction and uncertainty quan-

ification, the Dynamically Orthogonal (DO) equations, to integrate

he level-set HJ PDE with stochastic vehicle-speeds. Specifically,

e thus derive and apply novel DO equations for this stochastic

evel-set HJ PDE. Since sample-wise solutions of this stochastic PDE

S-PDE) are guaranteed to be time-optimal paths, minimizing the

nergy consumed among such time-optimal paths provides the en-

rgy optimal paths. Such an application of the DO method for

robabilistic exploration to solve an optimization problem is at-

empted here for the first time. We note that the stochasticity in

he problem comes from the vehicle-speed, and not the flow field

hich is deterministic in the present paper. Our applications show

hat the variable vehicle-speed optimized by our methodology in-

elligently utilizes the deterministic forecast currents thereby sav-

ng energy (e.g., turning the on-board engine to low speed when

urrents are favorable). In general, our S-PDE-based optimization

olves for speed functions and paths that save the most energy for

 set of arrival times. 

In what follows, we first present the mathematical problem

tatement and a few remarks ( Section 2 ). In Section 3 , we develop

he methodology and new stochastic DO level-set PDEs. Due to the

on-polynomial nonlinearity in these S-PDEs, we derive three vari-

nts for these DO equations. In Section 4 , we discuss numerical

chemes, algorithms, and computational complexity. In Section 5 ,

e perform a two step validation process. First, we show that

he solutions of the stochastic DO level-set PDEs solve the origi-

al S-PDE correctly and discuss the computational advantages of

he DO approach. Second, we validate the stochastic optimization

y applying it to the planning of energy-optimal paths in a canon-

cal flow that permits a semi-analytical solution. Our final applica-

ion ( Section 6 ) is to plan paths in a dynamical barotropic quasi-

eostrophic double-gyre circulation. 

. Problem statement 

ime-optimal path planning with given time-dependent vehicle speed.

e start with time–optimal path planning and the HJ level-set

quation (A.1) governing the reachability front (see Appendix A ),

ut with a straightforward extension: the relative vehicle-speed

 ( t ) is given but time-dependent. Let us consider a vehicle with

 relative time-dependent non-negative speed, i.e., F ( t ) ≥ 0 nav-

gating from a start point ( x s ) to an end point ( x f ) in � ⊆ R 

n ,

n open set (see Fig. 1 ). The environmental flow is denoted by

 (x , t) : � × (0 , ∞ ) → R 

n and is assumed known. The reachability

ront is then governed by the HJ level-set equation as (A.1) but

ith F = F (t) , i.e., 

∂φ

∂t 
+ F (t) |∇φ| + v (x , t) · ∇φ = 0 (1) 

ith the level-set φ initialized by a signed distance function from

he starting point x s , i.e., φ(x , 0) = | x − x s | . The backtracking equa-
ion for that given F ( t ) then yields the time-optimal path, i.e., 

d x 

∗

d t 
= −v ( x 

∗, t) − F (t) 
∇φ( x 

∗, t) 
|∇φ( x 

∗, t) | , 0 ≤ t ≤ T ( x f ; F (t)) and 

 

∗(T ) = x f . (2) 

o briefly explain this extension, consider a time t > 0 with the ve-

icle on the reachability front. From this instant, the vehicle travels

t an instantaneous given (vehicle) speed F ( t ) for a time interval d t .

he reachability front (i.e., the zero level-set) evolves normal to it-

elf with this instantaneous speed F ( t ). The reachability front still

emains optimal for this F ( t ). For backtracking, the heading ˆ h (t) is

ormal to the zero level-set, which at the instant t , is independent

f the instantaneous F ( t ), and hence the same for all F ( t ). For two

ifferent F ( t ), the only difference is the rate at which the reacha-

ility front evolves normal to itself. Hence, for a given and variable

 ( t ), the solution of Eqs. (1) forward in time and (2) backward in

ime, yields the time–optimal path. Lolla and Lermusiaux (2016)

rovide a formal derivation accounting for generalized derivatives

nd viscosity solutions. 

nergy-optimal path planning. The energy-optimal path planning

roblem for the vehicle navigating in � under the influence of v ( x ,

 ) ( Fig. 1 ) can be formulated as follows. The variable vehicle speed

unction F ( •) is to be optimized for energy and time. The heading

unction 

ˆ h (•) for the vehicle is optimized such that when navi-

ated at any speed function F ( •), the vehicle reaches x f in optimal

ime T ( x f ; F ( •)). Among all of these functions F ( •), we seek the F ( t )

hat minimizes the energy cost function E , i.e., 

in 

F (•) 

{
E(•) ≡

∫ T ( x f ;F (•)) 

0 

p(t ) d t 

}
(3a) 

. t. 
∂φ(x , t) 

∂t 
= −F (•) |∇φ(x , t) | − v (x , t) · ∇φ(x , t) (3b) 

in (x , t) ∈ � × (0 , ∞ ) 

 ( x f ; F (•)) = min 

t 
{ t : φ( x f , t) ≤ 0 } , (3c) 

(x , 0) = | x − x s | , (3d) 

p(t) = F (t) n p , (3e) 

here p ( t ) is the power function, n p ≥ 0, and other variables are as

efined above and listed in Table C.5 . For an instance of F ( •), the

calar field φ( x , t ) is a reachability-front-tracking level-set func-

ion and the viscosity solution of the level-set Hamilton–Jacobi eq.

3b) with initial conditions (3d) and the subsequent solution to the

acktracking Eq. (4) , 

d x 

∗

d t 
= −v ( x 

∗, t) − F (•) ∇φ( x 

∗, t) 
|∇φ( x 

∗, t) | , 0 ≤ t ≤ T ( x f ; F (•)) and 

 

∗(T ) = x f , (4) 

ield the continuous-time history of the time–optimal vehicle

eading angles, θ ∗( t ) (see Lolla et al. (2014c ) and Appendix A ). An

nergy-optimal path, Eq. (3a) , is thus indeed chosen among time-

ptimal paths, as Eqs. (3b) –(3e) and Eq. (4) indicate. Next, we pro-

ide four remarks. 

emark 1: Effects of variable speeds on energy and time. As F ( •) de-

reases, on the one hand p ( •) decreases, but on the other hand,

 ( x f ; F ( •)) increases. The total energy usage E can thus either de-

rease or increase. Hence, for some arbitrary choice of two F ( t ) re-

lizations, one can obtain similar optimal arrival times T ( x f ; F ( •)),

ut very different energy consumption (and vice–versa). In all

ases, the above optimization problem will select the time-optimal

ath with F ( t ) corresponding to the lowest energy usage E . 
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Remark 2: Energy-optimal paths as a subset of time-optimal paths.

The opposite effects of changing F ( •) on the the power utilized and

total time to reach gives rise to a Pareto-front behavior as used

in cooperative game theory ( LaValle and Hutchinson, 1998 ). We il-

lustrate such results in Section 6 . This behavior provides the free-

dom to select the energy-optimal path that completes a mission

in time-optimal manner for a given time frame. In other words,

for every arrival time that corresponds to feasible paths, there is

at least one energy-optimal path among the many time-optimal

paths (as many as there are realizations of F ( •) that lead to fea-

sible paths). 

Remark 3: Unique optimal arrival time but multiple energy-optimal

paths. Among all time-optimal paths (each with different F ( t )) that

reach the end point at the same time, there can be more than

one energy-optimal path. Physically, this simply means that at least

two paths that are time-optimal with the same arrival also have

the same minimum total energy usage E . Such situations can oc-

cur not only with man-made machines as AUVs or cars, but also

with animals in nature. Mathematically, this is captured by the vis-

cosity solution of the level-set Hamilton–Jacobi Eq. (3b) which al-

lows for the formation of such singularities or shocks, even from

smooth initial conditions, see ( Lolla et al., 2014c; Lolla and Lermu-

siaux, 2016 ). 

Remark 4: Power function p ( t ). The methodology we develop read-

ily allows energy-based path planning for any type of power con-

sumption dependence with relative vehicle speed, i.e., for any

function p ( t ) of F ( t ) (3e) . For example, one could use: p ( t ) ∝ F ( t ) for

a constant drag-force optimal path, which is often used in con-

trol theory to introduce fuel-optimal control (e.g., Athans and Falb,

2007 ); p ( t ) ∝ F ( t ) 2 for a linear drag; or, p ( t ) ∝ F ( t ) 3 for a quadratic

drag. Some vehicle designs could also have power consumption

that is proportional to fractional powers of F ( t ). Finally, power

functions that sum terms proportional to acceleration and to vari-

ous drags (skin drags and induced drag, e.g., Sherman et al. (2001) )

can also be directly handled (e.g., Subramani, 2014 ). However, in

the examples provided later, we assume that the total time needed

for accelerations (the sum of speed-switching periods) is much

smaller than the total time spent at constant speed (sum of the

times spent without accelerating). In other words, the vehicle ac-

celerates or decelerates from time to time, but most of the time,

it does not accelerate. We can then ignore the acceleration costs

and only consider a cost of the form 

∫ 
F (t ) n p dt with fixed n p . For

ubiquity reasons, we also emphasize the common velocity-square

dependence, i.e., p(t) = F (t) 2 . 

3. Methodology 

Following control theory, energy-optimal paths could be de-

fined as the solution of a 2-point boundary value problem ( Athans

and Falb, 2007 ). However, obtaining these solutions for strong dy-

namic flows is very challenging. The computations are expensive

and hence mostly heuristic approximations are employed requiring

problem-specific parameter tuning (see for e.g., Aghababa, 2012;

Beylkin, 2008 ). Another approach to solve the nonlinear optimiza-

tion problem (3) is a trial and error deterministic optimization.

Here, starting from a certain type of F ( t ) or control (e.g., bang-bang,

reduced function space), a refinement process can be used to up-

date the discretized F ( t ) at one instant and iterate one-change-at-a-

time until an optimum for that type of F ( t ) is reached. Clearly this

process can be an inefficient step-by-step search without a guaran-

tee of full optimality. A more efficient approach would be to com-

pute the optimal solutions all at once, at least within a space of

functions F ( •). 
A stochastic optimization approach could directly compute

nergy-optimal solutions for such a class of F ( •) in Eq. (3b) and

hen iteratively converge to the optimal solution by hierarchically

enerating new classes from existing ones, as needed. For our

roblem, the function F ( t ) then becomes a random variable F ( t ; ω).

ith this external stochastic forcing, Eq. (3b) becomes a stochastic

evel-set equation. Ideally, if the stochastic PDE can be integrated

t once for all events ω, then the whole solution distribution can

e obtained directly, which is an advantage when compared to a

tep-by-step search. Such F ( t ; ω) can be sampled from a proba-

ilistic distribution (e.g., uniform distribution) or governed by a

tochastic process (e.g., Markov process). Of course, it is only for

 comprehensive sampling of the now stochastic function space or

istribution F ( •; ω) that the stochastic optimization would yield

he optimal solution for that space. If feasible, advantages are that

he optimum within the space is found in a single, albeit possi-

ly expensive, stochastic optimization step and that the class of

ime-optimal solutions are rigorously defined by a stochastic PDE.

f the sampling is not complete, the optima obtained so far can

e used to hierarchically generate new samples from the existing

nes, hence refining the optima until convergence. This hierarchi-

al stochastic optimization is an accelerated heuristic deterministic

ptimization in the sense that the solution for a distribution F ( •;

) is obtained at each step, instead for a single new realization. A

emaining hurdle is the cost of solving the stochastic PDEs. To ad-

ress this, our new DO level-set stochastic optimization methodol-

gy utilizes the nonlinearities of fluid flows and the confinement

f all stochastic reachable sets within a growing narrow-band re-

ion, the physical space between the zero level sets of the slowest

nd fastest realizations of F ( •; ω) (see Section 3.2.3 ). 

In what follows, we first set-up the stochastic optimization for

nergy-optimal path planning. Next, we develop the new stochas-

ic DO level-set PDEs, providing three variants corresponding to

ifferent handling of the non-polynomial nonlinearity in the origi-

al PDE. Details of derivations are given in Appendix B . Numerical

chemes, computational algorithms, and computational complexity

re discussed in Section 4 . 

.1. Stochastic level-set optimization approach 

Considering the nominal speed F ( t ) as a random variable be-

onging to a stochastic class, i.e., F ( t ) → F ( t ; ω), and a determinis-

ic flow field v ( x , t ), we obtain a stochastic Langevin form of the

evel-set Eq. (3b) : 

∂φ(x , t;ω) 

∂t 
= −F (t;ω) |∇φ(x , t;ω) | − v (x , t) · ∇φ(x , t;ω) , (5)

here ( x , t ) ∈ � × (0, ∞ ) and ω denotes a random event. For

 ( t ; ω) ≥ 0, we solve the SPDE (5) until the first time instant t

uch that φ( x f , t ; ω) ≤ 0, starting from deterministic initial condi-

ions φ(x , 0 ;ω) = | x − x s | with boundary condition 

∂ 2 φ(x ,t;ω) 

∂n 2 
| δ� =

 , where n denotes the outward normal to ∂�. Such a stochastic

imulation yields the distribution of the minimum time-to-reach

 ( x f ; F ( •; ω)) for an externally forced distribution F ( •; ω). 

Next, to allow energy optimization, the distribution of energy

tilized is computed from F ( •; ω) and T ( x f ; F ( •; ω)) as E(ω) =
 T ( x f ;F (•;ω)) 

0 
p(t ) d t . As mentioned in Section 2 , the function p ( t ) can

ssume any power law dependence on F ( t ). Finally, for any choice

f the time-to-reach (a particular time or a range of time), the

peed function F ( t ; ω) that minimizes the energy cost, E ( ω), can

e obtained by a search procedure. As we will show, this optimiza-

ion is efficient for classes of stochastic functions F ( •; ω) that can

e efficiently represented by a reduced basis. Such specifications

f reduced bases for the space of vehicle-speed time-series will be

iscussed in Section 4 . The overall approach is summarized by a

owchart in Fig. 2 . 
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Fig. 2. Flowchart describing the new DO level-set stochastic optimization methodology for computing energy-optimal paths among time-optimal paths for a range of times- 

to-reach. 
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We reiterate that the stochasticity comes from the externally

orced distribution F ( •; ω), and not from the flow field, which for

he present work is assumed to be deterministic. However, we note

hat results can be extended to uncertain flow fields by considering

 ( x , t ) also as a random variable belonging to another stochastic

lass, i.e., v ( x , t ) → v ( x , t ; π ), where π ∈ 	 is a random event rep-

esenting the uncertainty in the underlying flow field. Such a treat-

ent is illustrated in Lermusiaux et al. (2015) , Wei (2015) , but only

or time-optimal path planning. Energy–optimal path planning un-

er uncertain flows is not considered here. 

The most straightforward method to solve the SPDE (5) is

hrough a Monte Carlo (MC) approach. The deterministic level-set

DE (3b) can be solved for different realizations of F ( t ; ω) to yield

 distribution of optimal times T ( x f ; F ( •; ω)). Unfortunately, the MC

olution is expensive: the computational cost increases with num-

er of realizations used and convergence is slow. Since in (5) v ( x , t )

s a flow field velocity, an efficient method to solve (5) would ex-

loit the nonlinearities of this flow, which tend to concentrate the

esponses of the scalar level-set field, φ, into specific dynamic pat-

erns. Such a methodology is offered by the DO approach. To the

est of our knowledge, this approach had not yet been utilized to

etermine the stochastic viscosity solution of (5) . A numerical chal-

enge in obtaining such DO level-set equations is the presence of

he non-polynomial nonlinearity, γ ≡ | ∇φ|. Next, we present ways

o handle this challenge and obtain the new DO level-set equa-

ions. 

