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A fundamental requirement in realistic ocean simulations and dynamical studies is the optimal estima-
tion of gridded fields from the spatially irregular and multivariate data sets that are collected by varied
platforms. In this work, we derive and utilize new schemes for the mapping and dynamical inference of
ocean fields in complex multiply-connected domains and study the computational properties of these
schemes. Specifically, we extend a Bayesian-based multiscale Objective Analysis (OA) approach to com-
plex coastal regions and archipelagos. Such OAs commonly require an estimate of the distances between
data and model points, without going across complex landforms. New OA schemes that estimate the
length of shortest sea paths using the Level Set Method (LSM) and Fast Marching Method (FMM) are thus
derived, implemented and utilized in idealized and realistic ocean cases. An FMM-based methodology for
the estimation of total velocity under geostrophic balance in complex domains is also presented. Compar-
isons with other OA approaches are provided, including those using stochastically forced partial differen-
tial equations (SPDEs). We find that the FMM-based OA scheme is the most efficient and accurate. The
FMM-based field maps do not require postprocessing (smoothing). Mathematical and computational
properties of our new OA schemes are studied in detail, using fundamental theorems and illustrations.
We find that higher-order FMM’s schemes improve accuracy and that a multi-order scheme is efficient.
We also provide solutions that ensure the use of positive-definite covariances, even in complex multiply-
connected domains.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Statistical field estimation theory was introduced by Gandin
(1965) to meteorology and was extended to oceanography by
Bretherton et al. (1976) where it is commonly referred to as Objec-
tive Analysis (OA). The theory, based on the Gauss-Markov theo-
rem (Plackett, 1950), provides a sound basis for interpolating
irregularly spaced data onto a computational grid. Up to specifics
of multiscale oceanic and atmospheric fields, classic OA schemes
are equivalent to utilize the update step of the Kalman Filter to grid
the irregularly-spaced data. Specifically, the data is gridded based
on specified prior field estimates and error covariances. The meth-
odology has been well formulated for open oceans without any
landforms (convex simply-connected domains), but OA in complex
coastal regions (multiply-connected domains) is one of the ‘last’
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mapping problems which remains to be studied in detail. This is
one of the main research questions of the present work.

Our research uses the Multidisciplinary Simulation, Estimation
and Assimilation System (Haley and Lermusiaux, 2010; MSEAS,
2010). MSEAS consists of a set of mathematical models and compu-
tational methods for ocean predictions and dynamical diagnostics,
for data assimilation and data-model comparisons, and for optimi-
zation and control of autonomous ocean observation systems. It is
used for fundamental research and for realistic simulations and
predictions, recently including monitoring (Lermusiaux, 2007),
real-time acoustic-ocean predictions (Xu et al., 2008; Lermusiaux
et al., 2010) and environmental management (Cossarini et al.,
2009). Several dynamical models are part of MSEAS, including a
free-surface primitive-equation dynamical model which uses im-
plicit two-way nesting (Haley and Lermusiaux, 2010). This new
multiscale free-surface code builds on the primitive-equation
model of the Harvard Ocean Prediction System (HOPS, Haley
et al. (2009)). Additionally, barotropic tides are calculated from
an inverse tidal model (Logoutov and Lermusiaux, 2008; Logoutov,
2008).

In the multiscale OA schemes of MSEAS, the Kalman updates are
carried out successively, from the largest scale to the smallest
scale, using sequential processing of observations and scale
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separation. In a two-scale version, a two-staged OA approach
(Lermusiaux, 1997, 1999) maps the data onto oceanic fields in
two steps: the larger and the smaller scale steps. The main inputs
to one of these steps are the statistical description of the field being
estimated and the observational noise covariance. While the latter
is dependent on the measurement sensor, knowledge of the field
statistics does not come easily in oceanography due to the scarcity
of observations. The field statistics is often provided by analytical
correlation functions which depend on the spatial separation dis-
tance and the spatial–temporal scales (Carter and Robinson,
1987). Other MSEAS schemes also utilize 4D dynamical models
to construct covariances (Lermusiaux et al., 2000; Lermusiaux,
2002). These dynamical models have been successfully simplified
to diffusion models (Lynch and McGillicuddy, 2001) and this ap-
proach is also used here for benchmarking.

Our work is motivated by the Philippines Straits Dynamics
Experiment (PhilEx, Gordon et al. (2011)). The goal of PhilEx is to
enhance understanding of the oceanographic processes and fea-
tures arising in and around straits, and to improve the capability
to predict the inherent spatial and temporal variability of complex
Archipelago regions using models and advanced data assimilation
techniques. In addition to the Philippines, we have used our new
schemes in several coastal regions with and without islands,
including the Taiwan region, New England shelf, Dabob Bay and
Monterey Bay (Xu et al., 2008; Lermusiaux et al., 2010; Haley
and Lermusiaux, 2010). Other OA schemes have been used in
coastal regions (Hessler, 1984; Stacey et al., 1988; Paris et al.,
2002), but without satisfying coastline constraints, in particular,
there should be no direct relationship across landforms. In ocean
regions with complex 3D geometries, we found that such schemes
generate field estimates that lead to major issues when used to ini-
tialize simulations. Efficient and accurate methodologies for field
(e.g. temperature, salinity, biology, and velocity) mapping in com-
plex multiply-connected coastal domains and archipelagos were
thus necessary.

Our schemes estimate the sea paths between data and model
points using the Level Set Method (LSM) (Osher and Sethian,
1988; Sethian, 1999b) and the Fast Marching Method (FMM)
(Sethian, 1996; Sethian, 1999b), which are techniques to evolve
boundaries using appropriate partial differential equations (PDEs).
The FMM-based OA methods are shown to be cheaper and more
robust than others, in particular than those based on solving diffu-
sion-based PDEs. We find that higher-order discretizations of the
level-set PDEs increase the accuracy of distance estimates; sec-
ond-order schemes being sufficient for most applications. We
show that the covariance matrices are not necessarily positive def-
inite because the Weiner Khinchin and Bochner theorems for posi-
tive definiteness (e.g. Papoulis, 1991), are only valid for convex
simply-connected domains. Several approaches to overcome this
issue are presented and evaluated. The solutions we propose in-
clude introducing a small process noise or, better, reducing the
covariance matrix based on the dominant singular value
decomposition.

Our new methods are expected to have many applications, in
particular to improve the World Ocean Atlas (WOA) climatologies
in complex multiply-connected domains. The WOA provides global
ocean climatology containing monthly, seasonal and annual means
of temperature (T) and salinity (S) fields at standard ocean depths.
The temperature and salinity climatologies of the WOA (Levitus,
1982), which is also termed as ‘Levitus Climatology’; and its up-
dates in 1994 (Levitus and Boyer, 1994; Levitus et al., 1994),
1998 (Antonov et al., 1998a,b,c; Boyer et al., 1998a,b,c), 2001
(Stephens et al., 2002; Boyer et al., 2002) and 2005 (Locarnini
et al., 2006; Antonov et al., 2006; Garcia et al., 2006a,b), have pro-
ven to be valuable tools for studying the hydrographic structures of
the World’s oceans. The WOA climatologies have been particularly
useful for providing initial and boundary conditions to ocean circu-
lation models. The OA procedure for the ‘Levitus Climatology’
requires the use of an analytical correlation function to determine
the covariance (or weight function, as described by Levitus (1982)).
If the ‘‘straight Euclidean distance’’ (the straight line distance be-
tween two points) is used in such analytical correlation functions,
the distance estimate is inappropriate for complex multiply-
connected domains, as it goes across land and so violates all
coastline/bottom constraints. In particular, unconnected water
masses are then erroneously blended across landforms, leading
to artificial water masses, spurious currents and other fictitious
features. The aim of our new methodologies is to satisfy all geo-
metric constraints arising in complex multiply-connected domains
and so rectify these issues.

The paper is organized as follows. The problems addressed are
described in Section 2. In Section 3, we review the two staged
multi-scale statistical field mapping approach from MSEAS. In
Section 4, we introduce the new OA methodologies based on the
Level Set and Fast Marching Methods. An approach for computing
the transport streamfunction and total velocity under geostrophic
balance by optimizing the unknown inter-island transports is also
discussed. The OA approach based on the stochastically forced par-
tial differential equations (SPDE) is introduced in Section 5. In Sec-
tion 6, applications of our new methodologies, for the complex
regions of Dabob Bay and Philippines Archipelago are presented.
In Section 7, we study the computational properties of our new
mapping schemes. Section 8 consists of a summary and conclu-
sions. The scheme to compute the ‘Levitus Climatology’ maps is
summarized in Appendix A, the FMM algorithm in Appendix B
and the algorithm for optimizing unknown inter-island transports
in Appendix C.
2. Problem statement

A domain is said to be convex if, for every pair of points within
the domain, every point on the straight line segment that joins
them is also within the domain. A domain is simply-connected if
any closed curve within it can be continuously shrunk to a point
without leaving the domain. A domain which is not simply-con-
nected is multiply-connected.