.2. Stochastic DO level-set equations 

Before deriving the new stochastic DO level-set PDEs, we first

rovide the DO decomposition of a general scalar S-PDE and define

ome notation. 

eneric DO equations. Dynamically Orthogonal field equations

 Sapsis and Lermusiaux, 2009; 2012; Ueckermann et al., 2013 ) can

e briefly introduced as follows. For a general scalar stochastic con-

inuous field φ( x , t ; ω), described by a S-PDE, 

∂φ(x , t;ω) 

∂t 
= L [ φ(x , t;ω) , x , t;ω] , (6) 

pplying a generalized dynamic Karhunen–Loeve (KL) decomposi-

ion (a DO decomposition) 

(x , t;ω) = φ̄(x , t) + 

n s,φ∑ 

i =0 

Y i (t;ω) ̃  φi (x , t) (7) 

nd an orthogonality condition on the evolution of stochastic sub-

pace 

∂ ˜ φi 

∂t 
, ˜ φ j 

〉
= 0 ∀ i, j (8) 
ields the DO equations for the statistical mean φ̄, stochastic coef-

cients Y i and deterministic modes ˜ φi as 

∂ φ̄(x , t) 

∂t 
= E [ L ] ; (9) 

∂Y i (t;ω) 

∂t 
= 

〈
L − E [ L ] , ˜ φi 

〉
; (10) 

∂ ˜ φi (x , t) 

∂t 
= 

n s,φ∑ 

j=1 

C −1 
i j 

�⊥ 
˜ φ
E [ Y j L ] , (11) 

here �⊥ 
˜ φ

is the operator that returns the component orthogonal

o the s -dimensional linear subspace spanned by { ̃  φ(x , t) } n s,φ
k =1 

. The

riginal SPDE (6) is recast into the DO equations consisting of a

ean PDE (9) , the mode PDEs (11) , and the stochastic coefficient

DEs (10) . The n s , φ modes ˜ φi are dynamic, i.e., they form an evolv-

ng subspace. The n s , φ stochastic coefficient Y i are also variable:

hey evolve the uncertainty within that dynamic subspace. For

hysical nonlinear systems, the intrinsic nonlinearities in (6) and

he corresponding dynamic aspects retained in Eqs. (9) –(11) often

nable the truncation to a number of n s , φ modes and coefficients

ypically much smaller than the dimensions (spatial and stochastic)

f the original system. It is these dynamics, and the adaptable size

 s , φ ( Lermusiaux, 1999; Sapsis and Lermusiaux, 2012 ), that allow

racking most of the stochasticity of the original variables. 

otation. For every two fields u ( x , t ; ω) and v (x , t;ω) , the spatial

nner product is defined as 

 

u (•, t;ω) , v (•, t;ω) 〉 = 

∫ 
D 

u (x , t;ω) T v (x , t;ω) d x , (12) 

nd the orthogonal component operator is defined as 

⊥ 
˜ φ
G (x ) = G (x ) −

n s,φ∑ 

k =1 

〈
G (x ) , ˜ φk 

〉
˜ φk . (13) 

he expectation operator is denoted as E . The notation •̄ and ˜ •
efers to means and modes, respectively: φ̄(x , t) , Y i ( t ; ω), and
˜ 

i (x , t) are the mean, i th stochastic coefficients, and i th spatial

ode of the spatio-temporal field φ( x , t ; ω) while F̄ (t) , z ( t ; ω),

nd 

˜ F (t) refer to the same but for the temporal scalar F ( t ; ω).

sing the Einstein summation notation, the DO decompositions of

 ( t ; ω) and φ( x , t ; ω) are then, 

 (t;ω) = F̄ (t) + z(t ;ω) ̃  F (t ) , (14) 

(x , t;ω) = φ̄(x , t) + Y i (t;ω) ̃  φi (x , t) . (15) 

e note that the Y i ( t ; ω)’s and z ( t ; ω) can represent complex

df’s in accordance with the KL decompositions of φ( x , t ; ω)

nd F ( t ; ω), respectively. By definition, we also have zero ex-

ectations for the coefficients: E (z) = 0 and E (Y ) = 0 . Finally,
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the non-polynomial nonlinearity in Eq. (5) is then γ (x , t;ω) =∣∣∇( ̄φ(x , t) + Y i (t;ω) ̃  φi (x , t)) 
∣∣. In the equations to follow, for

brevity of notation, ( x , t ; ω) is dropped. 

The time-dependent representations equations (14) –(15) of the

stochastic process F and φ are such that if truncated to a subspace

of size n s , F and n s , φ , respectively, each of them capture the most

of these processes in the sense of variance (K-L property). Such DO

truncations of φ are feasible due to the nonlinearities and correla-

tions of environmental flows and, for the case of F , due to the op-

erational constraints on the relative vehicle-speed. The subspace of

the stochastic process F ( •, ω) of size n s , F is in the sense of a time-

KL decomposition of z . Since F is independent of x , in the sense

of its spatial-DO decomposition, the mode ˜ F can be set to 1: all F

stochastic variations are then represented by the time-KL decom-

position of z . When needed to emphasize the subspace reduction

of F ( •, ω), we nonetheless denote F as F DO . A list of notation and

acronyms we employ is provided in Table C.5 of Appendix C . 

Derivations. Inserting the DO decompositions for F (14) and φ (15)

into the stochastic level-set Eq. (5) along with γ , we obtain the DO

expanded level-set equation, 

∂ φ̄

∂t 
+ Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi 

d Y i 
d t 

= −( ̄F + z ̃  F ) γ − v · ∇( ̄φ + Y i ̃  φi ) (16)

To derive the mean, mode and coefficient equations from (16) , spe-

cial attention is paid to γ . For 2-d in space, γ = 
√ 

∂φ
∂x 

2 + ∂φ
∂y 

2 
, and,

for 3-d in space, γ = 
√ 

∂φ
∂x 

2 + ∂φ
∂y 

2 + ∂φ
∂z 

2 
. We will focus mainly on 2-

d in space applications, but the equations to follow are also ap-

plicable to 3-d in space. A major challenge is handling this non-

polynomial nonlinearities (e.g., Debusschere et al. (2005) and Julier

and Uhlmann (1996) for model order reduction based on the poly-

nomial chaos expansion, Lu and Lermusiaux (2016) for biogeo-

chemical reactions). To the best of our knowledge, such attempts

have not been made for a γ norm as in (16) . 

Next, the governing evolution equations for the stochastic DO

level-sets are obtained. Details are given in Appendix B and nu-

merical considerations in Section 4 . Two approaches for evaluating

(or approximating) this γ term are developed. In the first, a sep-

arate DO representation is not invoked for γ , but in the second,

it is invoked. This second approach further leads to two schemes

for evaluating the mean, mode and coefficients of γ . A key dif-

ference between these two schemes is their computational costs

(see Section 4 ). Overall, we thus present three DO level-set vari-

ants, each originating from (16) . 

3.2.1. DO–MC Gamma 

The first approach we consider is to evaluate γ through a

Monte Carlo computation without invoking a separate DO repre-

sentation for γ . This approach does not fully exploit the redun-

dancy in γ that can be obtained through a stochastic reduced or-

der representation. Nonetheless, it exploits redundancy in φ which,

as we will illustrate, leads to substantial cost savings. The mean,

mode and realization evolution equations for this DO–MC Gamma

approach are (see Appendix B.1 ), 

∂ φ̄

∂t 
= −( ̄F E [ γ ] + E [ zγ ] ̃  F ) − v · ∇ φ̄ (17)

d Y i 
d t 

= −
〈
F̄ (γ − E [ γ ]) + 

˜ F (zγ − E [ zγ ]) + Y k v · ∇ 

˜ φk , 
˜ φi 

〉
(18)

∂ ˜ φi 

∂t 
= −C −1 

Y i Y j 
( ̄F E [ Y j γ ] + 

˜ F E [ zY j γ ]) + v · ∇ 

˜ φi 

−
〈 
−C −1 

Y i Y j 
( ̄F E [ Y j γ ] + 

˜ F E [ zY j γ ]) + v · ∇ 

˜ φi , 
˜ φn 

〉 
˜ φn . (19)
t  
.2.2. DO–KL Gamma and DO–Taylor Gamma 

The second approach we consider introduces a DO representa-

ion for γ as 

= γ̄ + αi ̃  γi (20)

here γ̄ , αi , and ˜ γi are the mean, coefficients and modes, respec-

ively, for the DO representation of γ . The number of modes for

epresenting γ ( n s , γ ) and φ ( n s , φ) in general differ. By inserting

20) into (16) , we obtain the mean, coefficient and mode equations

s (see Appendix B.2 ), 

∂ φ̄

∂t 
= −( ̄F γ̄ + 

˜ F E [ zαi ] ̃  γi ) − v · ∇ φ̄ (21)

d Y i 
d t 

= −
〈
( ̄F αk ̃  γk + 

˜ F z ̄γ + (zαk − E [ zαk ]) ̃  F ˜ γk + Y k v · ∇ 

˜ φk + z ̃  F γ̄ , ˜ φi 

〉
(22)

∂ ˜ φi 

∂t 
= −C −1 

Y i Y j 
(E [ Y j αk ] ̃  γk ̄F + C Y j z ̃

 F γ̄ + E [ Y j zαk ] ̃  γk ̃
 F ) − v · ∇ 

˜ φi 

−
〈 
−C −1 

Y i Y j 
(E [ Y j αk ] ̃  γk ̄F + C Y j z ̃

 F γ̄ + E [ Y j zαk ] ̃  γk ̃
 F ) − v · ∇ 

˜ φi , 
˜ φn 

〉 
˜ φn . 

(23)

he challenge of this approach is to obtain an expression for γ̄ , αi ,

nd ˜ γi . We consider two schemes. 

O–KL Gamma: SVD for γ . The mean γ̄ is obtained as the mean

f γ realizations computed from φ realizations. The mode and co-

fficients are obtained by a reduced order SVD of the ensemble

pread matrix of γ realizations (see Appendix B.2.1 ). Dimension-

lity reduction is achieved by choosing the first n s , γ left singu-

ar vectors of the ensemble spread matrix as the modes ˜ γi (B.25)

nd the corresponding first n s , γ rows of product of singular val-

es and right singular vectors as the realizations of the coefficients

i (B.24) . Inserting the reduced KL decomposition ( ̄γ , αi , ˜ γi ) in

qs. (21) –(23) then completes these equations. The result defines

he DO–KL Gamma equations. 

O–Taylor Gamma: Taylor series for γ . A DO representation of the

on-polynomial nonlinearity can be obtained by applying a Tay-

or series expansion of γ for the realizations around the dynamic

ean φ̄ (see Appendix B.2.2 ). Truncating such a Taylor series ex-

ansion then yields closed expressions for γ̄ , α and ˜ γ , as needed

n Eqs. (21) –(23) . Specifically, if the first-order Taylor expansion is

mployed, Eqs. (B.30) –(B.32) define the DO decomposition of γ . In-

erting it in Eqs. (21) –(23) then completes these equations. This

hird variant defines the DO–Taylor Gamma equations. This vari-

nt is computationally very efficient. However, it works well only

hen the local stochasticity in γ can be approximated by a first

rder Taylor expansion around the mean (see Subramani (2014) ).

igher order terms can be kept in such expansions when compu-

ational cost and accuracy justify it (see Subramani, 2014; Gupta

t. al, 2016 ). 

Comparisons of the above three variants and related computa-

ional costs are provided in Section 4 . Next, we provide the bound-

ry and initial conditions, and then the optimization method, all of

hich are common to the three variants. 

.2.3. Boundary and initial conditions 

oundary conditions for mean φ̄ and modes ˜ φi ’s. In our applica-

ions, the boundary conditions (BCs) for the field φ( x , t ; ω) are de-

erministic and linear. Hence, the BCs for the mean φ̄ are as that of

ll realizations and the BCs for the modes ˜ φi are of the same type

ut with zero values ( Y i ’s are scalars and do not have BCs). Specif-

cally, at the open flow boundaries of the computational domain,

he BC on the field φ consists of setting to zero the second-order
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Table 1 

Stochastic DO Level-Set Optimization: Algorithm. 

Stochastic DO level-set simulation 

1. Sample r = 1 , . . . , n r realizations of relative vehicle speeds for duration 

T max from a class of stochastic processes and its DO (KL) representation 

F DO ( •; r ) (14) . Set T max to be the time required for the slowest relative 

speed considered to reach the target. 

2. Solve the stochastic DO level-set Eqs. (17) –(19) , or Eqs. (21) –(23) , with n r 
realizations and n s , φ modes to compute the n r minimum times to reach 

the target, T ( x f ; F DO ( •; r )), corresponding to each relative speed realization 

F DO ( •; r ). 

3. Compute the energy utilization for each realization using 

E(r) = 

∫ T ( x f ;F DO (•;r)) 
0 p(t; F DO (•; r)) d t . 

Optimization 

4. For each queried arrival time or time frame (bin), identify all realizations 

from the stochastic DO level-set simulation that reach the target in the 

queried time bin. 

5. For each of these subsets of realizations, select the realization that utilized 

the minimum energy and compute its time-optimal path using the 

backtracking Eq. (4) . 

Iterate 

6. If needed, re-sample the function space F ( •; ω) or expand this function 

space by (machine) learning 
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erivative of φ in the normal direction. The same BC is thus also

sed on the mean and modes. This is to ensure that at first or-

er, the expanding level sets can freely advect out of the domain

n the sense that they maintain their local slope (curvature at first-

rder). More complex open BCs for φ could be used, e.g., setting a

igher-order derivative to zero, but the second order BC has been

ufficient for our applications. Obstacles are treated as computa-

ional masks (for the mean and modes too), with zero vehicle and

ero flow velocities, so as to prevent penetration of level–sets. 

nitialization of the DO representation of φ( x , t ; ω). For any partic-

lar realization, the deterministic initialization of φ( x , t ; r ) would

e done with a signed distance function from the starting point

 s . A small circle of zero level-set contour is then obtained around

he start point by locally subtracting a small number from the φ( x ,

 ; r ) field. Since all realizations start from the same point x s , ini-

ially i.e. at t = 0 , all the points away from this initial circle have

he same φ( x , t ; r ) for all realizations. After the simulation starts,

he zero level-set contour of the fastest F ( t ; r ) realization grows

he farthest and that of the slowest F ( t ; r ) grows the least. More-

ver, all other realizations have their zero level–set contours con-

ned to the physical space between the slowest and fastest re-

lizations ( Lolla and Lermusiaux, 2016; Subramani, 2014 ). Hence,

nitially, only a narrow computational band around the initial cir-

le matters. We thus run an ensemble of very short determinis-

ic φ simulations for an ensemble F ( t ; r ) and so obtain an en-

emble of φ( x , t ; r ) within this computational band. The mean,

ode and coefficients of the stochastic DO level-set simulation can

hen be initialized from this ensemble. The mode and coefficients

re obtained by performing a SVD (i.e., KL decomposition) of the

ean–removed φ( x , t ; r ) and retaining sufficient left singular vec-

ors as the initial modes. If enough modes are not used initially,

s the simulation advances, more modes can be added ( Sapsis and

ermusiaux, 2009 ). Such additions can be seen as re-initialization

long the way. In the present examples, the number of modes n s , φ
nd n s , γ vary between 20 and 100. 

.3. Optimization 

The optimization of Eq. (3a) is performed after the above

tochastic DO level-set equations (one of the three variants) and

acktracking equation are solved, using the DO representation of

he stochastic speed F ( •; ω) as external forcing. The solutions

f these equations provide the distribution of minimum time-to-

each T ( x f ; F ( •; ω)) and distribution of energy utilized E ( ω), each

orresponding to the DO representation of F ( •; ω). This informa-

ion allows searching for the energy-optimal paths for each arrival

ime frame. 

First, recall that for any pre-specified F ( t ), the solutions of

qs. (1) –(2) (see Section 2 ) provide the time-optimal path to reach

he target x f and thus also the optimal arrival time, among all ve-

icles operating at relative speed F ( t ). Second, consider that we are

nterested in a single arrival time and that the vehicle follows a

re-specified relative speed realization event 1, i.e., F 1 (t) = F (t; r =
) . We do not want to operate this vehicle for more than the min-

mum possible time as any more time will lead to higher energy

onsumption and any less time would not reach the target. Next,

onsider another vehicle with pre-specified relative speed realiza-

ion event 2, i.e., F 2 (t) = F (t; r = 2) . We also want to operate this

ehicle for its optimal time duration. If F 1 ( t ) and F 2 ( t ) have the

ame optimal arrival time, then the vehicle with the lower energy

sage is preferred among the two. If F 1 ( t ) and F 2 ( t ) have differ-

nt optimal arrival times, they are not compared to each other, but

o other realizations that have the same arrival time. Generaliz-

ng, consider now a distribution of pre-specified realizations F ( t ;

). If for each arrival time T , we obtain the exhaustive subset of
ealizations F T ( t ; ω) whose optimum time-to-reach T ( x f ; F ( t ; ω)) is

hat arrival time T , we can perform an optimization on the energy

sage within this subset, i.e., E T ( ω), to select the energy optimal

ealization for that arrival time T . The result is the energy-optimal

elative speed F T ( t ) and its corresponding path, for that arrival time

 . This procedure being repeated for each T , we obtain the energy

ptimal paths for each arrival time T , among the distribution of

ime-optimal paths for that T . 

Returning to the stochastic DO level-set PDEs, they are forced

y the DO representation of F ( •; ω) and, for each of the sample

 DO ( t ; ω) considered, they predict the optimal time-to-reach the

arget. Thus, in terms of a reduced-order DO representation of F ,

he optimization (3a) becomes 

 

∗
DO (t) = arg min 

F DO (•;r) 

∫ T ( x f ;F DO (•;r)) 

0 

p(t ; r) dt , (24) 

here p is the power function ( Section 2 ). In the discrete his-

ogram sense, the stochastic DO level–set optimization thus pro-

ides the energy–optimal path(s) for each arrival time frame (small

ime bin). Discrete algorithms and numerical schemes are dis-

ussed next. 

. Algorithms and numerics 

The stochastic optimization algorithm ( Table 1 ) consists of two

ore successive steps: the stochastic simulation for a given function

pace of vehicle speeds and the optimization for energy–optimal

aths. As introduced in Fig. 2 , these core steps can be iterated if

he function space of vehicle speeds is re-sampled or improved by

machine) learning. The stochastic simulation is performed by in-

egrating any of the three DO variants ( Section 3 ), depending on

ost and accuracy considerations as we will explain shortly. The

esult is energy-optimal paths among time-optimal paths for a ve-

icle navigating in a dynamic flow. Critically, what is computed is

ot the energy-optimal path for a single arrival time but energy-

ptimal paths for a range of arrival times, all at once. 

Next, we discuss how the viscosity solutions ( Osher and

ethian, 1988 ) for an ensemble of deterministic level-set HJ equa-

ions can be efficiently captured by the stochastic DO level-set

quations. We then showcase numerical schemes and algorithms

o handle the stochastic γ term. Finally, we describe the sampling
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of the space of relative vehicle speeds, the pruning of a priori too

energetic speed time-series, the overall computational complexity,

and the optimization. 

Stochastic DO level-set equations and Monte Carlo in the stochastic

subspace. As explained in Section 3.2 , the new stochastic DO level-

set equations reduce the computational cost by dynamically us-

ing the nonlinearities and spectrum properties of ocean flows, and

by using a reduced DO representation F DO ( •; ω) for the space of

relative speed functions. As a result, a large number of integra-

tions of the original deterministic level-set PDE (as would be done

in a classic Monte Carlo (MC) solution) is no longer required. In-

stead, one solves a mean PDE and a few modes PDEs and stochas-

tic coefficient ODEs. For these latter n s , φ stochastic ODEs (which

are much cheaper to solve than the original PDE), an efficient DO

numerical scheme ( Ueckermann et al., 2013 ) employs a MC solu-

tion. This strategy corresponds to time integrating each coefficient

on a realization-by-realization basis albeit in the stochastic sub-

space. This provides major computational savings: the MC com-

putation occurs only in the dynamic subspace and the coefficient

equations are ODEs. As a result, for typical ocean problems, the

computational time required for the MC computation is 2–4 orders

of magnitude smaller than the original MC computation in the full

stochastic space, for the same number of realizations n r . We note

that this is a novel application of the DO method (previously used

for uncertainty quantification): for the first time, it is employed

as a dynamic model-order reduction scheme to perform stochastic

PDE simulations for an optimization scheme. 

Numerical schemes for the stochastic DO level-set equations. The DO

level-set equations are solved using a finite volume framework

( Ueckermann and Lermusiaux, 2011 ). A forward Euler time step-

ping scheme is used to integrate the mean, modes and coeffi-

cients of φ in time. The advection terms are computed using a

Total Variation Diminishing scheme. The non-polynomial nonlin-

ear term, γ = |∇φ| is computed using an upwind scheme, i.e.,

Sethian’s viscosity solution ( Osher and Sethian, 1988 ). For the DO–

MC Gamma and DO–KL Gamma variants in Section 3.2 , γ is com-

puted for each realization and their individual upwind characteris-

tics are used. For the DO–Taylor Gamma variant, the upwind direc-

tion for all the modes are taken to be the upwind direction for the

mean. For more on numerics for Eqs. (17) –(19) and Eqs. (21) –(23) ,

we refer to Subramani (2014) . 

Handling the non-polynomial nonlinearity γ . The three DO vari-

ants, i.e., DO–MC Gamma , DO–KL Gamma , and DO–Taylor Gamma

in Section 3.2 , provide a different computational estimate of the

γ term or of its DO representation (its mean, mode and coeffi-

cient). These different algorithms are now compared. In the DO–MC

Gamma variant, the DO representation for γ is not used. Instead, a

realization of γ is computed for each of the n r realizations of φ
and F DO ( •; r ), and evolve according to Eqs. (17) –(19) themselves. 

In the DO–KL Gamma variant or SVD for γ ( Section 3.2.2 ), the

n s , γ modes are estimated by a reduced order SVD (as a reminder,

n s , γ can be different from n s , φ). It is desirable that these modes

˜ γi are computed at every time step. However, to compute such

a SVD, the cost is O (n r n 
2 
g ) . A Lanczos method or a Krylov sub-

space method can reduce the computational effort to O (n r n 
2 
s,γ )

( Gugercin, 2005 ). Nonetheless, at each time step, such SVDs can

become computationally expensive for large problems. In some

cases, the DO subspaces can change less quickly than the coeffi-

cients within the subspace. Hence, for sufficiently smooth environ-

mental flow fields and vehicle speed functions, an approximation

for the γ modes dynamics consists of updating ˜ γi only intermit-

tently, e.g., every few time steps. We refer to such an algorithm

which updates ˜ γi only every p time-steps as the p-delay-SVD DO–
L Gamma . Such intermittent SVD computations can save compu-

ations but still solve the DO equations to within acceptable error

evels. Of course, the modes ˜ φi for φ are still updated at each time-

tep using Eqs. (21) –(23) . 

For the DO–Taylor Gamma variant, the mean, mode and coef-

cients for γ are approximated by a first-order Taylor expansion.

his approximation gives good results as long as the pdf of the

function is well approximated by a locally linear representa-

ion. Since the pdf of γ depends on the pdf of the level-sets gov-

rned by the sample path Eq. (5) and on the pdf of the gradient

f level-set realizations, this approximation can be good but not in

ll cases. This result is illustrated in Section 5 . 

Higher-order terms in the Taylor expansions can be kept when

omputational cost and accuracy justify it; for example, second

rder schemes are used in Subramani, 2014; Gupta et al., 2016 .

owever, local Taylor series have a computational cost that in-

reases with n s , γ to a power that depends on the order. Hence,

hey can become more expensive than the DO–KL Gamma and DO–

C Gamma methods. This also remains true for local polynomial

pproximations of the nonlinear γ function ( Gupta et al., 2016 ). 

uration of the stochastic simulation. The stochastic simulation is

xecuted for a time duration that is just greater than the time re-

uired for the slowest vehicle, i.e., the vehicle having a constant in-

tantaneous speed equal to the minimum allowed speed, to reach

he target. Any other time-series of vehicle speed specification will

each the target before the slowest vehicle. 

elative speed function space and its stochastic sampling. The sam-

ling of F ( •; ω) that generates relative speed realizations F ( t ; r )

s a key step of our algorithm. In our treatment, the stochasticity

n the level-set equation (5) arises from this externally forced F ( •;

). Among the realizations F ( t ; r ), we search for those that lead

o the minimum energy paths. An exhaustive discretized sample

lass can be built by directly sampling the complete combinatorial

pace formed by discretized speed and discretized time. However,

he sample size of this direct sampling grows exponentially ( Lin

nd Fisher, 2012 ) with speed range and time duration. Obtaining

uch a sample is NP-complete ( Gomes et al., 2006 ). Markov-chain-

ased sampling is usually used in applications where such combi-

atorial sampling is required ( Lin and Fisher, 2012 ). 

For our path planning in environmental flows, the inherent time

nd space scales can be used to reduce the size of the space of

elative speed time-series. Operational constraints on vehicle op-

rations also further reduce this search space. For example, in our

oastal ocean applications, typical time and space dynamical scales

re hours to days, and O(1 km to 100 km), respectively. Typi-

al operational constraints are limits on the frequency of accel-

rations and preferred operation at constant relative speeds, e.g.,

onstant for one or more hours ( Ramp et al., 2009; Haley et al.,

009; Leonard et al., 2010 ). Hence, a first reduced relative speed

pace we consider are Markov processes ( Gelb, 1974 ) such as an

xponentially-decorrelated-in-time random process. A second com-

utationally tractable option is a switch-sampling algorithm where

he frequency of possible speed switches is set by the environmen-

al scales and operational constraints. These and other options are

iscussed in ( Subramani, 2014 ). 

Here, we will focus on the switch-sampling algorithm. It is a

andomized approximation of the exhaustive direct sampling. In

irect sampling of a combinatorial space, for l levels of discretized

peed and n sw,F discrete times, the total sample size is l n sw,F . For

xample, if we have 2 levels of discretized speed, 5 cm/s and

5 cm/s, and we divide a total duration of 2 h into two discrete

ime intervals of 1 h each, then the combinatorial space consists

f 4 samples, viz., (5,5), (5,10), (10,5), (10,10) where ( a , b ) refers to

 vehicle speed specification of a cm/s for 0–1 h, and b cm/s for
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Fig. 3. Dotted lines represent the exhaustive sample with 2 speeds and 2 time intervals (or 1 switch). The solid lines represent the sample obtained by switch sampling 

which divides the entire speed range in two and for each time interval chooses a random value within one of the two ranges. 

Fig. 4. Some realizations chosen from a sample obtained with a switch–sampling 

scheme. Here, we switch the samples every day over a 8 days period, and 4 speed 

levels are considered. The represented samples are instances from a sample space 

with 4 8 = 65 , 536 samples. 
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–2 h. We could randomize a and b and divide the range between

 and 25 cm/s into l = 2 such that 5 < a < 15 and 15 < b < 25.

ow the 4 samples will be (a,a), (a,b), (b,a), (b,b) where a and b

re random numbers in their corresponding range. In this case, we

ay that the vehicle switched its instantaneous speed after 1 hr and

hen maintained the new speed for next 1 h. This is exemplified in

ig. 3 . In general, we will fix the maximum number of switches in

ominal speed that the vehicle can make during the entire mis-

ion. Such a more complex situation is shown in Fig. 4 . 

The approximation of the switch-sampling is the coarser reso-

ution in both discrete speeds and switching times than in direct

ampling. The randomization within this coarser resolution aims to

emedy for this: the structured and relatively strong environmen-

al flows are such that ranges of speeds lead to very similar behav-

or and do not need to be sampled with refined grids. As we will

ee, another advantage of switch–sampling is that using random

umbers in ranges, a structured approach is taken to sample the

arge combinatorial space, and with enough samples, the method

an find the energy optimal paths. 

runing. When compared to a constant (single) speed vehicle, our

oal is to find the path with a variable vehicle speed that saves

he most energy while still arriving at the same time or earlier.

ence, if any realization in the stochastic DO simulation spends

ore energy than a constant relative speed vehicle, then it is not

f interest. As such, our algorithm initially computes optimal paths

nd arrival times for all constant relative speeds. This information
s then utilized to prune realizations with variable F DO ( t ; r ) that

ould for sure consume more energy: i.e., for the same arrival

ime than these optimal constant relative speed paths, all of the

ealizations F DO ( t ; r ) that have an energy usage E ( r ) that is as large

s that of the corresponding time–optimal constant relative speed

an be eliminated. This removal of too energetic realizations F DO ( t ;

 ) is done before the start of the stochastic DO level–set computa-

ion, which leads to significant savings. 

verall stochastic computational complexity. Per time-step, the com-

utational costs of the different stochastic solvers are as follows.

he direct Monte Carlo solution has a computational cost that

cales as O ( βn r n g ), where β ∼ O (10 –100) for typical advection

chemes utilized (e.g., Total Variation Diminishing, Ueckermann

nd Lermusiaux (2011) ). The DO–MC Gamma variant has a cost

hat scales as O (n r n g ) + O (n r n 
2 
s,φ

) for γ and DO advection respec-

ively. The DO–KL Gamma and DO–Taylor Gamma variants reduce

he overall computational cost to O (n r n 
2 
s,φ

) . Note that the DO–KL

amma has an additional cost of computing the SVD of γ realiza-

ions which is also O (n r n 
2 
s,γ ) when an efficient SVD algorithm is

tilized. With pruning, n r reduces in later time steps thereby re-

ucing costs. For typical coastal ocean applications that we are in-

erested in, n s,φ �
√ 

βn g . Hence, all DO variants are much cheaper

han direct Monte Carlo and provide 100–10,000 times speed up

see also Section 5.1 ). 

ptimization, iteration and learning of vehicle speed functions. A

earch algorithm is used to find vehicle speed realizations that

inimize energy according to Eq. (24) . From the stochastic DO

evel–set simulation (steps 1–3 in Table 1 ), we obtain an energy-

ime-vehicle-speed discrete distribution. For a queried arrival time

r time frame, we first form a conditional distribution of energy-

ehicle-speed by selecting only those discrete samples that reach

n the queried time or time frame. The discrete conditional dis-

ribution is then sorted according to energy by Quick Sort ( Hoare,

962 ) and the minima is identified. Alternatively, in applications

here the interest is only the absolute minimum energy used,

 single loop comparison can be employed to find the realiza-

ion with the smallest energy utilization. After identifying the dis-

rete vehicle speed realization that results in minimum energy us-

ge for the queried arrival time or time frame, we compute the

nergy-optimal path using the backtracking Eq. (4) . The path thus

btained is energy-optimal among time-optimal paths. In prac-

ice, this procedure is completed in parallel for a range of queried

imes. 