A main research question is field mapping via OAs in complex
multiply-connected coastal domains. OA schemes require a
description of field statistics which is often provided by analyti-
cal correlation functions (Carter and Robinson, 1987; Lam et al.,
2009). Such analytical functions are dependent on the spatial
separation distance. Using ‘‘straight Euclidean’’ distances in com-
plex multiply-connected domains is not appropriate since there
is no direct relationship across landforms. An appropriate mea-
sure of distance should be longer. The most straightforward is
the length of the shortest sea path, i.e. the shortest path without
going across complex landforms. Examples of such paths that we
computed for the Monterey Bay, Massachusetts Bay, Dabob Bay
and Philippines Archipelago are illustrated in Fig. 1. Our new
methodology efficiently measures these distances. It also allows
for altering distances to account for dynamical or other effects.
For example, we can estimate 3D shortest sea paths and weight
vertical distances more than horizontal ones, hence accounting
for effects of reduced correlations across depths. In general,
any coordinate system can be used, e.g. Cartesian, terrain-follow-
ing or density-based. If, instead of depth, density surfaces are
used, diapycnal distances can be weighted more than isopycnal
ones. All of these generalizations of the shortest sea path, as well
as correlation functions that are constrained by dynamical or
feature-based considerations, can be easily accommodated in
our OA methodology.



Fig. 1. Examples of optimal shortest sea paths overlaid on shortest distance (km) fields, both computed using the Level Set Method in: (a) Monterey Bay, (b) Massachusetts
Bay, (c) Dabob Bay, (d) Philippines Archipelago. Also shown are domains overlaid on bathymetry (m) with locations of islands, straits and seas in (e) Dabob Bay and (f)
Philippines Archipelago (abbreviations: B, Balabac Strait; M, Mindoro Strait; Su, Surigao Strait).
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The shortest sea paths, or the above generalizations of such
paths, in complex multiply-connected regions, can be efficiently
obtained using the following techniques: the Level Set Method
and the Fast Marching Method. These methods model the propaga-
tion of evolving boundaries using appropriate PDE’s. Here, we illus-
trate their applications for realistic OAs in the Philippines
Archipelago and Dabob Bay (WA, USA) regions. Other optimization
methods for path planning, e.g. Dijkstra’s algorithm (Bertsimas and
Tsitsiklis, 1997) and Bresenham-based line algorithm (Bresenham,
1965), can also be used for mapping in complex domains, but we
find and show that the FMM and LSM schemes are computationally
more efficient and accurate. We also compare our results to the OA
approach based on solving stochastically forced PDEs (Balgovind
et al., 1983; Lynch and McGillicuddy, 2001).

The FMM and LSM can also be utilized for estimating the min-
imum vertical area along any path between two islands. This esti-
mation is very efficient, for all island pairs in complex domains
with many islands. Such areas are needed to estimate total veloc-
ities and transports under a geostrophic constraint (Wunsch,
1996). Specifically, these vertical areas are used here in the



Table 1
Comparison between the Kalman filter and the MSEAS OA update equations (for a univariate variable and one scale).

KF update equations MSEAS OA update equations

Kalman gain: Kt ¼ Ptjt�1HT
t � ½HtPtjt�1HT

t þ Rt ��1 OA gain: K = Cor(x,X) � [Cor(X,X) + R]�1

State estimate update: x̂t ¼ x̂tjt�1 þ Ktðyt �Htx̂tjt�1Þ State estimate update: wOA ¼ �wþ K½d� �d�

Error covariance update: Pt = (I � KtHt) Ptjt � 1 Error covariance update: POA = Cor(x,x) � KOA � Cor(X,x)
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inversion for the transport streamfunction along the island coast-
lines. The resulting temperature, salinity and velocity field estimates
can then be used as first-guess in 3D mapping of primitive-equation
fields and error covariances (Lermusiaux, 2002).

Mathematical and computational properties of the new map-
ping schemes are also investigated in detail. To reduce the compu-
tational cost and to understand the impact of individual data,
sequential processing of observations (Parrish and Cohn, 1985;
Cho et al., 1996) is utilized. By definition, the prior covariance ma-
trix should be positive definite. According to the Wiener-Khinchin
and Bochner theorem (Papoulis, 1991; Yaglom, 2004; Dolloff et al.,
2006), a covariance matrix based on an analytical correlation func-
tion will be positive definite if the Fourier transform (or the spec-
tral density of the correlation function) is non-negative for all
frequencies. These theorems are valid only for convex simply-
connected domains. In our complex multiply-connected domains,
the covariance matrix may become negative due to: (a) numerical
errors in the computation of the shortest sea path’s length using
FMM/LSM OA schemes, or, (b) the presence of landforms. These
issues may lead to divergence problems (Brown and Hwang,
1997) in the field mapping. Therefore, the following two questions
were investigated and resolved: (a) What are the computational
errors in the sea path lengths computed using the FMM/LSM and
how can they be reduced?, and (b) What are the computational
issues, including non-positive definite covariances, that arise in
mapping data in a multiply-connected coastal domain and how can
they be remedied? Answering these questions was indispensable
for the development of FMM/LSM OA schemes for complex
multiply-connected domains.
3. MSEAS objective analysis approach

Bayesian-based OA schemes are well established for mapping
heterogeneous, multivariate, irregular data (Gandin, 1965; Breth-
erton et al., 1976; Carter and Robinson, 1987; Daley, 1993) in open
oceans, without islands or archipelagos. Most OA schemes utilize
the Gauss-Markov or minimum error variance criterion (Plackett,
1950) to map observations to the numerical grid and they require
the computation of Euclidean distances between all data and mod-
el points. Within MSEAS, our multi-scale OA scheme consists of the
successive utilization of Kalman update steps, one for each scale
and for each correlation across scales (Lermusiaux et al., 2000).
In particular, our two-scale OA version is summarized in Lermusi-
aux (1997, 1999).

Considering one scale or one interaction between two scales, let
us denote the vector of numerical grid point locations as x and the
vector of measurement locations as X, then the OA estimate of the
field for that scale or interaction (wOA) based on the latest back-
ground field ð�w; �dÞ is given by:

wOA ¼ �wþ Corðx;XÞ CorðX;XÞ þ R½ ��1 d� �d
� �

¼ �wþ KOA d� �d
� �

; ð1Þ

where Cor(x,X) is the correlation matrix between grid and data
points (for multivariate OAs or 3D OAs, it is a normalized covariance
matrix, see Lermusiaux (2002)), �d ¼ H�w;H is the observation ma-
trix, d is the sensor data vector, R is the error covariance matrix
for the sensor data d (for the scale considered) at data points, and
the gain KOA is given by:

KOA ¼ Corðx;XÞ CorðX;XÞ þ R½ ��1
: ð2Þ

The error covariance of the estimated field (for one scale) is then gi-
ven by (where E[] denotes the expectation operator):

POA ¼ E x� E½x�ð Þ x� E½x�ð ÞT
h i

¼ Cor x;xð Þ � KOACor X;xð Þ: ð3Þ

A comparison between our above update equations for the OA for
one scale and the Kalman filter (KF) update equations (using under-
score t to indicate time t is made in Table 1).

Thus, if covariances in time are not considered, the update
equations of the OA of one scale are equivalent to the update equa-
tions of the discrete Kalman filter algorithm. The background error
correlation matrix for the field-to-data points, Cor(x,X), and the
background correlation matrix at the data points, Cor(X,X), are di-
rectly related to the KF a priori error covariance matrix Ptjt � 1 i.e.
Corðx;XÞ ¼ Ptjt�1HT

t and CorðX;XÞ ¼ HtPtjt�1HT
t (Ht is the observa-

tion matrix). In 2D horizontal OAs for a single variable, the matrix
R is often chosen diagonal with a uniform non-dimensional obser-
vational error variance r2

d , i.e. R ¼ r2
dI. In MSEAS, the correlation

matrices for a given scale are usually generated from the isotropic
function:

CorðrÞ ¼ 1� r2

L2
0

 !
exp �0:5� r2

L2
e

þ Dt2

s2

 !" #
: ð4Þ

Here, Dt is the difference between the observation and estimation
times, and s is the decorrelation time scale. This time effect extends
the Kalman update step at a single time to a smoothing OA step
using data from different but synoptic times. The parameters L0

and Le are the zero-crossing and the e-folding length scales. The sca-
lar r is the spatial separation distance.

The MSEAS OAs are often carried out in two stages (Lermusiaux,
1999). In the first stage, the largest dynamical scales (denoted LS)
are mapped onto the computational grid using the parameters
(s,L0,Le)LS. The background field for this stage is often chosen to
be equal to the horizontal mean of all the observations. In the sec-
ond stage, the smaller scales are mapped using the coefficients
(s,L0,Le)ME often corresponding to the most energetic (meso)
scales. The background field for this stage is the first stage OA. A
major assumption in this scheme is that the errors in the largest
and the most energetic stages are statistically independent. A 3D
and dynamics-based extension of this scheme, including multi-
scale interactions, is presented in Lermusiaux (2002); this 3D mul-
tiscale approach also benefits from our new efficient estimation of
shortest sea paths. Of course, the accuracy of the field estimates
also depends on the spatial and time scale parameters used in
the analytical correlation function, as well as on the correlation
function itself. The 2D horizontal version of the MSEAS OA has
many similarities with the approach used for ‘Levitus Climatology’
maps which is described in Appendix A.

The ‘Levitus Climatology’ and MSEAS OA mapping schemes
compute the covariance or weight factors by providing Euclidean
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distances as inputs to correlation functions. If they are not em-
ployed in open ocean conditions, actual sea distances between data
and model points without going across complex landforms or
through bathymetry are needed. The LSM or FMM presented next
in Section 4 are used to obtain such shortest sea distances in com-
plex (e.g. multi-island) multiply-connected coastal regions.
4. Methodologies for estimating the length of shortest sea paths
in complex coastal regions and archipelagos

The shortest sea paths between data and model-grid points in
complex multiply-connected coastal regions are efficiently com-
puted using the LSM and FMM. These paths are then input to our
MSEAS software for multiscale OAs. The LSM and FMM methods
are both more accurate and computationally cheaper than the con-
ventional Bresenham-based line algorithm (Bresenham, 1965) and
Dijkstra’s algorithm (Bertsimas and Tsitsiklis, 1997). Comparisons
to these other algorithms are discussed in (Agarwal, 2009); key re-
sults are summarized in Section 7.1.

4.1. Objective analysis using the level set Method (LSM)

A level set of a real-valued function / of n variables is a set of
the form:

ðx1; . . . ; xnÞj/ðx1; . . . ; xnÞ ¼ cf g; ð5Þ

where c is a constant and xi are the n variables. That is, a level set is
the set of points where the function / takes on a given constant va-
lue c.

Osher and Sethian (1988) proposed a numerical technique,
called the Level Set Method, to implicitly represent and model
the propagation of evolving level set interfaces under the influence
of a given velocity field using appropriate PDEs. An initial value for-
mulation describing the interface motion is now discussed. The ini-
tial position of interfaces are given by level sets of the function /.
The evolution of this function / is linked to the propagation of the
interface through a time-dependent level set equation. Interfaces
can be represented explicitly (parameterized interfaces, i.e. inter-
faces given by x = x(s), where s is the parameter) or implicitly
(e.g. interfaces given by the zero level set i.e. /(x) = 0). Using the
implicit representation /(x), where x is the position vector, a con-
vection equation can be solved to propagate level sets advected by
a velocity field v:

/t þ v � r/ ¼ 0: ð6Þ

In many cases, one is interested only in the motion normal to the
boundary. Therefore, the velocity v can be represented using the
scalar speed function F and the normal direction n. Thus:

v ¼ Fn ¼ F
r/
jr/j : ð7Þ

The hyperbolic, non-linear (Hamilton–Jacobi equation) level set
equation, obtained from Eqs. (6) and (7), is given by

/t þ F r/j j ¼ 0: ð8Þ

Integrating the level set equation is an initial value problem which
tracks the evolution of the level sets / = constant assuming F is gi-
ven by the specifics of the evolution of the / for a particular prob-
lem. The following first order upwinded finite difference
approximation can be used to integrate this Eq. (8) (two-dimen-
sional in space) (Osher and Sethian, 1988; Sethian, 1999b):

/nþ1
i;j ¼ /n

i;j � Dt maxðF;0Þrþi;j þ minðF;0Þr�i;j
h i

;

where,
rþi;j ¼ max D�x/n
i;j;0

� �2
þmin Dþx/n

i;j;0
� �2

�

þmax D�y/n
i;j;0

� �2
þmin Dþy/n

i;j;0
� �2

�1=2

;

r�i;j ¼ min D�x/n
i;j;0

� �2
þmax Dþx/n

i;j;0
� �2

�

þmin D�y/n
i;j;0

� �2
þmax Dþy/n

i;j;0
� �2

�1=2

:

ð9Þ

Here, D�x is the first order backward difference operator in the x-
direction; D+x is the first order forward difference operator in the
x-direction, etc. Mathematically, these operators are given by:

D�x/i;j ¼
/i;j � /i�1;j

Dx
; Dþx/i;j ¼

/iþ1;j � /i;j

Dx
: ð10Þ

The above numerical technique of the Level Set Method can be
used to solve the Eikonal equation. If the scalar speed function of
the front F is non-negative, then the steady state boundary value
problem, known as the Eikonal equation, can be formulated to
evaluate the arrival time function T (x). The Eikonal equation rep-
resenting the time T (x) for the ‘‘frontal interface’’ to reach the po-
sition x from its initial position is given by

FjrTj ¼ 1: ð11Þ

The Eikonal equation simply states that the gradient of the arrival
time function is inversely proportional to the local speed of the
front. To solve the Eikonal equation, a time dependent problem is
proposed. The time evolved steady state solution of the resultant
Hamilton–Jacobi equation is the Eikonal equation. Mathematically,
this is written as:

Tt þ FjrTj ¼ 1 !steady
FjrTj ¼ 1: ð12Þ

This Hamilton–Jacobi equation (Eq. (12) (left)) can be discretized
using the numerical scheme for the Level Set equation. The steady
state solution of this Hamilton–Jacobi equation will be the solution
of the Eikonal equation (Eq. (12) (right)).

The Level Set Method has been used in a wide variety of appli-
cations; including arrival time problems in control theory, genera-
tion of minimal surfaces, flame propagation, fluid interfaces, shape
reconstruction, etc. In the oceanic context, the method can be used
to determine shortest sea path lengths as follows. The scalar speed
function F is set to 0 for the grid points on land and 1 for the grid
points on water. The level set T(x), which is the arrival time func-
tion, then also represents the shortest sea distance from the start-
ing position to the position vector x. This is because the level set T,
which is the arrival time, when multiplied by the local speed of the
front (equal to 1 in this case) gives the level set T itself for the
shortest sea path length estimate. Once these sea distances
between all data points and model points are available, the prior
correlation functions can be evaluated and the correlation matrices
filled in Eq. (1). An OA can then be computed.

Operation count for the LSM: The computation of shortest sea
paths via the LSM requires evolving all the level sets in Eq. (8)
and not simply the zero level set corresponding to the front itself.
The LSM thus has an operation count of O(N3) in two dimensions
for N2 grid points (Sethian, 1999b). It is computationally expensive
since an extra dimension is added.

A modified method named ‘Fast Marching’ significantly reduces
the operation count. Roughly speaking, the two possible ways to
obtain steady-state are either iteration towards the solution, or di-
rect construction of the stationary solution T. While the LSM con-
structs the solution to the Eikonal equation (Eq. (11)) by iterating
towards it, the FMM directly constructs it.
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4.2. Objective analysis using the Fast Marching Method (FMM)

The Fast Marching Method (FMM) for monotonically advancing
fronts has been proposed by Sethian (1996, 1999b). This method
leads to a very fast scheme for solving the Eikonal equation (Eq.
(11)). The LSM relies on computing the evolution of all the level
sets by solving an initial value PDE using numerical techniques
from hyperbolic conservation laws. This is because the LSM itera-
tively solves the level set equation to compute the steady state
solution of Eq. (12). As an alternative, an efficient modification is
to perform the work only in the neighborhood of the zero level
set, as this is known as the ‘narrow band approach’. The basic idea
is to tag the grid points as either ‘‘alive’’, ‘‘land mines’’ or ‘‘far
away’’ depending on whether they are inside the band, near its
boundary, or outside the band, respectively. The work is performed
only on ‘‘alive’’ points, and the band is reconstructed once the
‘‘land mine’’ points are reached.

The FMM solves boundary value problems without iterations.
The method is applicable to monotonically advancing fronts, i.e.
the front speed F P 0 or F 6 0 in the level set equation (Eq. (12)).
The steady state form of the level set equation is the Eikonal equa-
tion (11). For the two dimensional case, the stationary boundary
value problem is given by:

jrTjFðx; yÞ ¼ 1 s:t: C ¼ fðx; yÞjTðx; yÞ ¼ 0g; ð13Þ

where C is the starting position of the interface. The first order fi-
nite difference discretization form of the Eikonal equation (Sethian,
1999b) at the grid point (i, j) is given by:

max D�x
ij T;0

� �2
þmin Dþx

ij T; 0
� �2

þmax D�y
ij T; 0

� �2
�

þmin Dþy
ij T;0

� �2
�1=2

¼ 1
Fij
;

or,

max max D�x
ij T;0

� �
;�min Dþx

ij T;0
� �� �2

þmax max D�y
ij T;0

� �
;

��

�min Dþy
ij T;0

� ��2
�
¼ 1

F2
ij

: ð14Þ

Eq. (14) is essentially a quadratic equation for the value at each grid
point (assuming that values at the neighboring nodes are known).
An iterative algorithm for computing the solution to Eq. (14) was
introduced by Ruoy and Tourin (1992). FMM is based on the obser-
vation that the upwind difference structure of Eq. (14) means that
the information propagates ‘‘one way’’, i.e. from the smaller values
of T to the larger values. Therefore, FMM rests on solving Eq. (14) by
building the solution outward from the smallest time value T. The
front is swept ahead in an upwind manner by considering a set of
points in a narrow band around the existing front and bringing
new points into the narrow band structure. The fast marching algo-
rithm is discussed in detail in Appendix B (see also Agarwal, 2009).

The use of higher-order FMMs (or LSMs) to reduce errors in the
estimation of shortest sea path lengths is discussed in Section 7.2.
They are computationally more expensive but can be necessary for
robust and accurate OAs because in complex multiply-connected
domains, we found that covariance matrices were sensitive to
the accuracy of these lengths. These findings are discussed later
in Sections 7.2 and 7.3.

Operation count for the FMM: Once again, for estimating the
optimal distance, the scalar speed function F is set to 0 for the grid
points on land and 1 for the grid points on water. However, the
FMM has a significantly lower operation count of O(N2 Log N) for
N2 grid points (Sethian, 1999b). It is computationally much cheap-
er than the LSM explained above.
The Fast Marching Method, as discussed above, is an efficient
way to compute the sea distance between any two locations. These
sea distances can then be used for setting up the covariance matrix
using any distance-dependent analytical correlation function (e.g.
Eq. (4)). Note that the cost of the OAs proper are the same for both
the LSM and FMM.