If needed, one can iterate and re-sample the function space

 ( •; ω). For example, for the double-gyre flow in Section 6.2 , we

ested different sampling algorithms (see above) by changing the

orrelation-in-time for the Markov process and the duration be-

ween switches for the switch-sampling algorithm. Similar itera-

ions were performed in real ocean applications ( Subramani et al.,

016 ). In some cases, one could also expand this function space
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Fig. 5. (a) Energy-optimal crossing of a canonical uniform steady front. The shaded region consists of a uniform and steady jet of speed V from west to east. The geometric 

parameters are: start point, x s (circle); end point, x f (star); horizontal distance between them, X ; vertical distance from start to the front, y 1 ; width of the front, d ; and, 

vertical distance from the front to the end point, y 2 . The nominal vehicle speed parameters are: speed from the start point to the front, F 1 ; in the front proper, F d ; and, from 

the front to the end point, F 2 . The headings are marked with arrows. The numerical domain is a square of side L with the steady uniform zonal front in the middle. (b) Fixed 

parameter values (non-dim.) 

Table 2 

The values of the numerical parameters employed for the MC and DO solutions of the S- 

PDEs, used to validate the DO solutions. The physical parameters are in Fig. 5 b. 

n r n s , φ n s , F n s , γ n sw,F l d x d y d t 

Direct MC 4096 – – – 6 4 3.33 3.33 1 

DO–MC Gamma 4096 20 1 – 6 4 3.33 3.33 1 

DO–KL Gamma 4096 20 1 20 6 4 3.33 3.33 1 

DO–Taylor Gamma 4096 20 1 20 6 4 3.33 3.33 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

m

 

m  

r  

c  

o  

i  

s

 

T  

t  

s

 

z  

s  

t  

f  

d  

z  

g  

l  

(

 

t  

c  

o  

r  

e  

b  

t  

D  

h  

l  

i  

i

 

r  
by (machine) learning (e.g., MacKay, 2003; Murphy, 2012; Lu and

Lermusiaux, 2016 ). 

5. Validation 

We perform a two step validation. First, we answer the ques-

tion on whether the new stochastic DO level-set equations, (17) –

(19) or (21) –(23) , solve the original SPDE (5) accurately. We intro-

duce a canonical test case and compare the DO solution with that

of the MC method. We show that the DO method is much cheaper

and is indeed capable of reproducing any of the MC solutions with

less than 2% error for 99.5% of the realizations. Second, we employ

a benchmark to test if our stochastic DO level-set optimization

computes accurate energy optimal paths. Specifically, we develop a

semi-analytical energy-time nested nonlinear double-optimization

for a simple test case. Results show that the stochastic optimiza-

tion agrees with this independent semi-analytical solution, with

the additional advantage that it solves the optimization for many

arrival times at once, whereas the latter only provides a solution

for a single arrival time. 

The canonical test case consists of determining energy-optimal

paths for the crossing of a simple idealized front, as illustrated in

Fig. 5 a. The environmental flow is a uniform and steady jet, flow-

ing from west to east in a rectangular domain. The mission is for

a vehicle to start from a point in the south west region of the do-

main and travel to a point in the north west region while mini-

mizing the energy usage for a given arrival time. The values of the

physical parameters are provided in Fig. 5 b. 

5.1. Stochastic level-set PDE solution validation 

In this section we compare the DO method solution with the

MC method solution. We use the stochastic DO level-set equations

to track the zero level-set contour for all realizations at once. The

MC solution tracks the evolution of the zero level-set by solving

the deterministic level–set equation for all realizations separately.

The MC solution is thus considered as the ground truth which

the DO solution attempts to compute, utilizing dynamical redun-

dancy for a drastic increase in computational efficiency. Hence,
omparing the two solutions provides a validation for the DO

ethod. 

The Frechet distance ( Alt and Godau, 1995 ), which measures the

aximum distance between two closed curves, is used as the met-

ic for comparing two zero level-set contours. We measure the dis-

rete Frechet distance, which takes into account the location and

rdering of points ( Danziger, 2011 ), as a fraction of the grid spac-

ng. This quantifies the relative measure of closeness of zero level-

et contours. 

The three DO variants are each compared with the MC method.

he numerical parameters, provided in Table 2 , are chosen such

hat the direct MC solution completes all realizations within rea-

onable runtime. 

The results are illustrated in Fig. 6 . Each column first shows

ero level–sets for a randomly chosen realization for 3 time in-

tances, comparing the solution of each DO variant with that of

he MC method. The first three rows are the time instances. The

ourth row shows how the distance metric (the ratio of the Frechet

istance to grid spacing) varies with arrival time. We find that the

ero level-sets are different by a Frechet distance of the order of

rid spacing or smaller. The numerical stochastic DO level-set so-

utions thus introduce an error of about 1% of the domain size

which is less than the spatial discretization used here). 

Ultimately, we are interested in computing optimal arrival

imes for all realizations. Hence, we compare the arrival times

omputed by the three DO variants and MC in Fig. 6 c, again with-

ut pruning so as to compare all realizations. We find that for 4096

ealizations, all samples have less than 4% relative error, i.e., the

rror in DO arrival time as a fraction of the MC arrival time, for

oth the DO–MC Gamma and DO–KL Gamma variants, with more

han 99.5% of the samples having less than 2% relative error. For

O–Taylor Gamma , the error is slightly larger but still all samples

ave less than 6% relative error and 95% of the realizations have

ess than 2% relative error. This higher error for DO–Taylor Gamma

s expected as it assumes that a first–order Taylor approximation

s sufficient while the other two variants do not. 

For the present test case ( Fig. 5 a, b, Table 2 ), the CPU time

equirement on a single CPU with 4 cores for direct MC is
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Fig. 6. (a) First column compares DO–MC Gamma with MC; second column, DO–KL Gamma with MC; and, third column, DO–Taylor Gamma with MC. Each row corresponds 

to separate time instances in increasing order. (b) Ratio of Frechet distance between the zero level–set contour computed by the three DO and MC estimates. This distance 

metric measures the maximum distances between the zero level-set contours. Results indicates that the error between the three DO and MC solutions are O ( �x ) or better. 

(c) Relative error in time-to-reach for all realizations simulated, again for the three DO variants. The time requirement on a CPU with 4 cores for direct MC is approximately 

60 0 0 s. However, for the DO methods, it ranges from 100 s ( DO–MC Gamma ) down to only 10 s ( DO–KL Gamma, DO–Taylor Gamma ). 
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Table 3 

Parameters of the energy optimal path that reaches the end point at time T = 55 . 

The two results are within PDE-discretization errors. 

Parameter Using dual optimization Using stochastic DO 

level-set optimization 

θ1 29 ° 28 °

θ2 29 ° 23 °

α 34 ° 40 °

β 61 ° 65 °

F 1 28.2 29 

F d 21 22.4 

F 2 28.2 26.8 
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approximately 60 0 0 s. However, the time requirement for the DO

methods range from 100 s ( DO–MC Gamma ) up to 10 s ( DO–KL

Gamma, DO–Taylor Gamma ). 

5.2. Methodology validation 

The canonical flow permits a semi-analytical solution for com-

puting the path that minimizes energy among time optimal paths

but for a single specific arrival time at a time ( Subramani et al.,

2015 ). Here, we develop this semi-analytical solution and use it to

validate the stochastic DO level-set optimization. 

For the semi-analytical solution, we first consider the motion

of the vehicle from the start point to the uniform steady front.

Since there is no flow affecting the vehicles motion in this part of

the path, the total displacement of the vehicle depends only on its

nominal speed and a straight line path would minimize the travel

time. Moreover, the energy consumed by the vehicle which varies

as a power function of F ( t ) (see Section 3 ), would be minimized

if a single mean speed is used instead of a variable speed. This

fact follows from an application of Hölder’s inequality to the power

function, 

∫ 
T 

F (t) d t ≤
[ ∫ 

T 

F (t ) n p d t 

] 1 
n p 

[ ∫ 
T 

d t 

] 1 − 1 
n p 

(25)

∫ 
T 

(∫ 
T F (t) d t ∫ 

T d t 

)n p 

d t ≤
∫ 

T 

F (t ) n p d t , (26)

showing that navigating with a time averaged speed consumes less

energy than navigating with a variable speed. 

Next we consider the motion of the vehicle within the uniform

and steady front proper. As the flow is from west to east along the

x –direction, it only affects the vehicle’s motion in that direction.

To cross the uniform steady flow, the vehicle should thus use a

single speed to minimize energy consumption, because of similar

Hölder’s inequality arguments than for the motion prior to reach-

ing the front. After exiting the front, the analysis is similar to be-

fore entering the front. Therefore, for a given travel time, the en-

ergy optimal path is executed by a vehicle that moves at a con-

stant speed from the start point to the steady front at some to-

be-determined point, then another speed (same or different) for

the time optimal motion within the uniform steady front, and fi-

nally another speed from the steady front to the target. These

arguments allow us to setup our double-optimization problem,

‘energy–optimality subject to time-optimality’. 

Combining the above, we set the time-variation of the unknown

optimal relative speed to be the uniform speeds F 1 , F d , and F 2 ,

from start to the steady front, within the steady front, and from

the exit of the steady front to the end point, respectively. Let U

denote the total effective velocity of the vehicle in the flow, as

seen by a ground observer. Within the steady front, the component

of U in the x –direction is U x = F d sin α + V and in the y –direction,

 y = F d cos α. The direction of resultant velocity and heading an-

gle are related through the relation, tan β = 

U x 
U y 

= tan α + 

V 
F d 

sec α.

Outside the steady front, the relations are the same, but with

 = 0 . Now, let X be the total downstream displacement of the

vehicle, i.e. in the x direction. We have, from trigonometry, X =
y 1 tan θ1 + d tan β + y 2 tan θ2 . Finally, the total travel time T can

be written as the sum of travel times in each individual region,

T = 

y 1 
F 1 cos θ1 

+ 

d 
F d cos α + 

y 2 
F 2 cos θ2 

. We want to determine the energy

optimal path, for each arrival time such that they are also time-

optimal. Hence, assuming for now, a general energy cost over

d t , d E = p(t) d t = F (t ) n p d t where n ≥ 1, we obtain the total en-

ergy expended from the start point to the end point as: E =
F 

n p −1 

1 
y 1 

cos θ
+ F 

n p −1 

d 
d 

cos α + F 
n p −1 

2 
y 2 

cos θ
. All together, for a fixed time-
1 2 
o-reach the target, the double-optimization problem is thus, 

min 

 1 ,F d ,F 2 
E = F 

n p −1 

1 

y 1 
cos θ1 

+ F 
n p −1 

d 

d 

cos α
+ F 

n p −1 

2 

y 2 
cos θ2 

(27)

 . t . X = y 1 tan θ1 + d 

(
tan α + 

V 

F d 
sec α

)
+ y 2 tan θ2 (28)

 = min 

θ1 ,α,θ2 

y 1 
F 1 cos θ1 

+ 

d 

F d cos α
+ 

y 2 
F 2 cos θ2 

(29)

1 , θ2 , α ≥ 0 , F min ≤ F 1 , F d , F 2 ≤ F max , n p ≥ 1 (30)

here X , T , F min , and F max are inputs to the optimization problem.

he time constraint for the outer energy optimization is another

nner time optimization: indeed, F 1 , F d , F 2 are the unknowns op-

imized within the outer energy loop while θ1 , α, θ2 are the un-

nowns optimized within the inner time loop, given speed value

ealizations for F 1 , F d , F 2 . This completes the derivation of the dou-

le minimization problem. Its solution is the energy-optimal path

s defined in Section 2 , but again, only for a fixed single arrival

ime. 

We note that this semi-analytical solution is not straightforward

o compute and we employ MATLAB’s fminunc in a global solve

ode to obtain a solution that satisfies the constraints. We ter-

inate the local solves when the step size of variables is below

 threshold (set to machine precision). For the physical parame-

ers provided in Fig. 5 b (Case 1), and fixing the single target ar-

ival time T to be T = 55 , we obtain the numerical solution of our

ouble-optimization problem as given in column 1 of Table 3 . 

Now, we compare this semi-analytical solution to that of the

tochastic DO level-set optimization. We select samples from the

witch-sampling procedure and build a set of 65,536 realizations.

he maximum run time, T max , of the stochastic DO simulation is

et to the time required by the slowest vehicle to reach as all ve-

icles faster than this vehicle would reach before T max . The re-

ult of this DO optimization with the same parameters as above

s given in column 2 of Table 3 . The errors between the paths ob-

ained by nonlinear optimization and stochastic DO level-set opti-

ization are of the order of the time and space resolutions. Hence,

e only show the optimal path obtained by the latter in Fig. 8 a of

ection 6 . Critically, we note that our stochastic solution provides

nswers for a wide range of arrival times in addition to the sin-

le fixed time T considered here by the semi-analytical solution as

llustrated next. 

. Applications 

.1. Energy-optimal path planning in a uniform steady front 

In Section 5 , we presented results only for a particular time to

each. Here, we illustrate all results, demonstrating the full capa-

ility of the new methodology, i.e., the ability to compute energy-

ptimal vehicle speed and path specifications for a range of arrival

imes, all at once. Two vehicle missions are now considered: the
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Table 4 

The numerical parameters employed for the stochastic DO simulation of the uniform steady front 

crossing problem. The physical parameters are in Fig. 5 b. 

n r n s , φ n s , F n s , γ n sw,F l d x d y d t 

Case 1 (along the flow) 65536 100 1 100 8 4 1 1 0.25 

Case 2 (against the flow) 65536 100 1 100 8 4 1 1 0.25 
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Fig. 7. Crossing the front-downstream: Distribution of time to reach (right) and en- 

ergy utilized (left), for all 65,536 realizations F ( t ; r ), as computed by the stochas- 

tic DO level-set optimization. Each dot corresponds to a realization: dark/light gray 

dots consume less/more energy than the constant speed realizations (dots colored 

with F ( r )). These colored dots form the curve of energy-utilization versus time-to- 

reach for constant speed vehicles. The black line is the energy-optimal versus time- 

to-reach curve obtained using our methodology, showing its capability of finding 

energy-optimal speed functions for a range of arrival times. 

F  

r  

w  

e  

l  

a  

F

a

rst is as that used in Section 5 , the second consists of crossing

he front against the jet flow. 

rossing the uniform and steady front-downstream. This mission is

s in Section 5.2 , with physical parameters defined in Fig. 5 b

case 1) and illustrated on Fig. 5 a. The numerical parameters of

he switch-sampling and DO level-set simulations are in Table 4 .

or each of the n r = 65 , 536 speed realizations F ( t ; r ) (step 1 in

able 1 ), the DO simulation computes the optimal time to reach

he target (step 2 in Table 1 ). With these optimal times, the energy

tilized by each realization is computed (step 3 in Table 1 ). Fig. 7

hows the resulting distribution of time to reach and energy uti-

ized, for all samples F ( t ; r ) as dark gray and light gray dots. Each

ot corresponds to a different realization. The constant speed sam-

les F ( r ) are colored according to their respective vehicle speeds.

he energy consumption is normalized by the energy requirement

f the fastest constant speed vehicle, which is the global time op-

imal path and is the sample that utilizes maximum energy. We

re interested in the vehicle path and speed specifications that re-

uire at most the energy usage of vehicles with a constant speed.

ence we rank paths by the percentage of energy saved with re-

pect to a constant speed path with the same arrival time. The

ark gray points are realizations that consume less energy than

onstant speed realizations and lighter gray points are realizations

hat consume more energy than constant speed realizations. Recall

hat all constant speed paths are also time optimal. Ranking is thus

ased on strict energy-optimality. 

We first note that the DO stochastic simulation is agnostic and

an consider samples F ( t ; r ) that utilize more energy than constant

peed samples. However, using pruning described in Section 4 , we

ncrease efficiency. A pruned stochastic DO simulation would have

iscarded and thus not used the light grey colored dots shown in
ig. 8. Crossing the front-downstream: (a) Physical paths followed by a constant speed veh

lso time optimal paths for their respective speeds. (b) These instantaneous vehicle speed
ig. 7 , hence reducing computational cost without changing accu-

acy. We only show the unpruned version to illustrate the inner

orking and nuances of the method. From the distribution of en-

rgy utilized and time to reach, we can then select any particu-

ar time to reach (e.g., T = 55 ) or time bin (e.g., 55 ≤ T ≤ 65)

nd isolate the subset of time-optimal paths for that queried time
icle and by the energy optimal vehicle, for the same arrival time T = 55 . Both are 

 functions F ( t ; r ), for each of the two vehicles. 
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Fig. 9. Crossing the front-upstream: as Fig. 7 , but for the second mission against 

the flow. Again, the stochastic DO level-set optimization identifies energy-optimal 

vehicle speed functions for a wide range of arrival times. 

f  

t  

(  

w  

o  

w  

s  

g  

i  

t

6

q

 

w  

l  
(step 4 in Table 1 ). Finally, we search for the vehicle speed specifi-

cation F ∗DO (t) that optimizes energy consumption among this sub-

set (step 5 in Table 1 ). These optimizations can be done all at

once, for all arrival times. Here, we illustrate only T = 55 and thus

find the realization with minimum energy for that arrival time T .

Other T choices are shown in Subramani (2014) (not shown here).

The optimal physical path for T = 55 is plotted in Fig. 8 a, overlaid

with instantaneous vehicle speeds. It consumes only 95% of the en-

ergy used by the corresponding constant speed path, also shown in

Fig. 8 a. Here, the paths are close physically, but the energy optimal

vehicle switches to a lower speed within the uniform steady front

and utilizes a higher speed outside, as shown in Fig. 8 b. The lower

speed in the highway is an intelligent utilization of the flow to op-

timize energy consumption. 

Crossing the uniform and steady front – upstream. In the second

mission (case 2 in Fig. 5 b and Table 4 ), the vehicle has to travel

against the flow. Fig. 9 shows its resulting energy-time distribu-

tion. First we find that, for the same flow strength as in the first

mission, the second mission requires longer travel times for con-

stant speed vehicles. Here, the vehicle has to travel against the

flow which delays it. Note that we again show in Fig. 9 the un-

pruned version of the DO level-set simulations, as in Fig. 7 . Next, to

illustrate the optimization results, we choose T = 110 and compare

the energy optimal path for that queried time to a constant speed

path with the same arrival time (again, any arrival time T could

have been chosen, our method computes energy-optimal paths for

each T , e.g., see Section 6.2 for examples). Fig. 10 a compares these

two paths on the physical domain overlaid by their instantaneous

speed. In contrast to case 1, we find here that paths are much

more different in the front proper. Nonetheless, the two vehicles

(constant speed and energy optimal at variable speeds) have the

same arrival time. The energy optimal vehicle utilizes 7% less en-

ergy than the constant speed one. When the flow is adverse to the

general direction of motion, the energy optimal vehicle employs a

higher speed in the front proper and lower speeds outside, so as

to reduce the overall energy consumption. 

Discussion. If the target is directly (geographically) up North of the

start point and both points are symmetric with respect to the uni-
Fig. 10. Crossing the front-upstream: as Fig. 8 a– b, but for the second mission against th

optimal vehicle, for the same arrival time T = 110 . Both are also time optimal paths for 

each of the two vehicles. 
orm and steady jet flow from West to East, the situation is in be-

ween the two scenarios described above. The energy-optimal path

not shown) is then a symmetric S shape: the vehicle travels north-

estward before reaching the flow, then is advected downstream

vershooting the target (to the East), and finally travels northwest-

ard again after exiting the flow to reach the target. In the ab-

ence of a flow, the fastest path is a straight line from start to tar-

et; it is the flow that makes the vehicle adjust its path to min-

mize time and energy. In general, seeking optimal paths is non-

rivial. 

.2. Energy-optimal path planning in a double-gyre barotropic 

uasi-geostrophic ocean circulation 

We now consider PDE simulations of the idealized near-surface

ind-driven barotropic quasi-geostrophic double-gyre ocean circu-

ation at mid-latitudes. The winds (e.g., mid-latitude easterlies and
e flow. (a) Physical paths followed by a constant speed vehicle and by the energy 

their respective speeds. (b) These instantaneous vehicle speed functions F ( t ; r ), for 
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Fig. 11. Snapshots of the dynamic double-gyre flow, for a 10 0 0 km × 10 0 0 km grid simulation of 24 days. Flow patterns are illustrated by their streamlines, overlaid on a 

color plot of the flow magnitude (in cm/s). The x –axis and y –axis have units of 10 0 0 km. For our energy-optimal mission, the circle is the start point and the star is the 

target. 
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rade winds in the northern hemisphere) drive a zonal jet eastward

e.g., the Gulf Stream or Kuroshio) with a cyclonic gyre to its north

nd an anticyclonic gyre to its south. Such a circulation is governed

y the following barotropic quasi-geostrophic model ( Dijkstra and

atsman, 1997; Pedlosky, 1998; Simmonet et al., 2009; Cushman-

oisin and Beckers, 2011 ), in the non-dimensional conservation of

omentum form, 

∂u 

∂t 
= −∂ p 

∂x 
+ 

1 

Re 
∇ 

2 u − ∂(u 

2 ) 

∂x 
− ∂(u v ) 

∂y 
+ f v + aτx , (31a) 

∂v 
∂t 

= −∂ p 

∂y 
+ 

1 

Re 
∇ 

2 v − ∂(v u ) 

∂x 
− ∂(v 2 ) 

∂y 
− f u + aτy , (31b) 

 = 

∂u 

∂x 
+ 

∂v 
∂y 

, (31c) 

here Re is the flow Reynolds number based on eddy-viscosity

aking values from 10 to 10 4 , f = 

˜ f + βy the non-dimensional Cori-

lis coefficient, and a = 10 3 the strength of the wind stress. In our

llustration, we employ Re = 10 0 0 (other results not shown). For

he Coriolis coefficient, we set the non-dimensional numbers as
˜ f = 0 , β = 10 3 . The flow in the basin is forced by an idealized
ig. 12. (a) Energy-time-vehicle-speed distribution for different realizations of vehicle s

evel–set simulation generates such a distribution in a single solve. Colored dots are const

ots are realizations that consume less (more) energy than constant speed realizations b

ine. Next, we perform the energy optimization among all realizations, for as many arriva

imes. Path 1 requires the most energy and least time to reach. Path 4 consumes the leas

ime than path 2. This is because path 3 has to follow a “loop” to catch the cyclonic gyre
teady zonal wind stress, τx = − 1 
2 π cos 2 πy and τy = 0 . The hori-

ontal length scale is L = 10 6 m, vertical depth scale D = 10 0 0 m,

elocity scale 1.98 cm/s, eddy viscosity 19.77 m 

2 /s, time scale T =
.6 yrs, and β0 = 1 . 977 e −19 ms. 

The above PDEs are solved by a Finite Volume framework

 Ueckermann and Lermusiaux, 2011 ). Free slip boundary condi-

ions are imposed on the northern and southern walls ( y = 0 , 1 )
nd no-slip boundary conditions on the eastern and western walls

( x = 0 , 1 ) . A 6 4 × 6 4 grid and a non-dimensional time step of

0 −5 are used to solve both the flow field PDEs (31) and stochastic

O level-set PDEs (21) –(23) using the DO–Taylor Gamma variant.

e use n r = 65 , 536 and n s,φ = n s,γ = 20 . The flow simulation is

rst run for a duration equal to the main time scale, i.e., 1.6 yrs.

he flow for the next 24 days is considered for our mission. The

ouble-gyre flow field for the mission’s duration is illustrated in

ig. 11 . 

rossing the zonal jet in the double-gyre ocean circulation. The mis-

ion starts from the south of the zonal jet in the anticyclonic re-

ion and ends at a point north of the zonal jet in the cyclonic
peeds, F ( t ; r ). Each dot represents a unique sample r of F ( t ; r ). The stochastic DO 

ant speed samples overlaid by their respective vehicle speeds. The dark (light) gray 

ut reach in the same time. The lowest energy envelope is shown by a thick black 

l times as needed. (b) Energy optimal trajectories that reach at four of such arrival 

t energy but takes maximum time. Path 3 consumes more energy and takes more 

 to reach the target. 
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region. The zonal jet velocity is strongest in the middle of the do-

main and weaker closer to the east and west boundaries, where it

either originates from the two gyres or feeds the two gyres. Intu-

itively, we can thus expect that some vehicles that ride the gyres

and cross the zonal jet in these regions of minimum resistance

may consume less energy than vehicles that cross the strongest

portion of zonal jet. Indeed this is what we observe. 

Specifically, the vehicle starts from the point (0.2,0.2) and the

target is the point (0.6,0.6). Stochastic vehicle speeds are sampled

from the switch sampling procedure (e.g., Fig. 4 ) and used as forc-

ing for the stochastic DO simulation. Fig. 12 a shows the resulting

distribution of energy and time to reach for each realization. Each

dot represents a particular sample simulated by the DO equations.

Special emphasis is placed on constant speed samples: they are

colored with their respective speeds and the goal is to compute

the paths that reduce their energy usage. For each discrete arrival

time, or a range of arrival times, the dot (i.e., the realization) min-

imizing energy usage can be obtained by searching for the minima

among all the dots (i.e., the realizations) that have the same arrival

time(s) but more efficient vehicle speed specifications. 

First, analyzing the energy-time curve for constant speed vehi-

cles, we notice that, initially, reducing the vehicle speed reduces

the energy consumption and increases travel time. However, af-

ter about 8 days, as the speed is reduced, the energy consump-

tion increases. We also find that the constant speed samples have

missing ranges of arrival times. These holes correspond to bifurca-

tion regions in the level-set dynamics (A.1) . By reducing its speed

any further, the vehicle has to take a longer path that consumes

more energy. After the local maxima in energy requirement, fur-

ther reduction in vehicle speeds results again in a more intuitive

decreased energy usage. Note that all vehicles arriving in this time

range travel a longer path. 

Second, analyzing the variable speed paths, they show similar

behavior but have a complete range of arrival times, i.e., there is

no hole in possible arrival times. Moreover, for arrival times shorter

than 6 days, a variable speed path does not reduce the energy us-

age of a constant speed vehicle. For travel times greater than 6

days, many variable speed paths consume less energy. The stochas-

tic DO optimization method then obtains the paths among these

that require minimum energy. 

Fig. 12 b we show the optimal trajectories that reach in 4 days

(marked as 1), 9 days (marked as 2), 17 days (marked as 3), and

24 days (marked as 4). Path 1 requires the most energy and least

time to complete the mission. Path 4 is the least energy consuming

but takes maximum time. Path 3 consumes more energy and takes

more time than path 2 due to the nature of the double–gyre flow

that forces path 3 to perform a loop and catch the cyclonic gyre

to arrive at the target. These paths save 20% to 30% energy com-

pared to the constant speed paths that arrive at the same time.

Path 4 saves 68% energy compared to path 1, but takes 6 times the

amount of time required to complete the mission. In ocean appli-

cations where endurance has to be increased and more area cov-

ered, path 4 or any other path corresponding to realizations on the

minimum envelope may be preferred. Of course, if the two gyres

were asymmetric in their strength of circulation as for the North

Atlantic gyre system (e.g., Gangopadhyay et al., 1997; Dijkstra and

Molemaker, 1999 ), for several start and end point configurations,

the energy optimal paths would prefer to ride the stronger gyre to

reduce energy utilization. 

Discussion. Inspired by the double-gyre results, a key question is

how can the energy-optimal paths be used in real applications.

One approach is to utilize them as open-loop forecasts: the energy-

optimal paths are then forecast for the set of vehicles available, us-

ing data-assimilative ocean forecasts as inputs, e.g., see ( Subramani

et al., 2016 ). Then, as the vehicles operate, if they re-surface or are
n communication range, the new data collected and new forecasts

an be combined, and the energy-optimal paths re-computed. A

econd approach is a data-only scheme, where the vehicle builds

he local flow fields based on its measurements only. Our opti-

ization can then be run based on this flow field representation,

ither onboard the vehicles or remotely if vehicles can communi-

ate every so often. Of course, today, the idea that only local ocean

ata or only analytical models are available to make an optimal

ecision is obsolete. Instead, all information is combined using un-

ertainty quantification and data assimilation. 

. Conclusions 

A stochastic dynamically orthogonal (DO) level-set optimiza-

ion methodology was formulated for energy-optimal path plan-

ing of vehicles navigating in dynamic flows. It computes

elative vehicle speeds and headings that minimize energy con-

umption, optimizing among all time-optimal paths for a range of

rrival times. A new premise was to consider vehicle-speeds and

eadings to be both time-dependent and stochastic. Stochastic DO

evel-set PDEs were then derived, introducing a DO decomposition

or the stochastic level-set fields. Three variants of the DO equa-

ions were developed, each of which handle the non-polynomial

onlinearity arising from the normal to the level-sets differently.

ntegrating the DO level-set PDEs provides the joint energy-time-

ehicle-speed distribution. For a queried time (or range of time)

o reach, an optimization is then performed on the marginal

nergy-vehicle-speed distribution so as to identify the minimum

nergy realization. The energy-optimal paths are finally computed

y solving a particle backtracking ODE. Numerical schemes and

lgorithms for the DO level-set PDEs were discussed and illus-

rated. The new PDEs and the overall optimization methodology

ere validated and their respective accuracy studied. To illustrate

he energy-optimal path planning and showcase its properties for

cean missions, examples were provided for steady fronts and dy-

amic quasi-geostrophic double-gyre flows. 