4.3. Total velocity under geostrophic balance: estimating the minimum
vertical area in complex coastal regions and archipelagos

Classically, the synoptic ocean data that are most abundant are
hydrographic (temperature and salinity) measurements. If these
data are first gridded by OAs, they can be used to estimate a veloc-
ity field under the constraint of geostrophic shear (Wunsch, 1996)
or other momentum balance assumptions, including full momen-
tum conservation of the primitive-equations (Lermusiaux et al.,
2000; Lermusiaux, 2002). If geostrophic shear is used as the con-
straint, to compute transport estimates from the hydrographic
OAs, a reference velocity is required. In complex domains, an esti-
mate of the area of the sea cross-sections between any two land-
forms (e.g. islands) is also often necessary to set the inter-islands
transports. The FMM can be directly used to compute the mini-
mum of these cross-sectional areas.

In our case, we utilize an optimization scheme to estimate these
inter-island transports; see (MSEAS, 2010) and the summary in
Appendix C. Its objective is to find a set of values for the transport
streamfunction (W) along the island coastlines that produce a suit-
ably smooth (initial) velocity field, e.g. without unrealistic veloci-
ties. If prior estimates of specific transports between islands are
known, they are utilized with their uncertainties as inputs to the
optimization scheme. If such prior estimates are not available, they
are set using a minimum energy principle: a norm of the total
velocity between the corresponding islands is minimized under
the constraint of geostrophic velocity shear balancing the hydro-
graphic OA maps. To do so, the weight functions require an esti-
mate of the cross-sectional area between islands. This is not easy
to compute exactly without a FMM/LSM approach.

With the FMM/LSM schemes, the minimum vertical area can be
obtained if we solve the Eikonal equation (Eq. (11)) setting the sca-
lar speed function to be F(x,y) = 1/H(x,y). The Eikonal equation thus
simplifies to jrTj = H, which shows that the solution T(x,y) of this
Eikonal equation will be the minimum vertical area. This new ap-
proach is used in Section 6 to obtain velocity estimates from our
hydrographic FMM-based OA maps.
5. Objective analysis using stochastically forced partial
differential equations (SPDE’s)

Another OA approach that accounts for landforms uses SPDE’s.
The central idea is to represent the underlying field variability as
an outcome of a stochastic process using a SPDE where the sto-
chasticity represents the uncertainty in this differential equation.
The SPDE is defined only over the sea domain so as to account
for geometric constraints. The covariance matrix for the field is
then constructed numerically, by solving a set of SPDEs over the
sea domain. For example, the stochastically forced Helmholtz
equations in 1-D and 2-D in space for the field w in an unbounded
domain (Balgovind et al., 1983) are associated with the following
covariance functions, respectively:

o2w
ox2 � k2w ¼ �ðxÞ () CwwðrÞ ¼ ð1þ krÞeð�krÞ;

r2w� k2w ¼ �ðx; yÞ () CwwðrÞ ¼ krK1ðkrÞ

’ p
2

kr
� �1=2

1þ 3
8kr

� 	
e�kr ; kr !1

ð15Þ



Fig. 2. Temperature (T,�C) (a) and Salinity (S, PSU) (b) data in Dabob Bay. OA fields for T (left) and S (right) from the optimal path length computed using: (c and d)
Bresenham-based line algorithm; (e and f) Fast Marching Method, clearly showing the issues of the Bresenham-based line algorithm.
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where K1 is the Bessel function of the second kind. The process
noise � is a random disturbance with mean 0, standard deviation
1 and no spatial correlation. Also, the length scale corresponds to
the inverse of the SPDE parameter (k). Denman and Freeland
(1985) and Weaver and Courtier (2001) have proposed other func-
tions which can also be linked to appropriate SPDE’s.

A major advantage is that the field-to-field covariance Cor(x,x)
can be computed numerically from the discretized SPDE along with
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appropriate boundary conditions (i.e. no flux across islands) to di-
rectly account for the coastline constraints (Lynch and McGillicud-
dy, 2001). The discretization of SPDEs (such as Eq. (15)) or any
other differential operator defined on the sea domain usually
amounts to solving a matrix equation of the form:

½A�fwg ¼ feg; ð16Þ

where {e} is the spatial discretization of the process noise �. All the
coastline constraints are then incorporated automatically in this
matrix form (16). Since [Cee] = [I], the covariance matrices for
field-to-field points and field-to-data points are directly obtained
from Eq. (16):

Cor x;xð Þ ¼ ½A��1½Cee�½A��T ¼ ½A�T ½A�
� ��1

;

Cor x;Xð Þ ¼ ½A��1½Cee�½A��T ½H�T ¼ ½A�T ½A�
� ��1

½H�T :
ð17Þ

The covariance matrix (17) obtained using the SPDE approach can
be used along with Gauss-Markov Estimation theory (see Table 1)
to perform OAs in coastal regions. A limitation of this approach is
that the resulting fields can be affected by the discretization error
associated with the discretized form of the SPDE. In fact, we found
that we often need to postprocess (smooth out) the SPDE-gridded
fields to remove spurious field gradients. Such gradients, even when
small, can lead to spurious velocities by aggregate integration in the
Fig. 3. (a) World Ocean Atlas 2005 Climatology in situ temperature (�C) at 0 m. Tempe
account, (c) Fast Marching Method, (d) SPDE approach (representing the field by a stoch
vertical for the estimation of total velocity under geostrophic bal-
ance. It has also been verified that that the SPDE approach is com-
putationally expensive when compared to our new FMM-based
methodology.

A variant of the above methodology represents the covariance
function (Cww), instead of the field (w), by a SPDE, e.g. a stochastic
Helmholtz equation (Logutov, personal communication). The
advantage is that the covariances required are then computed di-
rectly, without the need of Eq. (17), which is much cheaper. How-
ever, the noise in the resulting OA fields are then found to be even
larger (Agarwal, 2009). A heuristic reason is that this simpler rep-
resentation corresponds to carrying out a ‘‘smoothing’’ step using
the Helmholtz equation only once as compared to twice in the ori-
ginal representation (Eq. (17)). Both of these methods, the SPDE
specified for the field (w) and the SPDE specified for the covariance
(Cww) were implemented. They are utilized for comparisons with
our LSM-based and FMM-based schemes.

Even though many different SPDE’s could be utilized for map-
ping a field, in our examples, we selected the stochastically forced
Helmholtz equation for three reasons. First, the dynamics of the
atmosphere can be approximately governed on the time scale of
a few days by a Helmholtz-like equation, which is the equation
for the conservation of potential vorticity under the assumptions
of a quasi-geostrophic, frictionless, shallow water model without
topography (Balgovind et al., 1983; Pedlosky, 1987). Second, a
rature (�C) OA Fields obtained using: (b) standard OA without taking islands into
astically forced Helmholtz equation).



(b)(a)

(d)(c)

Fig. 4. As Fig. 3, but at 200.0 m.
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Helmholtz equation can be obtained from the diffusion or wave
equations and background correlations are seldom modeled as
Gaussian, by solving a pseudo-diffusion equation (Derber and
Bouttier, 1999). In these linear PDE’s, if the solution is assumed
separable in time and space, one obtains for the time variation
an ordinary differential equation of the first order. For the spatial
variations, one always obtains a Helmholtz equation (Selvadurai,
2000), which is the equation that would be used for spatial map-
ping. Thirdly, the Helmholtz equation is equivalent to a steady dif-
fusion–reaction equation.

Operation count for the SPDE-based OAs: The cost of the SPDE
computations of covariances with one data point is at least in
N2n but most likely in N3 where n is the number of time-steps to
reach steady state.

Meaningful comparisons among the different methods require
comparable covariance parameters. Specifically, for our SPDE-
based OA examples using Eq. (15), the SPDE parameter (k) is
chosen such that the correlation function corresponding to the
stochastically forced Helmholtz equation best fits the analytical
correlation function used by our standard OA scheme and by our
new LSM or FMM-based schemes, see Section 4 and Agarwal
(2009). The results can then be compared to each other. This is
done next in Section 6.2.
6. Applications illustrating the novel OA methodologies

Methodologies derived in Section 4 are now utilized to map
temperature, salinity and biological (chlorophyll) fields using a
2-staged mapping scheme in both Dabob Bay and Philippines
Archipelago (locations of islands, straits and seas are on Fig. 1).
Specifically, Section 6.1 evaluates our schemes in Dabob Bay and
shows that they are more effective than other classic distance
optimizing algorithms, such as the Bresenham-based line algorithm
(Bresenham, 1965). Section 6.2 compares methods of Sections 4
and 5 in the Philippines Archipelago region. The estimation of total
velocity under geostrophic balance by minimizing unknown inter-
island transports is also illustrated.