The DO level-set PDEs were found efficient at solving the gov-

rning stochastic equations by comparing their solutions with

hose of direct Monte Carlo simulations. First, the DO PDEs pro-

ided a major computational advantage over direct Monte Carlo,

n our examples, a 100-to-10,000 speed up. Second, they pro-

ided accurate solutions. In our examples, the Frechet distances

etween the level-set contours computed by the two methods

ere within the spatial resolution and the arrival time distribu-

ion had less than 2% error for 99.5% of the samples. To vali-

ate the optimization methodology and illustrate its accuracy, we

btained a semi-analytical solution for the crossing of a uniform

teady front, using a nonlinear double-optimization process. For

he more complex dynamic double-gyre circulation, we confirmed

hat constant speed vehicles cannot reach their target within spe-

ific times if their speed is too small with respect to ocean cur-

ents. However, we showed that variable-speed vehicles can reach

any more locations by saving energy in favorable currents and

xpending energy in unfavorable currents. We also found that the

nergy–optimal paths, which in our solution are also time–optimal,

an have complex optimum curves of minimum-energy versus

ptimal-arrival-time. For example, this minimum energy could in-

rease as the maximum vehicle speed decreased. This is because

s the speed decreases, the variability of ocean currents can lead

o significant lengthening of the optimal paths. 

In the future, our methodology can be applied to plan energy-

ptimal paths in data-assimilative forecasts of realistic ocean cur-

ents ( Haley and Lermusiaux, 2010; Subramani, 2014; Subramani

t al., 2016 ). Another research direction is to account for the un-

ertainty of ocean forecasts and thus predict energy-optimal paths

or stochastic flow fields ( Wei, 2015 ). Overall, such combination



D.N. Subramani, P.F.J. Lermusiaux / Ocean Modelling 100 (2016) 57–77 73 

o  

t  

l  

e

A

 

D  

f  

g  

N  

s  

m

A

p

 

t  

d  

S  

i  

f  

f  

w  

m  

(  

s  

o  

t  

i  

n  

b

T  

s  

s  

t  

t  

i  

T  

t  

v  

r  

s  

m

x

w  

t

 

o  

2  

o  

L  

t

A

 

t

B

 

P

(

T

 

p〈

T  

i〈
S  

n

w  

m

 

s  

(  

i

Y

C

I  

a

Y

C

S  

D

f ocean modeling with a PDE–based energy-minimization for au-

onomous vehicles holds much promise. This is especially true for

ong-duration ocean observing and monitoring, both of which are

ssential to understand and protect the ocean. 
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ppendix A. Level-set equations governing time–optimal path 

lanning 

In this appendix, we provide the deterministic level-set equa-

ions that govern the time-optimal reachability front as well as the

ifferential equation governing the time-optimal paths. Osher and

ethian (1988) introduced the use of level-set methods as a numer-

cal framework for front evolution and tracking. The level-set of a

unction f ( x ), x ∈ R 

n , is defined as the set of points at which the

unction takes a given constant value, i.e., it is the set { x | f (x ) = C}
here C is a given constant. For a general reference on level–set

ethods for interface tracking, we refer to Sethian (1999b ). In Lolla

2012) , Lolla et al. (2012) , Lolla et al. (2014b ), Lolla et al. (2014c ),

uch level-set ideas are utilized to evolve the reachability front

f autonomous vehicles navigating in any bounded flow field and

hereby obtain a new methodology for time-optimal path planning

n dynamic flows. Specifically, the time-optimal level-set evolves

ormal to itself at a nominal (engine) speed F and gets advected

y the underlying flow field v ( x , t ), overall as follows, 

∂φ

∂t 
+ F |∇φ| + v (x , t) · ∇φ = 0 . (A.1) 

he equation so developed is a Hamilton-Jacobi equation and the

calar level-set field, φ, is its viscosity solution, initialized with a

igned distance function from the starting point. The authors prove

hat the points inside the zero level–set contour, i.e., corresponding

o φ < 0, constitute the reachability set and that the zero level-set

s the reachability front for a vehicle of nominal vehicle-speed F .

his provides an elegant and efficient method to predict the loca-

ions reachable by a vehicle over time. The authors also show that

ehicles with a heading angle normal to the evolving level-set cor-

espond to time-optimal paths. The optimal path that reaches the

pecified end point ( x f ) is then governed by the following kine-

atic equation, 

d x 

∗

d t 
= −v ( x 

∗, t) − F 
∇φ( x 

∗, t) 
|∇φ( x 

∗, t) | , 0 ≤ t ≤ T ( x f ; F ) and 

 

∗(T ) = x f . (A.2) 

hich is integrated backward in time from the target, as for a par-

icle backtracking. 

This level-set methodology (A .1) –(A .2) was applied to time-

ptimal path planning in realistic ocean flow fields ( Lolla et al.,

014a ) and extended to coordinated path planning and dynamic

bstacles ( Lolla et al., 2015 ). Using non–smooth calculus, Lolla and

ermusiaux (2016) rigorously generalize the level–set equation for

he minimum–time control of anisotropic vehicles. 

ppendix B. Mathematical derivation of DO equations 

In this appendix, we derive the new DO level set equations ob-

ained in Section 3.2 . 
1. DO–MC Gamma derivation 

We first derive Eqs. (17) to (19) . Starting from the level set S-

DE given by (5) , substituting the DO expansions for F (14) and φ
15) , we obtain, 

∂ φ̄

∂t 
+ Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi 

d Y i 
d t 

= −( ̄F + z ̃  F ) γ − v · ∇( ̄φ + Y i ̃  φi ) . (B.1) 

he PDE for the mean is obtained from the expectation of (B.1) 

∂ φ̄

∂t 
= −( ̄F E [ γ ] + 

˜ F E [ zγ ]) − v · ∇ φ̄. (B.2) 

The S-ODEs for the coefficients are obtained by taking the inner

roduct of (B.1) with any of the modes, 

∂ φ̄

∂t 
, ˜ φn 

〉
+ Y i 

〈
∂ ˜ φi 

∂t 
, ˜ φn 

〉
+ 

〈
˜ φi , 

˜ φn 

〉d Y i 
d t 

= −
〈
F̄ γ − ˜ F zγ , ˜ φn 

〉
−

〈
v · ∇ φ̄ − Y i v · ∇ 

˜ φi , 
˜ φn 

〉
. (B.3) 

he first term on the LHS of (B.3) is then expanded by taking an

nner product of (B.2) with the modes, 

∂ φ̄

∂t 
, ˜ φn 

〉
= −

〈
( ̄F E [ γ ] + 

˜ F E [ zγ ]) + v · ∇ φ̄, ˜ φn 

〉
. (B.4) 

ubstituting (B.4) into (B.3) and applying the dynamically orthogo-

al condition (8) yields, 

(B.5) 

d Y i 
d t 

= −
〈
F̄ (γ − E [ γ ]) + 

˜ F (zγ − E [ zγ ]) + Y k v · ∇ 

˜ φk , 
˜ φi 

〉
, (B.6) 

here (B.6) is obtained from (B.5) because of the orthogonality of

odes. 

The PDEs for the DO modes are obtained by multiplying both

ides of (B.1) with any of the coefficients and taking expectation

in duality with the above multiplication by the modes and spatial

ntegration), 

 j 

∂ φ̄

∂t 
+ Y j Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi Y j 
dY i 
dt 

= −(Y j γ F̄ + zY j γ ˜ F ) − Y j v · ∇ φ̄ − Y j Y i v · ∇ 

˜ φi (B.7) 

 Y j Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi C Y j 
dY i 
dt 

= −F̄ E [ Y j γ ] − ˜ F E [ zY j γ ] − C Y j Y i v · ∇ 

˜ φi . (B.8) 

n (B.8) , C 
Y j 

dY i 
dt 

is obtained by multiplying (B.6) with the coefficients

nd taking an expectation, 

 j 

dY i 
dt 

= −〈 (Y j γ − Y j E[ γ ]) ̄F , ˜ φi 〉 
−〈 (zY j γ − Y j E[ zγ ]) ̃  F , ˜ φi 〉 − Y j Y k 〈 v · ∇ 

˜ φk , 
˜ φi 〉 (B.9) 

 

Y j 
dY i 
dt 

= −〈 E[ Y j γ ] ̄F , ˜ φi 〉 − 〈 E[ zY j γ ]) ̃  F , ˜ φi 〉 
−C Y j Y k 〈 v · ∇ 

˜ φk , 
˜ φi 〉 . (B.10) 

ubstituting (B.10) into (B.8) yields the final evolution PDEs for the

O modes, 

∂ ˜ φi 

∂t 
= −C −1 

Y i Y j 
E[ Y j γ ] ̄F − C −1 

Y i Y j 
E[ zY j γ ] ̃  F − v · ∇ 

˜ φi 

−〈 (−C −1 
Y i Y j 

E [ Y j γ ] ̄F − C −1 
YikY j 

E [ zY j γ ] ̃  F − v · ∇ 

˜ φi ) , ˜ φn 〉 ̃  φn . (B.11) 

http://dx.doi.org/10.13039/100000006
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B2. DO-KL Gamma and DO-Taylor Gamma Derivation 

We now show the key steps required to obtain Eqs. (21) to (23) .

Introducing the DO expansion for γ (20) in (B.1) , we obtain the S-

PDE, 

∂ φ̄

∂t 
+ Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi 

dY i 
dt 

= −( ̄F + z ̃  F )( ̄γ + αi ̃  γi ) − v · ∇( ̄φ + Y i ̃  φi ) 

= −( ̄F γ̄ + F̄ αi ̃  γi + z ̃  F γ̄ + zαi ̃  γi ̃
 F ) 

− v · ∇( ̄φ + Y i ̃  φi ) (B.12)

The corresponding PDE for the mean is obtained from the expec-

tation of (B.12) , 

∂ φ̄

∂t 
= −( ̄F γ̄ + 

˜ F E [ zαi ] ̃  γi ) − v · ∇ φ̄. (B.13)

To obtain the coefficients S-ODEs, we take the inner product of

(B.12) with any of the modes ˜ φn , 〈
∂ φ̄

∂t 
, ˜ φn 

〉
+ Y i 

〈
∂ ˜ φi 

∂t 
, t 

〉
+ 

〈
˜ φi , 

˜ φn 

〉d Y i 
d t 

= −
〈
F̄ γ̄ + F̄ αi ̃  γi + z ̃  F γ̄ + z ̃  F αi ̃  γi , 

˜ φn 

〉
−

〈
v · ∇ φ̄ + Y i v · ∇ 

˜ φi , 
˜ φn 

〉
. (B.14)

The first term of the LHS of (B.14) can be obtained by taking an

inner product of (B.13) with 

˜ φn , 〈
∂ φ̄

∂t 
, ˜ φn 

〉
= −

〈
F̄ γ̄ + 

˜ F E [ zαi ] ̃  γi + v · ∇ φ̄, ˜ φn 

〉
. (B.15)

Next, substituting (B.15) in (B.14) and using the dynamical orthog-

onality condition (8) yields, 

〈
˜ φi , 

˜ φn 

〉d Y i 
d t 

= −
〈
F̄ αi ̃  γi + 

˜ F z ̄γ + 

˜ F (zαi − E [ zαi ]) ̃  γi + Y i v · ∇ 

˜ φi , 
˜ φn 

〉
. 

(B.16)

Using the orthogonality of modes, we finally obtain the coefficients

S-ODEs, 

d Y i 
d t 

= −
〈
F̄ αk ̃  γk + 

˜ F z ̄γ + 

˜ F (zαk − E [ zαk ]) ̃  γk + Y k v · ∇ 

˜ φk , 
˜ φi 

〉
. (B.17)

For the PDEs for the modes, we multiply (B.12) with coefficients

Y j and take the expectation to get, 

 Y j Y i 

∂ ˜ φi 

∂t 
+ 

˜ φi C Y j 
dY i 
dt 

= −E [ Y j αi ] ̃  γi ̄F 

−C Y j z ̃
 F γ̄ − E [ Y j zαi ] ̃  γi ̃

 F − C Y j Y i v · ∇ 

˜ φi . (B.18)

In (B.18) , C 
Y j 

d Y i 
d t 

is obtained by multiplying (B.17) with Y j and taking

an expectation, 

 

Y j 
dY i 
dt 

= −
〈
F̄ E [ Y j αk ] ̃  γk + 

˜ F E [ Y j zαk ] ̃  γk + C Y j Y k v · ∇ 

˜ φk + C Y j z ̃
 F γ̄ , ˜ φi 

〉
. 

(B.19)

Substituting (B.19) in (B.18) and rearranging, we obtain the PDEs

for the modes, 

∂ ˜ φi 

∂t 
= −C −1 

Y i Y j 
(E [ Y j αk ] ̃  γk ̄F + C Y j z ̃

 F γ̄ + E [ Y j zαk ] ̃  γk ̃
 F ) − v · ∇ 

˜ φi 

−
〈 
−C −1 

Y i Y j 
(E [ Y j αk ] ̃  γk ̄F + C Y j z ̃

 F γ̄ + E [ Y j zαk ] ̃  γk ̃
 F ) − v · ∇ 

˜ φi , 
˜ φn 

〉 
˜ φn . 

(B.20)
2.1. DO-KL Gamma: KL decomposition of γ
Mean, modes and coefficients of γ are obtained from γ realiza-

ions computed from φ realizations. Defining the mean as 

¯ = E [ |∇( ̄φ + Y i ̃  φi ) | ] (B.21)

e obtain the ensemble spread matrix for γ (matrix of mean–
emoved γ r realizations), 

 ≡
[ |∇( ̄φ + Y 1 

i 
˜ φi ) | − γ̄ |∇( ̄φ + Y 2 

i 
˜ φi ) | − γ̄ · · · |∇( ̄φ + Y n r 

i 
˜ φi ) | − γ̄

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

] 

(B.22)

here the superscript on Y i refers to the realization number and n r 
s the total number of realizations. Taking the SVD of these zero–

ean realizations, we obtain, 

 = U S V 

T (B.23)

= V S T (B.24)

˜ = U (B.25)

2.2. DO-Taylor Gamma: Taylor series for γ
To obtain the first order Taylor approximation for the

on-polynomial non-linearity and corresponding results (see

ection 3.2.2 ), we consider γ as a function of realizations of spatial

erivatives, 

f (φx , φy ) = 

√ 

φ2 
x + φ2 

y . (B.26)

he corresponding first order Taylor approximation is then ob-

ained as, 

= f (φx , φy ) (B.27)

= f ( ̄φx + Y i ̃  φi x , φ̄x + Y i ̃  φi y ) (B.28)

= f ( ̄φx , φ̄y ) + Y i 

(
˜ φi x 

∂ f ( ̄φx , φ̄y ) 

∂ φ̄x 

+ 

˜ φi y 

∂ f ( ̄φx , φ̄y ) 

∂ φ̄y 

)
. (B.29)

his allows us to obtain the results presented in Section 3.2.2 ,

pecifically, 

¯ = f ( ̄φx , φ̄y ) 

= 

√ 

φ̄2 
x + φ̄2 

y (B.30)

i = Y i (B.31)

˜ i = 

˜ φi x 

∂ f ( ̄φx , φ̄y ) 

∂ φ̄x 

+ 

˜ φi y 

∂ f ( ̄φx , φ̄y ) 

∂ φ̄y 

= 

˜ φi x 

φ̄x √ 

φ̄2 
x + φ̄2 

y 

+ 

˜ φi y 

φ̄y √ 

φ̄2 
x + φ̄2 

y 

(B.32)

here the subscript x and y refer to derivatives with respect to x

nd y . 

ppendix C. Notation and abbreviations 

Here we provide all the notation and acronyms ( Table C.5 ) used

n the present paper. 
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Table C.5 

Notation and acronyms relevant to the stochastic DO level–set optimization. 

Scalar 

i ∈ N Stochastic subspace index 

F ∈ R Vehicle speed 

F̄ ∈ R Mean vehicle speed 
˜ F ∈ R DO mode of F 

n g ∈ N Total number of grid points (Dimension of state vector) 

n s , φ ∈ N Dimension of the stochastic subspace of level-set 

n s , γ ∈ N Dimension of the stochastic subspace of γ (defined below), the non-polynomial nonlinearity. 

n s , F ∈ N Dimension of the stochastic subspace (in time) of the time dependent vehicle speed 

Y i ∈ R Random variable describing the pdf of the orthonormal level-set( φ) modes ˜ φi 

αi ∈ R Random variable describing the pdf of the orthonormal γ -modes, ˜ γi 

z ∈ R Random variable describing the pdf of the vehicle speed F 

n r ∈ N Number of Monte Carlo realizations of the level–sets (and vehicle speeds). 

n p ∈ N Power function dependence of vehicle speed 

n sw,F ∈ N Number of switches made in the vehicle speed throughout the duration of the simulation for the switch-sampling algorithm 

l ∈ N Number of discrete levels into which the vehicle speed spread is divided for the switch–sampling algorithm 

r ∈ N Realization index 

T ∈ R + Optimal arrival time random variable 

Vector 

φ ∈ R n g Level-Set field 

φ̄ ∈ R n g Mean Level-Set field 
˜ φi ∈ R n g DO mode i of φ: Dynamically orthogonal basis for the stochastic subspace of φ

γ ∈ R n g | ∇φ| 

γ̄ ∈ R n g Mean γ

˜ γi ∈ R n g DO mode i of γ : Dynamically orthogonal basis for the stochastic subspace of γ

Acronyms 

DO Dynamically Orthogonal 

KL Karhunen-Loéve 

MC Monte Carlo 

ODE Ordinary Differential Equation 

PDE Partial Differential Equation 

PDF Probability Density Function 

S–PDE Stochastic Partial Differential Equation γ

SVD Singular Vector Decomposition 

R
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B  

B  

B  

B  

B  

 

 

B  

 

B  

C  

 

 

 

C  

C  

 

 

 

C  

C  

D  

D  

 

D  

 

D  

 

E  

 

E  

 

G  

 

G  

 

 

G  

 

G

G  

 

eferences 

ghababa, M.P. , 2012. 3d path planning for underwater vehicles using five evolu-

tionary optimization algorithms avoiding static and energetic obstacles. Appl.
Ocean Res. 38, 48–62 . 

lt, H., Godau, M., 1995. Computing the fréchet distance between two polyg-

onal curves. Int. J. Comput. Geomet. Appl. 5 (01n02), 75–91. doi: 10.1142/
S02181959950 0 0 064 . 

lvarez, A . , Caiti, A . , Onken, R. , 2004. Evolutionary path planning for autonomous
underwater vehicles in a variable ocean. IEEE J. Ocean Eng 29 (2), 418–

429 . 
thans, M. , Falb, P. , 2007. Optimal control: an introduction to the theory and its

applications. Dover Books on Engineering Series. Dover Publications, New York . 

achmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Under-
water gliders: recent developments and future applications. In: IEEE Interna-

tional Symposium on Underwater Technology, UT ’04. Taipei, Taiwan, pp. 195–
200. doi: 10.1109/UT.2004.1405540 . 

ahr, A. , Leonard, J.J. , Fallon, M.F. , 2009. Cooperative localization for autonomous
underwater vehicles. Int. J. Robot. Res. 28 (6), 714–728 . 

arraquand, J. , Langlois, B. , Latombe, J.C. , 1992. Numerical potential field techniques

for robot path planning. IEEE Trans. Syst., Man, Cybern. 22 (2), 224–241 . 
ellingham, J.G. , Rajan, K. , 2007. Robotics in remote and hostile environments. Sci-

ence 318 (5853), 1098–1102 . 
eylkin, D. , 2008. Path Optimization For An Earth-Based Demonstration Balloon

Flight. SURF Report. Caltech, Pasadena, CA . 
hatta, P. , Fiorelli, E. , Lekien, F. , Leonard, N.E. , Paley, D.A. , Zhang, F. , Bachmayer, R. ,

Davis, R.E. , Fratantoni, D.M. , Sepulchre, R. , 2005. Coordination of an underwater

glider fleet for adaptive sampling. In: Proceedings of International Workshop on
Underwater Robotics, pp. 61–69 . 

ruce, J., Veloso, M., 2002. Real-time randomized path planning for robot naviga-
tion. In: Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference

on, 3. Switzerland, pp. 2383–2388. doi: 10.1109/IRDS.2002.1041624 . 
ryson, A.E. , Ho, Y.C. , 1975. Applied Optimal Control: Optimization, Estimation and

Control. CRC Press, New York . 

arroll, K. , McClaran, S. , Nelson, E. , Barnett, D. , Friesen, D. , William, G. , 1992. AUV
path planning: An A ∗ approach to path planning with consideration of variable

vehicle speeds and multiple, overlapping, time-dependent exclusion zones. In:
Proceedings of the Symposium on Autonomous Underwater Vehicle Technology,

pp. 79–84 . 
hakrabarty, A. , Langelaan, J. , 2013. UAV flight path planning in time varying com-

plex wind-fields. In: American Control Conference. IEEE, pp. 2568–2574 . 
hien-Chou, S. , Yih, Y. , Mong-Fong, H. , Tien-Szu, P. , Jeng-Shyang, P. , 2014. A frame-

work to evolutionary path planning for autonomous underwater glider. In:

Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (Eds.), Modern Advances in Applied
Intelligence. In: Lecture Notes in Computer Science , 8482. Springer International

Publishing, pp. 1–11 . 
urtin, T.B. , Bellingham, J.G. , 2009. Progress toward autonomous ocean sampling

networks. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56 (3), 62–67 . 
ushman-Roisin, B. , Beckers, J. , 2011, 101. Introduction to Geophysical Fluid Dynam-

ics. Physical and Numerical aspects. Academic Press, Waltham, MA . 

anziger, Z., 2011. MATLAB code for calculating discrete frechet distance.
http://www.mathworks.com/matlabcentral/fileexchange/31922-discrete- 

frechet-distance , [Online; accessed 8-Aug-2014]. 
ebusschere, B.J. , Najm, H.N. , Pébay, P.P. , Knio, O.M. , Ghanem, R.G. , Maître, O.P.L. ,

2005. Numerical challenges in the use of polynomial chaos representations for
stochastic processes. SIAM J. Sci. Comput. 26 (2), 698–719 . 

ijkstra, H. , Katsman, C. , 1997. Temporal variability of the wind-driven quasi-

geostrophic double gyre ocean circulation: basic bifurcation diagrams. Geophys.
Astrophys. Fluid Dyn. 85, 195–232 . 

ijkstra, H.A. , Molemaker, M.J. , 1999. Imperfections of the north atlantic wind-
driven ocean circulation: continental geometry and windstress shape. J. Mar.

Res. 57 (1), 1–28 . 
lisseeff, P., Schmidt, H., Johnson, M., Herold, D., Chapman, N.R., McDonald, M.M.,

1999. Acoustic tomography of a coastal front in Haro Strait, British Columbia. J.

Acoust. Soc. Am. 106 (1), 169–184. doi: 10.1121/1.427046 . 
riksen, C.C. , Osse, T.J. , Light, R.D. , Wen, T. , Lehman, T.W. , Sabin, P.L. , Ballard, J.W. ,

Chiodi, A.M. , 2001. Seaglider: a long-range autonomous underwater vehicle for
oceanographic research. IEEE J. Ocean Eng. 26 (4), 424–436 . 

angopadhyay, A. , Robinson, A. , Arango, H. , 1997. Circulation and dynamics of the
western north atlantic. part I: multiscale feature models. J. Atmosp. Oceanic

Technol. 14 (6), 1314–1332 . 
arau, B. , Alvarez, A. , Oliver, G. , 2005. Path planning of autonomous underwater

vehicles in current fields with complex spatial variability: an A ∗ approach. In:

Proceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion. IEEE, pp. 194–198 . 

arau, B. , Bonet, M. , Alvarez, A. , Ruiz, S. , Pascual, A. , et al. , 2009. Path planning for
autonomous underwater vehicles in realistic oceanic current fields: Application

to gliders in the western mediterranean sea. J. Marit. Res. 6 (2), 5–22 . 
elb, A. , 1974. Applied Optimal Estimation. MIT press, Cambridge, MA . 

omes, C.P. , Sabharwal, A. , Selman, B. , 2006. Near-uniform sampling of combinato-

rial spaces using xor constraints. In: Advances In Neural Information Processing
Systems, pp. 4 81–4 88 . 

http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0001
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0001
http://dx.doi.org/10.1142/S0218195995000064
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0003
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0003
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0003
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0003
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0004
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0004
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0004
http://dx.doi.org/10.1109/UT.2004.1405540
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0006
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0006
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0006
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0006
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0007
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0007
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0007
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0007
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0008
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0008
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0008
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0009
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0009
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0010
http://dx.doi.org/10.1109/IRDS.2002.1041624
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0012
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0012
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0012
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0014
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0014
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0014
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0015
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0016
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0016
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0016
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0017
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0017
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0017
http://www.mathworks.com/matlabcentral/fileexchange/31922-discrete-frechet-distance
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0018
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0019
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0019
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0019
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0020
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0020
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0020
http://dx.doi.org/10.1121/1.427046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0022
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0023
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0023
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0023
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0023
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0024
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0024
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0024
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0024
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0025
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0026
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0026
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0027
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0027
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0027
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0027


76 D.N. Subramani, P.F.J. Lermusiaux / Ocean Modelling 100 (2016) 57–77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

M  

 

 

M  

 

M  

 

M  

O  

P

P  

R  

 

 

 

R  

 

R  

 

R  

S  

 

S  

 

S  

 

 

S  

 

 

 

S  

 

S

S  

 

S  

S  

S  

 

 

 

S

S  

 

S  

 

S  

 

 

S  

T  

 

Gugercin, S. , 2005. An iterative svd-krylov based method for model reduction of
large-scale dynamical systems. In: Proceedings of the 2005 European Control

Conference on 44th IEEE Conference on Decision and Control, 2005 CDC-ECC’05.
IEEE, pp. 5905–5910 . 

Gupta, A. , Lin, J. , Lermusiaux, P.F.J. , Haley Jr., P.J. , 2016. Bayesian Inference of Coupled
Ocean Biogeochemical-Physical Models. MSEAS Report. Department of Mechan-

ical Engineering, Massachusetts Institute of Technology. Cambridge, MA . 
Haley Jr., P.J., Lermusiaux, P.F.J., 2010. Multiscale two-way embedding schemes for

free-surface primitive equations in the “multidisciplinary simulation, estima-

tion and assimilation system”. Ocean Dyn. 60 (6), 1497–1537. doi: 10.1007/
s10236-010-0349-4 . 

Haley Jr., P.J. , Lermusiaux, P.F.J. , Robinson, A.R. , Leslie, W.G. , Logoutov, O. ,
Cossarini, G. , Liang, X.S. , Moreno, P. , Ramp, S.R. , Doyle, J.D. , Bellingham, J. ,

Chavez, F. , Johnston, S. , 2009. Forecasting and reanalysis in the Monterey
Bay/California Current region for the autonomous ocean sampling network-

II experiment. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56 (3–5), 127–

148 . 10.1016/j.dsr2.2008.08.010 
Hoare, C.A. , 1962. Quicksort. Comput. J. 5 (1), 10–16 . 

Hsieh, M.A. , Forgoston, E. , Mather, T.W. , Schwartz, I.B. , 2012. Robotic manifold track-
ing of coherent structures in flows. In: Proceedings of the IEEE International

Conference on Robotics and Automation. IEEE, pp. 4242–4247 . 
Hwang, Y.K. , Ahuja, N. , 1992. Gross motion planning – a survey. ACM Comput.

Surv.(CSUR) 24 (3), 219–291 . 

Inanc, T. , Shadden, S.C. , Marsden, J.E. , 2005. Optimal Trajectory Generation in Ocean
Flows. In: Proceedings of American Control Conference, 1, pp. 674–679 . 

Jaillet, L. , Cortés, J. , Siméon, T. , 2010. Sampling-based path planning on
configuration-space costmaps. IEEE Trans. Robot. 26 (4), 635–646 . 

Julier, S.J. , Uhlmann, J.K. , 1996. A general method for approximating nonlinear
transformations of probability distributions. Technical Report. Robotics Research

Group, Department of Engineering Science, University of Oxford . 

Karaman , Frazzoli , 2011. Sampling-based algorithms for optimal motion planning.
Int. J. Robot. Res. 30 (7), 846–894 . 

Kavraki, L.E. , Svestka, P. , Latombe, J.-C. , Overmars, M.H. , 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.

Autom. 12 (4), 566–580 . 
Kruger, D. , Stolkin, R. , Blum, A. , Briganti, J. , 2007. Optimal AUV path planning for ex-

tended missions in complex, fast-flowing estuarine environments. In: Proceed-

ings of the IEEE International Conference on Robotics and Automation, 2007,
pp. 4265–4270 . 

Kuffner, J.J. , LaValle, S.M. , 20 0 0. RRT-connect: an efficient approach to single-query
path planning. In: Proceedings of IEEE International Conference on Robotics and

Automation, pp. 995–1001 . 
Latombe, J.-C. , 1991. Robot Motion Planning. Kluwer Academic Publishers, New York .

LaValle, S.M. , 1998. Rapidly-Exploring Random Trees: A New Tool for Path Planning.

Technical Report. Iowa State University . 
LaValle, S.M. , 2006. Planning algorithms. Cambridge university press, Cambridge,

UK . 
LaValle, S.M. , Hutchinson, S.A. , 1998. Optimal motion planning for multiple robots

having independent goals. IEEE Trans. Robot. Autom. 14 (6), 912–925 . 
Lee, T. , Kim, H. , Chung, H. , Bang, Y. , Myung, H. , 2015. Energy efficient path planning

for a marine surface vehicle considering heading angle. Ocean Eng. 107, 118–
131 . 

Leonard, N.E. , Paley, D.A. , Davis, R.E. , Fratantoni, D.M. , Lekien, F. , Zhang, F. , 2010.

Coordinated control of an underwater glider fleet in an adaptive ocean sampling
field experiment in monterey bay. J. Field Robot. 27 (6), 718–740 . 

Lermusiaux, P.F.J. , 1999. Estimation and study of mesoscale variability in the Strait
of Sicily. Dyn. Atmosp. Oceans 29 (2), 255–303 . 

Lermusiaux, P.F.J. , Lolla, T. , Haley, P.J. , Yi ̆git, K. , Ueckermann, M.P. , Sondergaard, T. ,
Leslie, W.G. , 2015. Science of Autonomy: time-optimal path planning and adap-

tive sampling for swarms of ocean vehicles. In: Curtin, T. (Ed.), Springer Hand-

book of Ocean Engineering: Autonomous Ocean Vehicles, Subsystems and Con-
trol. Springer-Verlag . in press (Ch. 11). 