Of course, before evaluations with full data sets, we completed
computational tests, both in idealized and realistic domains. These
tests used either analytical (artificial) data or sub-sampled ocean
data. Their aim was to ensure that our codes and algorithms were
correct but also effective, giving the expected answer. One type of
test was to compare innovation vectors due to one data point (for
unit data, this is a row of the covariance matrix if the data point is lo-
cated at a grid point). Some of these scalar data tests were also com-
pleted to study the positive definiteness of covariance matrices (see
Section 7). We also compared innovation vectors based on a few data
points. Finally, we completed cross-validations (e.g. Brankart and
Brasseur, 1996): to do so, we sub-sample the available data to com-
pute a field map with each method and then employ the unused part
of the data to compare these field maps. These studies were done
with the FMM/LSM, classic and SPDE OAs. We found that our new
schemes were more accurate than regular OAs and less noisy than
SPDE OAs. Most of these results are not shown, in part because the
further away from data locations, the more estimates depend on
the accuracy of the covariance functions or SPDEs employed. To
mostly evaluate the OA algorithms and the inputs themselves to
these functions or SPDEs, we focus next on the regions where there
are data and we limit our examples to real data since analytical data
led to the same conclusions.
6.1. Objective analysis in Dabob Bay

Dabob Bay data are used to illustrate the effectiveness of the
FMM-based scheme over other distance optimizing algorithms
such as the Bresenham-based line algorithm (Bresenham, 1965).
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Fig. 2 shows maps of temperature and salinity fields for the spa-
tially irregular data in the region, using the Bresenham-based line
algorithm and the Fast Marching Method. The limitation of the for-
mer is that the resulting optimal distance is discontinuous. This
leads to discontinuities in the covariance and also in the resultant
field maps (Agarwal, 2009).

The temperature and salinity field maps (Fig. 2) were obtained
using two-scale OAs: one with larger length scales (L0 = 60,
Le = 30)LS and one with smaller length scales (L0 = 30,Le = 15)ME;
in both cases using a non-dimensional observational error variance
r2

d ¼ 0:25

 �

. These parameter values were estimated based on
data, see Agarwal (2009). Temperature and salinity data have higher
values in the western arm (Fig. 2(a) and (b)). The eastern arm
(Fig. 2(a) and (b)) has relatively low temperature and salinity.
Effects due to the discontinuity in distance obtained from
Bresenham-based line algorithm are clearly evident in Fig. 2(c)
and (d). Numerical fronts with high temperature and salinity
gradients exist at the intersection of the two arms. Such fronts lead
to numerical problems in dynamical simulations. The geostrophic
velocity obtained using these field maps is unrealistic and has high
magnitudes along these fronts. A possible remedy, which reduces
the discontinuity effects, is to smooth the distance by averaging
distances of neighboring points (Haley, personal communication).
We found that this averaging technique becomes numerically
very expensive. In addition, the intensity of erroneous fronts are
(a) (

((c)

Fig. 5. As Fig. 3, bu
reduced when this averaged Bresenham-based line algorithm is
used, but they still exist. Finally, when our new FMM-based
scheme is used to compute distances and to compute the OAs,
results are clearly devoid of any numerical fronts (Fig. 2(e) and (f)).
The FMM-based scheme accurately satisfies the coastline con-
straints and is computationally inexpensive when compared to
the Bresenham-based line algorithms.

6.2. Objective analysis in the Philippines Archipelago

A motivation of this study was the Philippines Straits Dynamics
Experiment (PhilEx, Lermusiaux et al. (2011)). In such a complex
coastal region, our new schemes were needed to map the very
irregular datasets available and initialize simulations. Without
them, major problems occurred: neither dynamical studies nor
ocean forecasts could be initiated from standard OA schemes. To
illustrate this, different OA schemes are compared next, specifi-
cally: our new OA methods based on the FMM, a standard OA
scheme which ignores islands and uses the direct Euclidean dis-
tance, and a stochastically forced PDE scheme (SPDE specified for
the field).

The World Ocean Atlas–2005 data for temperature and salinity
are used. WOA05 data are data mapped using the ‘Levitus Clima-
tology’ scheme (see Appendix A) and are regularly spaced. These
data are used here to illustrate and discuss the comparison of dif-
b)

d)

t at 1000.0 m.
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Fig. 6. (a) World Ocean Atlas 2005 Climatology in situ Salinity (PSU) at 0 m. Salinity (PSU) OA Fields obtained using: (b) standard OA without taking islands into account, (c)
Fast Marching Method, (d) SPDE approach (representing the field by a stochastically forced Helmholtz equation).
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ferent methodologies with a classical data set. Subsequently, syn-
optic in situ data sets are used for temperature, salinity and biolog-
ical (chlorophyll) data.

6.2.1. Objective analysis using WOA05 data: methods comparison
Hydrographic field maps: We compare two-dimensional horizon-

tal OA field maps of the WOA05 data (Figs. 3–8(a)) computed using
schemes presented in Sections 4 and 5. Figs. 3–5 show the temper-
ature field maps at the depth of 0 m, 200 and 1000 m, respectively.
Figs. 6–8 show the salinity field maps at the depth of 0, 200 and
1000 m, respectively. For the two-scale OA schemes, the correla-
tion function used for each scale is given in Eq. (4). The parameters
are: large length scales (L0 = 540,Le = 180)LS, most energetic length
scales (L0 = 180,Le = 60)ME and observational error variance
r2

d ¼ 0:25. These parameter values were estimated based on data,
see Agarwal (2009). For the SPDE approach, the SPDE parameter
k is set to 1/200 (this is a best fit to the correlation function used
by the other schemes) and the observational error to r2

d ¼ 0:25.
The OA field maps from all methods (Figs. 3 and 4) indicate that

the Philippines Sea and the region near Palawan island is warmer
than the rest of the region near the surface (0, 200 m). The region
south of the Sulu Sea around the Sulu Archipelago has relatively
lower temperature. At levels below 500 m (see Fig. 5), there is a
significant difference in the temperature of the Sulu Sea (warm)
when compared to the rest of the region (cold) (Gamo et al.,
2007; Gordon, 2009). These temperature fields show that direct
correlation across landforms are likely weak. Similar observations
can be made for salinity. Salinity in the Sulu Sea and South China
Sea (Figs. 6 and 7) is lower than the salinity in the rest of the region
near the surface (0, 200 m). At levels below 500 m, the salinity in
the Sulu Sea (Fig. 8) is significantly lower than in the rest of the re-
gion. These salinity fields further support the hypothesis that di-
rect correlation across landforms are weak.

The field maps obtained using the LSM and FMM are identical,
but the FMM has a significantly lower computational cost. While
the LSM constructs the distance estimate by iterating towards it,
the FMM is based on the direct construction of the stationary solu-
tion (see Section 4). The OA fields obtained using LSM and FMM are
very close because the FMM exactly constructs the solution of the
discretized Eikonal equation whereas the LSM computes the solu-
tion within a desired tolerance limit. Thus, an OA based on FMM
should clearly be preferred, as it is more accurate and less expen-
sive. On the other hand, the SPDE approach leads to OAs that are
much more noisy than those obtained using the FMM. Since the
SPDE scheme is also more expensive, the FMM scheme is superior.

The comparison of the different methods for the temperature
and salinity maps at 1000 m is shown in Figs. 5 and 8, respectively.
The methods based on FMM (Figs. 3–8(c)) and SPDE (Figs. 3–8(d))



(b)(a)

(d)(c)

Fig. 8. As Fig. 6, but at 1000.0 m.

(b)(a)

(d)(c)

Fig. 7. As Fig. 6, but at 200.0 m.
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(a) (b)

(d)(c)

Fig. 9. Difference between Temperature (�C) fields at 1000 m obtained using Fast Marching Method and using: (a) Standard OA; (b) SPDE. Difference between Salinity (PSU)
field 1000 m obtained using Fast Marching Method and using: (c) Standard OA; (d) SPDE. Both SPDEs represents the field by an Helmholtz equation.
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clearly satisfy the coastline constraints. The data in the Sulu Sea,
which has high temperature and low salinity compared to the
remaining region, does not influence the field outside the Sulu
Sea since the two regions are not connected by water at 1000 m
(assuming only 2D horizontal correlations). On the other hand,
the standard OA (Figs. 3–8(b)) does not satisfy the coastline con-
straints. Thus the data outside the Sulu Sea is correlated to the field
inside the Sulu Sea. This is undesirable since the direct relationship
across landforms is at best very weak. This leads to spurious high
temperature and salinity gradients in the Sulu Sea, which creates
large spurious geostrophic flow shear. Differences between tem-
perature field maps and salinity field maps obtained using the
FMM and using other OA methods at 1000 m are shown in Fig. 9.
The differences between the field maps obtained using the FMM
and standard OA are large. There are small differences between
field maps obtained using the FMM and SPDE approaches because:
(i) the SPDE scheme is more sensitive to truncation errors, and (ii)
the analytical correlation function corresponding to the Helmholtz
equation (used in the SPDE approach) is slightly different from the
analytical correlation function in the FMM.

The SPDE approach satisfies the coastline constraints, but the
discretization errors in the SPDE can be significant and this results
in noisy spatial variations in the OA maps, even though this noise is
not present in the monthly hydrographic data. This noise then also
negatively affects the geostrophic flow shear, and additional
smoothing (post-processing) is often needed to filter SPDE-based
OA fields. Such post-processing is not required for our FMM-based
scheme. As mentioned in Section 5, an SPDE approach can be
implemented by specifying the SPDE for the field (as shown in
Figs. 3–8(d)) or by specifying it directly for the covariance. The lat-
ter scheme is a bit cheaper than the former but it is a rough
approximation and it further increases the undesired noise of the
field maps. Finally, the computational time required by the SPDE
approach was confirmed to be higher than that of the FMM, in ac-
cord with the operation counts of Section 5. Thus, the FMM appears
to be the best among all the methods of Sections 4 and 5. This was
confirmed in many other regions and the FMM scheme is thus used
to map the spatially irregular synoptic data in the sections that
follow.