Lin, D. , Fisher, J. , 2012. Efficient sampling from combinatorial space via bridging. In:
International Conference on Artificial Intelligence and Statistics, pp. 694–702 . 

Lolla, T. , 2012. Path Planning in Time Dependent Flows using Level Set Methods.
Department of Mechanical Engineering, Massachusetts Institute of Technology

master’s thesis . 

Lolla, T. , Haley Jr., P.J. , Lermusiaux, P.F.J. , 2014a. Time-optimal path planning in dy-
namic flows using level set equations: realistic applications. Ocean Dyn. 64 (10),

1399–1417 . 
Lolla, T., Haley Jr., P.J., Lermusiaux, P.F.J., 2015. Path planning in multi-scale ocean

flows: Coordination and dynamic obstacles. Ocean Modell. 94, 46–66. doi: 10.
1016/j.ocemod.2015.07.013 . 

Lolla, T. , Lermusiaux, P.F.J. , 2016. A forward reachability equation for minimum-time

path planning in strong dynamic flows. SIAM J. Control Optim. . Sub–judice 
Lolla, T. , Lermusiaux, P.F.J. , Ueckermann, M.P. , Haley Jr., P.J. , 2014b. Modified level

set approaches for the planning of time-optimal paths for swarms of ocean ve-
hicles. MSEAS Report. Department of Mechanical Engineering, Massachusetts In-

stitute of Technology. Cambridge, MA . 
Lolla, T. , Lermusiaux, P.F.J. , Ueckermann, M.P. , Haley Jr., P.J. , 2014c. Time-optimal

path planning in dynamic flows using level set equations: theory and schemes.

Ocean Dyn. 64 (10), 1373–1397 . 
Lolla, T. , Ueckermann, M.P. , Yigit, K. , Haley, P.J. , Lermusiaux, P.F.J. , 2012. Path plan-

ning in time dependent flow fields using level set methods. In: Proceedings of
the IEEE International Conference on Robotics and Automation, pp. 166–173 . 
u, P. , Lermusiaux, P.F.J. , 2016. Model learning in biogeochemical systems. Physica
D . Preprint 

acKay, D.J. , 2003. Information theory, inference and learning algorithms. Cam-
bridge University Press, Cambridge, UK . 

McLain, T.W. , Beard, R.W. , 1998. Successive galerkin approximations to the non-
linear optimal control of an underwater robotic vehicle. In: Proceedings of

IEEE International Conference on Robotics and Automation, 1. IEEE, pp. 762–
767 . 

elchior, N.A., Simmons, R., 2007. Particle RRT for path planning with uncertainty.

In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, 2007, pp. 1617–1624. doi: 10.1109/ROBOT.2007.363555 . 

ichini, M., Hsieh, M.A., Forgoston, E., Schwartz, I.B., 2014. Robotic tracking of co-
herent structures in flows. IEEE Trans. Robot. 30 (3), 593–603. doi: 10.1109/TRO.

2013.2295655 . 
urphy, K.P. , 2012. Machine Learning: A Probabilistic Perspective. MIT press, Cam-

bridge, MA . 

sher, S. , Sethian, J.A. , 1988. Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1), 12–

49 . 
edlosky, J. , 1998. Ocean Circulation Theory. Springer-Verlag, Berlin . 

etres, C. , Pailhas, Y. , Patron, P. , Petillot, Y. , Evans, J. , Lane, D. , 2007. Path planning
for autonomous underwater vehicles. IEEE Trans. Robot. 23 (2), 331–341 . 

amp, S.R. , Davis, R.E. , Leonard, N.E. , Shulman, I. , Chao, Y. , Robinson, A.R. ,

Marsden, J. , Lermusiaux, P.F.J. , Fratantoni, D.M. , Paduan, J.D. , Chavez, F.P. ,
Bahr, F.L. , Liang, S. , Leslie, W. , Li, Z. , 2009. Preparing to predict: the sec-

ond autonomous ocean sampling network (AOSN-II) experiment in the Mon-
terey Bay. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56 (3–5), 68–

86 . 10.1016/j.dsr2.2008.08.013 
ao, D. , Williams, S.B. , 2009. Large-scale path planning for underwater gliders in

ocean currents. In: Proceedings of Australasian Conference on Robotics and Au-

tomation, pp. 28–35 . 
hoads, B. , Mezi ́c, I. , Poje, A. , 2010. Minimum time feedback control of autonomous

underwater vehicles. In: IEEE Conference on Decision and Control (CDC), 2010
49th. IEEE, pp. 5828–5834 . 

udnick, D.L. , Davis, R.E. , Eriksen, C.C. , Fratantoni, D.M. , Perry, M.J. , 2004. Underwa-
ter gliders for ocean research. Mar. Technol. Soc. J. 38 (2), 73–84 . 

apsis, T.P. , Lermusiaux, P.F.J. , 2009. Dynamically orthogonal field equations for con-

tinuous stochastic dynamical systems. Phys. D: Nonlinear Phenom. 238 (23–24),
2347–2360 . 10.1016/j.physd.2009.09.017 

apsis, T.P., Lermusiaux, P.F.J., 2012. Dynamical criteria for the evolution of the
stochastic dimensionality in flows with uncertainty. Phys. D: Nonlinear Phenom.

241 (1), 60–76. doi: 10.1016/j.physd.2011.10.001 . 
chmidt, H. , Bellingham, J.G. , Johnson, M. , Herold, D. , Farmer, D. , Pawlowicz, R. ,

1996. Real-time frontal mapping with AUVs in a coastal environment. In:

Conference Proceedings of the Prospects for the 21st Century OCEANS ’96.
MTS/IEEE, 3, pp. 1094–1098 . 

chofield, O., Glenn, S., Orcutt, J., Arrott, M., Meisinger, M., Gangopadhyay, A.,
Brown, W., Signell, R., Moline, M., Chao, Y., Chien, S., Thompson, D., Bal-

asuriya, A., Lermusiaux, P.F.J., Oliver, M., 2010. Automated sensor networks
to advance ocean science. Eos Trans. AGU 91 (39), 345–346. doi: 10.1029/

2010EO390 0 01 . 
chofield, O. , Kohut, J. , Aragon, D. , Creed, L. , Graver, J. , Haldeman, C. , Kerfoot, J. ,

Roarty, H. , Jones, C. , Webb, D. , et al. , 2007. Slocum gliders: robust and ready.

J. Field Robot. 24 (6), 473–485 . 
ethian, J.A. , 1999a. Fast marching methods. SIAM Rev. 41 (2), 199–235 . 

ethian, J.A. , 1999b. Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry, Fluid Mechanics, Computer Vision, and Ma-

terials Science. Cambridge University Press: Cambridge, U.K. . 
herman, J. , Davis, R. , Owens, W. , Valdes, J. , 2001. The autonomous underwater

glider “spray”. IEEE J. Ocean Eng. 26 (4), 437–446 . 

heu, P.C.-Y. , Xue, Q. , 1993. Intelligent Robotic Planning Systems. World Scientific
Publishing, Singapore . 

immonet, E. , Dijkstra, H. , Ghil, M. , 2009. Bifurcation analysis of ocean, atmosphere,
and climate models. in ‘computational methods for the atmosphere and the

oceans’. Handbook of Numerical Analysis. Elsevier, p. 187-229 . 
Soulignac, M. , Taillibert, P. , Rueher, M. , 2009. Time-minimal path planning in dy-

namic current fields. In: Robotics and Automation, 2009. ICRA ’09. IEEE Interna-

tional Conference on, pp. 2473–2479 . 
tommel, H. , 1989. The slocum mission. Oceanography 2 (1), 22–25 . 

ubramani, D.N. , 2014. Energy Optimal Path Planning Using Stochastic Dynamically
Orthogonal Level Set Equations. School of Engineering, Massachusetts Institute

of Technology Master’s thesis . 
ubramani, D.N. , Haley Jr., P.J. , Lermusiaux, P.F.J. , 2016. Energy-optimal path plan-

ning in the coastal ocean: Integrating re-analyses with stochastic dynamically

orthogonal level-set optimization. J. Geophys. Res. Oceans. Submitted . 
ubramani, D.N., Lolla, T., Haley Jr., P.J., Lermusiaux, P.F.J., 2015. A stochas-

tic optimization method for energy-based path planning. In: Ravela, S.,
Sandu, A. (Eds.), DyDESS 2014. In: LNCS , 8964. Springer, pp. 1–12. doi: 10.1007/

978- 3- 319- 25138- 731 . 
un, W. , Tsiotras, P. , 2015. Pursuit evasion game of two players under an exter-

nal flow field. In: American Control Conference (ACC), 2015. IEEE, pp. 5617–

5622 . 
an, C.S. , Sutton, R. , Chudley, J. , 2004. An incremental stochastic motion planning

technique for autonomous underwater vehicles. In: Proceedings of IFAC Control
Applications in Marine Systems Conference, pp. 4 83–4 88 . 

http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0028
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0028
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0029
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0029
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0029
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0029
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0029
http://dx.doi.org/10.1007/s10236-010-0349-4
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0031
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0032
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0032
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0033
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0033
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0033
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0033
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0033
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0034
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0034
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0034
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0035
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0035
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0035
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0035
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0036
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0036
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0036
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0036
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0037
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0037
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0037
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0038
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0038
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0038
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0039
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0039
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0039
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0039
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0039
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0040
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0040
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0040
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0040
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0040
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0041
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0041
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0041
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0042
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0042
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0043
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0043
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0044
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0044
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0045
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0045
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0045
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0046
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0047
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0048
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0048
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0049
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0050
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0050
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0050
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0051
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0051
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0052
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0052
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0052
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0052
http://dx.doi.org/10.1016/j.ocemod.2015.07.013
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0054
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0054
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0054
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0055
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0055
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0055
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0055
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0055
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0056
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0056
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0056
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0056
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0056
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0057
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0058
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0058
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0058
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0059
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0059
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0060
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0060
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0060
http://dx.doi.org/10.1109/ROBOT.2007.363555
http://dx.doi.org/10.1109/TRO.2013.2295655
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0063
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0063
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0064
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0064
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0064
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0065
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0065
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0066
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0067
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0068
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0068
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0068
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0069
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0069
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0069
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0069
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0070
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0071
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0071
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0071
http://dx.doi.org/10.1016/j.physd.2011.10.001
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0073
http://dx.doi.org/10.1029/2010EO390001
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0075
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0076
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0076
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0077
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0077
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0078
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0078
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0078
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0078
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0078
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0079
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0079
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0079
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0080
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0080
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0080
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0080
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0081
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0081
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0081
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0081
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0082
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0082
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0083
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0083
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0084
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0084
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0084
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0084
http://dx.doi.org/10.1007/978-3-319-25138-731
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0086
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0086
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0086
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0087
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0087
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0087
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0087


D.N. Subramani, P.F.J. Lermusiaux / Ocean Modelling 100 (2016) 57–77 77 

T  

 

 

T  

 

 

U  

 

U  

 

W  

 

W  

W  

 

W  

 

Y  

 

Z  

 

 

hompson, D.R. , Chien, S.A. , Chao, Y. , Li, P. , Arrott, M. , Meisinger, M. , Balasuriya, A.P. ,
Petillo, S. , Schofield, O. , 2009. Glider Mission Planning in a Dynamic Ocean Sen-

sorweb. SPARK Workshop on Scheduling and Planning Applications. Interna-
tional Conference on Automated Planning and Scheduling . 

hompson, D.R. , Chien, S.A. , Chao, Y. , Li, P. , Cahill, B. , Levin, J. , Schofield, O. ,
Balasuriya, A.P. , Petillo, S. , Arrott, M. , Meisinger, M. , 2010. Spatiotemporal path

planning in strong, dynamic, uncertain currents. In: Proceedings of IEEE Inter-
national Conference on Robotics and Automation, pp. 4778–4783 . 

eckermann, M.P. , Lermusiaux, P.F.J. , 2011. 2.29 Finite Volume MATLAB Framework

Documentation. Technical Report. Massachusetts Institute of Technology, Cam-
bridge, MA USA . 

eckermann, M.P., Lermusiaux, P.F.J., Sapsis, T.P., 2013. Numerical schemes for dy-
namically orthogonal equations of stochastic fluid and ocean flows. J. Comput.

Phys. 233, 272–294. doi: 10.1016/j.jcp.2012.08.041 . 
arren, C.W. , 1990. A technique for autonomous underwater vehicle route plan-

ning. In: Proceedings of the Symposium on Autonomous Underwater Vehicle

Technology, pp. 201–205 . 
ebb, D.C. , Simonetti, P.J. , Jones, C.P. , 2001. Slocum: an underwater glider propelled
by environmental energy. IEEE J. Ocean Eng. 26 (4), 447–452 . 

ei, Q. , 2015. Time-Optimal Planning in Uncertain Flow Fields Using Stochastic Dy-
namically Orthogonal Level Set Equations. BS Thesis. Department of Mechanical

Engineering, Massachusetts Institute of Technology . 
itt, J. , Dunbabin, M. , 2008. Go with the flow: optimal auv path planning in coastal

environments. In: Kim, J., Mahony, R. (Eds.), Proceedings of Australasian Confer-
ence on Robotics and Automation, pp. 86–94 . 

ang, K., Gan, S., Sukkarieh, S., 2010. An efficient path planning and control algo-

rithm for ruavs in unknown and cluttered environments. J. Intell. Robot. Syst.
57, 101–122. doi: 10.10 07/s10846-0 09-9359-1 . 

hang, W. , Inanc, T. , Ober-Blobaum, S. , Marsden, J.E. , 2008. Optimal trajectory gen-
eration for a glider in time-varying 2D ocean flows B-spline model. In: Pro-

ceedings of the IEEE International Conference on Robotics and Automation,
pp. 1083–1088 . 

http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0088
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0089
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0090
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0090
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0090
http://dx.doi.org/10.1016/j.jcp.2012.08.041
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0092
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0092
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0093
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0093
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0093
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0093
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0094
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0094
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0095
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0095
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0095
http://dx.doi.org/10.1007/s10846-009-9359-1
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0097
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0097
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0097
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0097
http://refhub.elsevier.com/S1463-5003(16)00016-0/sbref0097

	Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
	1 Introduction
	2 Problem statement
	3 Methodology
	3.1 Stochastic level-set optimization approach
	3.2 Stochastic DO level-set equations
	3.2.1 DO-MC Gamma
	3.2.2 DO-KL Gamma and DO-Taylor Gamma
	3.2.3 Boundary and initial conditions

	3.3 Optimization

	4 Algorithms and numerics
	5 Validation
	5.1 Stochastic level-set PDE solution validation
	5.2 Methodology validation

	6 Applications
	6.1 Energy-optimal path planning in a uniform steady front
	6.2 Energy-optimal path planning in a double-gyre barotropic quasi-geostrophic ocean circulation

	7 Conclusions
	 Acknowledgments
	Appendix A Level-set equations governing time-optimal path planning
	Appendix B Mathematical derivation of DO equations
	B1 DO-MC Gamma derivation
	B2 DO-KL Gamma and DO-Taylor Gamma Derivation
	B2.1 DO-KL Gamma: KL decomposition of 
	B2.2 DO-Taylor Gamma: Taylor series for 


	Appendix C Notation and abbreviations
	 References