Velocity field maps. We now illustrate the estimation of total
velocity under geostrophic balance in the region using the above
OA field maps of hydrographic WOA05 data. The algorithm for
optimizing inter-island transports (Appendix C) is utilized to com-
pute a smooth total flow field estimate under the constraint of geo-



Fig. 10. Velocity estimation under geostrophic balance and optimized inter-island transports (weight functions based on minimum vertical areas among islands) from
hydrographic field maps (WOA05) obtained using the FMM (left) and using the SPDE Approach (right): (a and b) Streamfunction, velocity at depths: (c and d) 0 m; (e and f)
100 m.
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strophic shear balance. Weight functions based on the minimum
vertical area across each pair of islands are computed and used
in the algorithm. As described in Section 303a, the minimum ver-
tical areas were estimated using the FMM by specifying the scalar
speed function in the Eikonal equation (Eq. (11)) as F(x,y) = 1/
H(x,y), where H is the ocean depth. The temperature and salinity



Fig. 11. Locations of: (a,b) Melville exploratory cruise and glider data (Summer 2007) and (c) Melville joint cruise Data (Winter 2008), both in the Philippines Archipelago. For
the Summer 2007 OAs, we employ: R/V Melville, 142 CTD and 133 Chlorophyll casts; SG122, 110 CTD casts; and, SG126, 191 CTD casts. For the Winter 2008 OAs, we employ
86 CTD casts from the R/V Melville.
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maps are those of our FMM-based OA scheme (Figs. 3–8(c)) and of
the SPDE approach (Figs. 3–8(d)), with the Helmholtz equation em-
ployed for the field. The streamfunction and velocity fields (at
depths 0, 100 m) are shown in Fig. 10. The estimates based on
our FMM-based hydrographic OAs (Fig. 10 (left)) are in overall
good agreement with those obtained using maps based on the sto-
chastically forced Helmholtz equation (Fig. 10 (right)). However,
the SPDE-based velocity fields are noisier, reflecting the spurious
noise in the hydrographic OAs. On average, these monthly mean
flow estimates suggest larger density-driven velocities in the
Mindoro Strait, in the Mindanao current south of Mindanao Island
and in the Balabac Strait. The maximum absolute velocity reaches
80 cm/s in the Balabac strait at the surface. At lower depths, veloc-
ities remain high in the Mindoro Strait and near Mindanao.

Weight functions based on the minimum inter-island distance,
which can be obtained using the FMM by specifying the scalar
speed function in the Eikonal equation (Eq. (11)) as 1 for sea points
and 0 for land points, were also used. The velocity fields obtained



Fig. 12. Temperature (�C) OA Fields at 0 m (Left) and 200 m (Right) using the: (a,b) Melville exploratory cruise and glider data (Summer 2007); (c,d) Melville joint cruise data
(Winter 2008). Colorbars are not the same for the two periods due to the winter and summer variability.
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using these weight functions had much larger magnitudes, partic-
ularly in the Balabac Strait (Agarwal, 2009), where the maximum
absolute velocity was 141 cm/s. Such high velocity magnitudes
are very unlikely. These results show that weight functions based
on the minimum vertical area (logical for transport estimates)
are adequate.
6.2.2. Objective analysis of synoptic data for the Summer 2007
The data used in this example are from the Melville Exploratory

cruise and sg122 and sg126 gliders for June-July’07 (A. Gordon and
C. Lee, personal communications). The data coverage is shown in
Fig. 11(a) and (b). A portion of the Archipelago is sampled and
OA maps are computed in that region. The scales used were fit
to: large length scales (L0 = 1080,Le = 360)LS and most energetic
length scales (L0 = 270,Le = 90)ME. The observational error is set to
r2

d ¼ 0:20. These scale and error values were estimated based on
data, see Agarwal (2009). The hydrographic field maps obtained
using our FMM-based OA scheme are shown in Fig. 12(a) and (b)
and Fig. 13(a) and (b), respectively at depths of 0 and 200 m. Once
again, these maps clearly indicate that the coastline constraints are
appropriately satisfied. At 0 m, the warmer regions to the west of
Luzon island remain uncorrelated with the Pacific waters east of
Luzon. The warm Sibuyan and Visayan Seas can be distinguished
from the relatively cold Bohol Sea. At 450 and 1000 m (not shown),
the data in the warm Sulu Sea and Bohol Sea do not impact the
other regions; there is no direct relationship across landforms.
Similar observations are made for the salinity (e.g. at 0 m, the
low salinities west of Luzon island do not affect Pacific waters east
of Luzon). We note that very few data are collected in the Pacific
proper, so patterns there also reflect the sampling paths.
6.2.3. Objective analysis for early Winter 2008
The data used in this example is obtained from the joint Mel-

ville cruise for the November 2007 – January 2008 period. Data
locations are shown in Fig. 11 (bottom). The OA parameters are
as those of Summer 2007 (Section 6.2.2). The hydrographic field
maps obtained using the FMM-based scheme are shown in
Fig. 12(c) and (d) and Fig. 13(c) and (d), respectively, at 0 and
200 m depth. At the surface, the warm/fresher region west of
Luzon is uncorrelated with the region east of Luzon. At 450 and
1000 m (not shown), the warm Bohol Sea is enclosed and at these
depths, it does not affect other regions either.

Comparing Winter 2008 with Summer 2007, the largest differ-
ences in temperature and salinity are near the ocean surface (dee-
per than 200 m, fields are much closer). For example, the 0 m
temperatures in the South China Sea and Pacific are significantly



Fig. 13. Salinity (PSU) OA Fields at 0 m (left) and 200 m (right) using the: (a and b) Melville exploratory cruise and glider data (Summer 2007); (c and d) Melville joint cruise
data (Winter 2008). Colorbars are not the same for the two periods due to the winter and summer variability.
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lower in Winter 2008 than in Summer 2007. However, in the Sulu
Sea, temperatures of the two seasons are much closer.

6.2.4. Objective analysis for biological fields (chlorophyll)
Of course, our new FMM-based scheme is not limited to physi-

cal fields. Its application to biology is illustrated here using the
Exploratory cruise Summer 2007 data (Gordon, 2009). Our biolog-
ical OAs (for chlorophyll, nitrate and ammonium) were utilized to
initialize physics-biology modeling studies (Burton, 2009; Lermu-
siaux et al., 2011), combining in situ data with satellite images
and a region-by-region biological feature model. Here, only the
mapping of R/V Melville chlorophyll profiles is shown. The biolog-
ical OA parameters are, once again, as in Section 6.2.2. The result-
ing chlorophyll maps are illustrated in Fig. 14 at depths of 0, 10, 50
and 150 m.

The concentration of biological fields such as chlorophyll, phy-
toplankton and zooplankton is substantial near the surface due
to sunlight. The chlorophyll concentration is maximum near is-
lands, often driven by winds or bathymetric upwelling. Away from
islands, it tends to be more uniform, around a mean value. At 0 and
10 m, the maximum chlorophyll concentration is observed south of
the Visayan Sea and in the Bohol Sea. At 50 m, chlorophyll concen-
trations remain significant there, but the largest chlorophyll con-
centrations are observed north of Palawan island. Concentrations
at 150 m are largest in the Pacific (the only Pacific data is at the
mouth of Surigao Strait, hence higher values are estimated there
only). These results agree with the expected depths of subsurface
Chl-maxima in the different seas: Sulu Sea (50–90 m), Visayan
Sea (10–40 m) and Pacific (100–180 m), see (Burton, 2009). Biolog-
ical concentrations at lower depths decrease rapidly.

7. Computational analysis

The computational properties of our methods for mapping
irregular data in complex geometries are now described and stud-
ied. First, the computational costs are compared in Section 7.1.
Then, schemes to resolve issues specific to complex multiply-
connected coastal regions such as the need for accurate distance
estimates (Section 7.2) and the need for positive-definite covariance
matrices (Section 7.3) are discussed. These schemes are important
because if the covariance matrix becomes negative, divergence
problems occur in the Kalman updates (Brown and Hwang, 1997).



Fig. 14. Chlorophyll (lmol/kg) OA Fields for the Melville exploratory cruise data (Summer 2007), computed using the FMM at: (a) 0 m, (b) 10 m, (c) 50 m, (d) 150 m.
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To motivate the computational studies, recall that we generate
the covariance matrices using analytical correlation functions de-
fined based on the Euclidean distance. These correlation functions
are termed ‘‘positive definite’’ if they generate positive definite
covariance matrix in a simply-connected convex domain. It has
been well established using the Wiener-Khinchin and Bochner’s
theorems that if the Fourier transform (or the spectral density) of
a correlation function is non-negative for all frequencies then the
correlation function is positive definite (Yaglom, 1987; Papoulis,
1991; Yaglom, 2004; Dolloff et al., 2006). However, we found that
for coastal regions, covariance matrices generated from ‘‘positive
definite correlation functions’’ may not be positive definite due
to: (a) numerical errors in the computation of the shortest path
lengths, or (b) the presence of landforms which lead to multiply-
connected or non-convex domains, invalidating assumptions in
the Wiener-Khinchin and Bochner theorems (see Agarwal, 2009
for proof). This can lead to divergence problems in the mapping.

Such problems are illustrated using the WOA05 data (Spliced
February and Winter Climatology) shown in Fig. 15 (a). To simplify,
we consider single-scale OAs (all previous examples were two-
scale OAs). The field maps obtained using our FMM-based scheme
with length scales (L0 = 540,Le = 180) and length scales (L0 = 1080,
Le = 360) are shown in Fig. 15. Fields obtained using the larger
scales (Fig. 15(c)) clearly show divergence problems near Palawan.
These problems are not encountered when the smaller length
scales are used and are much smaller when a higher-order FMM
scheme is used (Fig. 15(b)). Questions which motivate our studies
next are thus (as introduced at the end of Section 2): (i) What are
the computational errors in the shortest sea-path distances
computed using the FMM/LSM and how can they be reduced?,
and (ii) What are the computational issues, including non-positive
definite covariances, that arise in a multiply-connected coastal
domain and how can they be remedied? A higher-order FMM
than the first-order one (Section 4.2) is discussed in Section 7.2.
Higher-order FMMs significantly reduce errors in the distance
estimates, i.e. the difference between the numerically computed
and true distance, which limits divergence problems in the
mapping. However, even if exact distances are used, when curved
boundaries or islands are present in the domain, negative covari-
ances can still occur. Methods to solve these issues are derived in
Section 7.3.

7.1. Comparison of computational costs

For all OA schemes, we sequentially process observations (see
Parrish and Cohn (1985), Cho et al. (1996), Lermusiaux (1997),



Fig. 15. (a) World Ocean Atlas 2005 (Spliced February and Winter Climatology) in situ temperature (�C) at 0.0 m; Temperature (�C) OA Fields using the FMM at the surface
(0 m) with the following scheme and scales, (b) first order FMM and L0 = 540 km, Le = 180 km, (c) first order FMM and L0 = 1080 km, Le = 360 km, (d) higher order FMM and
L0 = 1080 km, Le = 360 km.

Table 2
Operation counts for computing the covariances among one data point and each of
the N2 model grid points, as obtained using the LSM, FMM, SPDE (n iterations) and
Dijkstra’s schemes.

Method Operation count

Level Set Method O(N3)
Fast Marching Method O(N2logN)
SPDE Method O(N2n)
Dijkstra’s Method O(N3)
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Agarwal (2009)). Such sequential processing drastically reduces
computational costs and also allows estimating the impact of indi-
vidual data. Since data are processed sequentially, the costs for the
OA schemes are compared by considering a single scalar data
point. The main cost is then the computation of the covariance of
that data point with all other grid points in the domain. For the
FMM, LSM and Dijkstra’s schemes, the operation count to do this
is driven by the computation of the shortest distances from that
data point with all other points. For the SPDE scheme, it depends
on the diffusion equation used and on the iterations to reach
state-state. For a 2-D domain with N points in each direction, these
operation counts are given in Table 2.

There are a total of N2 grid points at each level and the oper-
ation count for LSM is obtained from an optimistic guess that
LSM will take roughly N steps to converge. In reality, the itera-
tions can take much longer to converge, and the LSM is thus not
efficient to compute these distances. On the other hand, FMM is
an efficient technique which requires a fast method to locate the
smallest value grid point in the narrow band. The MinHeap data
structure with backpointers (Sedgewick and Wayne, 2011) is
employed here to efficiently locate the grid point with the min-
imum value. The total work done in the DownHeap and UpHeap
operations, which ensure that the updated quantities do not vio-
late the heap properties, is O(logN). Thus, for a 2D domain with
N grid points in each direction, the FMM has an operation count
of N2logN, which is a significant improvement over the LSM. An
efficient SPDE scheme requires at least an order of N2n where n
is the number of iterations to reach steady state. We have ob-
served that the SPDE approach is at least 15% more expensive
computationally than the FMM scheme. Thus, the FMM-based
scheme is computationally the most efficient.



Fig. 16. Example of an idealized (multiply-connected) domain having an island.
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7.2. Higher order Fast Marching Method

In a domain with no islands or landforms, the shortest path
length obtained using the FMM/LSM should be equal to the Euclid-
ean distance. But the FMM/LSM have discretization errors which
lead to inaccurate length estimates. The Weiner Khinchin and
Bochner theorems are valid for covariances computed using the
Euclidean distance in a simply-connected convex domain. So, if
the domain is simply-connected convex, the covariance matrix
can only become negative definite due to the inaccurate length
estimates. This may lead to divergence problems in the resultant
field maps. Here, the goal is to estimate and reduce the computa-
tional errors in the shortest path lengths. To do so, we introduce
the higher order FMM.

The FMM scheme presented in Section 4.2 is first order, since
the first order discretization form (Eq. (14)) of the Eikonal equation
(Eq. (11)) is used. A different implementation of FMM with higher
accuracy (Sethian, 1999a; Sethian, 1999b) is discussed here. It em-
ploys the second order backward approximation to the first deriv-
ative Tx is given by:

Tx �
3Ti � 4Ti�1 þ Ti�2

2Dx
() Tx � D�xT þ Dx

2
D�x�xT; ð18Þ

and the second order forward approximation to the first derivative
Tx given by:

Tx �
3Ti � 4Tiþ1 þ Tiþ2

2Dx
() Tx � DþxT � Dx

2
DþxþxT: ð19Þ

Here D�x and D+x are the first order forward and backward approx-
imations for the first derivative, respectively (Eq. (10)),
D�x�x � D�xD�x and D+x+x � D+xD+x.

Consider the switch functions defined by:

switch�x
ij ¼

1 if Ti�2;j and Ti�1;j are knownð‘Alive’Þ
and Ti�2;j 6 Ti�1;j

0 otherwise

0
B@

1
CA;

switchþx
ij ¼

1 if Tiþ2;j and Tiþ1;j are knownð‘Alive’Þ
and Tiþ2;j 6 Tiþ1;j

0 otherwise

0
B@

1
CA:

ð20Þ

Similar functions are defined in the y-direction. The higher accuracy
scheme attempts to use a second order approximation for the deriv-
ative whenever the points are tagged as ‘alive’ (the points inside the
band where the value of the arrival time function is frozen: see Sec-
tion 4.2) but reverts to the first order scheme otherwise.

The modified discretization equation for the higher accuracy
FMM is thus given by:

max D�x
ij T þ switch�x

ij
Dx
2 D�x�x

ij T
h i

;
�

� Dþx
ij T � switchþx

ij
Dx
2 Dþxþx

ij T
h i

; 0
�2

þ
max D�y

ij T þ switch�y
ij

Dy
2 D�y�y

ij T
h i

;
�

� Dþy
ij T � switchþy

ij
Dy
2 Dþyþy

ij T
h i

;0
�2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼ 1

F2
ij

: ð21Þ

We note that the above scheme is not necessarily of second order.
Its accuracy depends on how often the switches evaluate to zero
and how the number of points where the first order method is ap-
plied changes as the mesh is refined. When the number of points
where the first order method is applied is relatively small (occurs
only near the coastlines), the error is reduced considerably by using
the second order FMM (Agarwal, 2009). Of course, third or higher-
order approximations for the derivative Tx can be used to construct
even more accurate FMM schemes, but this increases the computa-
tional cost. We found that the relative error in the distances com-
puted by the FMM is higher near the data point and it decays as
the distance increases. To keep the computational cost low and a
uniform relative error, we can thus use higher accuracy FMM near
the data points and then progressively shift to lower order schemes
as the distance increases.

The results of using higher order FMMs to minimize errors are
illustrated on Fig. 15(d). They clearly show that the above higher
order FMM has attenuated the divergence issues compared to the
first order FMM. The divergence issues do not vanish completely
because some discretization errors still occur but also because of
the presence of landforms. To deal with the latter and the effects
of the multiply-connected coastal domains, we further improve
schemes next in Section 7.3.
7.3. Positive Definite covariance matrix for complex multiply-
connected coastal regions

Apart from the inaccurate shortest path length, the covariance
matrix may also become negative due to the presence of islands
and coastlines. This is because the presence of islands and archipel-
agos stretches the direct Euclidean path, which can render the
covariance matrix negative.

For example, consider the idealized multiply-connected domain
with an island, shown on Fig. 16. This domain has 12 grid points
marked as ocean points and 4 grid points marked as land points.
The length of the shortest sea path is computed exactly to form
the covariance matrix and so remove all discretization errors of
the FMM/LSM. To do so, the positive-definite correlation function
CorðrÞ ¼ exp � r2

2L2

h i
with L = 2 is used. We find that the covariance

matrix is not positive definite. The maximum eigenvalue for the
covariance matrix is 6.3345 while the minimum is -0.0504. This
idealized example clearly reveals that classic Euclidean-based
covariance matrices for a complex multiply-connected region
may not necessarily be positive definite. This is because the condi-
tions of the Wiener-Khinchin and Bochner’s theorems are not
satisfied.

One could consider changing the coordinate system, for exam-
ple curvilinear coordinates. For adequate coordinate choices, in
the transformed space, the domain can then be simply connected
and convex. However, the issue then is that the real distances
among grid points become position dependent which violates an-
other assumption of the Wiener-Khinchin and Bochner’s theorems,
see (Agarwal, 2009) for examples and more discussions.

Hence, other schemes have to be used to alleviate the diver-
gence problems (Fig. 17(a)) due to the non-positive definite covari-
ance matrix. They include:



Fig. 17. Temperature (�C) OA Fields at the surface (0 m) (scales L0 = 1080 km, Le = 360 km) using the: (a) FMM, (b) FMM and removal of problematic data, (c) FMM and
introducing process noise, (d) FMM and applying dominant singular value decomposition (SVD) of a priori covariance.
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(a) Discarding the problematic data: Discarding the data that
lead to negative values of HjCorðx;xÞj�1HT

j would solve the
issue and eliminate divergences in the resultant OA. How-
ever, this method is a not adequate since the information
in the data is discarded entirely. The field map obtained by
discarding the problematic data is shown in Fig. 17 (b).
Clearly, the divergence problems are removed but loosing
data is not acceptable.

(b) Introducing process noise: Adding a small process noise to
the diagonal elements of the covariance matrix would help
(Brown and Hwang, 1997), but it will lead to a degree of
sub-optimality: the noise affects all of the problematic data.
However, it is often a more acceptable scheme than discard-
ing the data. We indeed find that introducing the process
noise leads to less divergence problems, as shown in our
example, see Fig. 17(c).

(c) Dominant Singular Value Decomposition (SVD) of a priori
covariance: To construct the OA field maps, the full covari-
ance matrix is not required. In fact, the full covariance
matrix (Cor(x,x)) is expensive to compute and store, and it
is therefore rarely computed. The necessary requirement
for field maps is the covariance matrix among the grid and
data points, i.e. Cor(x,X). The divergence problems can be
removed by first obtaining the singular value decomposition
(SVD) of Cor(x,X) and then retaining only the dominant sin-
gular values and setting the smaller singular values (e.g. less
than 1% of the maximum singular value) to zero. This SVD
procedure renders the covariance matrix non-negative defi-
nite, which was verified in multiple examples where a sim-
ulated map was used for a true ocean. Based on these results
and on minimum error variance arguments, the dominant
SVD method is the most acceptable one because it loses
the least information contained in the data. Our example is
shown on Fig. 17(d). We find that the field maps obtained
using this dominant SVD of the a priori covariance is free
from divergence problems. They are also similar to, but fur-
ther improve, the fields obtained by introducing the process
noise.

8. Summary and conclusions

New methodologies for the efficient mapping and dynamical
inference of ocean fields from irregular data in complex multi-
ply-connected domains were derived and utilized, and computa-
tional properties of these mapping schemes were studied. These
new OA methods, which satisfy the coastline and bathymetry
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constraints (e.g. there is no direct relationship across landforms),
are based on estimating the length of the optimal sea path using
either the Level Set Method (LSM) or the Fast Marching Method
(FMM). The optimal sea path was geometrically defined: for purely
horizontal OAs, it is the shortest sea distance in 2D, and for 3D OAs,
it is the shortest sea distance in 3D, weighting the vertical or
diapycnal distances more than the horizontal ones. Numerical
schemes were derived and implemented, and their operation
counts compared. Their properties and results were studied in
complex domains, the Philippines Archipelago and Dabob Bay, in
realistic situations. Both climatological and synoptic datasets were
employed and estimates of temperature, salinity and chlorophyll
fields were computed and discussed. We found that without these
new OA methods, neither meaningful dynamical studies nor mean-
ingful ocean simulations could be initiated.

Results were compared with those of a standard OA scheme
(using across-landforms Euclidean distance in the analytical corre-
lation function), of OA schemes based on other distance estimation
methods and of OA schemes based on the use of stochastically
forced PDEs (SPDEs). We showed that the FMM-based scheme is
computationally cheaper than the LSM-based scheme and diffu-
sion-based SPDE approach. We found that the field maps obtained
using our FMM-based schemes were more robust than those ob-
tained using SPDE schemes: fields did not require postprocessing
(smoothing), i.e. they were devoid of any spurious gradients. Such
spurious gradients in hydrographic maps lead to unrealistic geo-
strophic flows. The FMM and LSM were the most appropriate for
estimating the optimal sea distances among other distance estima-
tion schemes such as Dijkstra’s optimization algorithm and the
classic Bresenham-based line algorithm. The optimal distance
computed using Dijkstra’s algorithm is computationally expensive
and inaccurate. Apart from being computationally expensive, the
optimal distance computed using the Bresenham line algorithm
is discontinuous. This results in the formation of numerical fronts
with high field gradients. Such erroneous gradients do not occur
when our FMM-based scheme is utilized.

Mathematical and computational properties of the new OA
schemes were studied. The sequential processing of observations
reduces the computational cost and also helps in understanding
the impact of individual data. We found that the use of higher or-
der FMMs increased the accuracy of the estimates of the length of
shortest sea paths. The most efficient FMM schemes derived em-
ployed a variable order discretization, the order decaying as the
distance between the data and model points increases. Accurate
FMM distance estimates eliminate one of the sources of negative
covariance matrices. The other source is the presence of islands
or of other non-convex landforms. This is because the Wiener-
Khinchin and Bochner theorems are valid only for correlation func-
tions based on the Euclidean distance in convex simply-connected
domains. Several approaches to overcome this issue were dis-
cussed. These include discarding problematic data points, intro-
ducing process noise, and reducing the covariance matrix by
applying the dominant singular value decomposition (SVD).
Among these, we showed that the latter use of the SVD to reduce
the covariance matrix is the best solution.

We have also employed a FMM-based method to estimate the
total velocity under geostrophic balance in complex multiply-
connected domains. The FMM is used to compute the minimum
vertical area between all pairs of islands. Such areas are neeeded
to compute the transport streamfunction field that optimizes the
inter-island transports and produces a smooth velocity field. The
result is a mass-conserving geostrophic flow in balance with
the hydrographic OA maps and with optimized inter-island trans-
ports. This method and the minimum vertical area estimates were
necessary to obtain realistic velocity estimates in our Philippine
Archipelago examples.
As part of our ongoing work, we have started to incorporate
additional geometrical and non-homogeneous dynamical effects
to our FMM-based OA scheme. An approach we have followed is
to modify the scalar speed function in the Eikonal equation as a
function of these geometrical properties and heterogeneous
dynamics. In particular, we have used a bathymetry-dependent
speed function to include depth effects in the correlation scales.
To include heterogeneous scales due to the existence of fronts,
we can first create an expected length scale field that is a function
of space and direction, possibly using raw data only (Agarwal,
2009) or a feature model (Gangopadhyay and Robinson, 2002).
We can then compute the optimal sea path as before, but select
for correlation scale the smallest one found along that path. For
example, if the optimal path crosses a front, the length scale in
the across direction would then be the minimum cross-frontal
scale. Analogous modification of the scalar speed function or the
length scale can be used to incorporate other dynamical effects
(e.g. conservation of potential vorticity). In the future, the ideas
of optimal path length and our FMM/LSM-based scheme can be
used to extend to complex coastal regions our 3D multivariate
and multi-scale mapping of fields and of their dominant errors
(Lermusiaux, 2002). Such schemes would be needed for ensemble
initializations.

We expect a wide range of applications for our FMM-based OA
schemes. Already when mapping relatively simple coastal do-
mains, all constraints of landforms are accounted for. Constraints
due to bathymetric features are also respected, even in deep ocean
regions, from the simpler basins, plateaus and troughs to the more
complex sills, ridges, seamounts and trenches: if the surface on
which the OA is computed intersects bathymetry, our sea paths
adequately go around it. These surfaces are general; they can be
horizontal, terrain-following or density-based. Effects of distances
perpendicular to these surfaces can be included in the speed func-
tion, to include 3D contributions in the correlation scales. Initial
gridded conditions computed by the present FMM methods have
thus enabled our simulations in varied regions, including the Tai-
wan region, New England shelf, Dabob Bay and Monterey Bay
(Xu et al., 2008; Lermusiaux et al., 2010; Haley and Lermusiaux,
2010). Our new methods would also improve the widely-used
gridded databases such as the World Ocean Atlas (WOA) since such
maps were computed without explicitly accounting for coastline
and bathymetry constraints.
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Appendix A. Objective analysis schemes of the ‘Levitus
Climatology’

The OA schemes used to map the ‘Levitus Climatology’ (Levitus,
1982; Locarnini et al., 2006; Antonov et al., 2006; Garcia et al.,
2006a,b) originate from Cressman (1959) and Barnes (1964). The
approach is based on adding ‘‘corrections’’, which are computed
as a distance-weighted mean of all data point difference values,
to the first-guess field. Initially, to reduce the computational time,
the World Ocean Atlas 1994 (WOA94) used the Barnes (1973)
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scheme which requires only a single ‘‘correction’’ to the first-guess
field at each grid point in comparison to the successive correction
method of Cressman (1959) and Barnes (1964). The most recent
WOA98, WOA01 and WOA05 maps were completed employing a
three-pass ‘‘correction’’ scheme, using the multi-pass analysis of
Barnes (1994). The inputs to this global analysis scheme are differ-
ences among a first-guess field and the one-degree square means
of the observed data values. An influence radius is then specified
and a correction to the first-guess value at all grid points is com-
puted as a distance-weighted mean of only the difference values
that correspond to data points that lie within the area defined by
the influence radius. Mathematically, the correction factor derived
by Barnes (1964) is given by:

Ci;j ¼
Pd

s¼1WsQ sPd
s¼1Ws

; ðA:1Þ

where,

(i, j) – are coordinates of grid points;
Ci, j – correction factor at the grid point coordinates (i, j);
d – the number of data points that fall within the area around
point (i, j) defined by the influence radius;
Qs – difference between the observed mean and the first-guess
at the sth data point in the influence area;
Ws = exp(�Er2/R2) (for r 6 R; Ws = 0 for r > R) – the correlation
weight;
r – distance between data and grid points;
R – influence radius; and,
E = 4.

At each grid point, the final analyzed gridded value Gi,j is the
sum of the first guess Fi,j and the correction Ci,j. The expression is:

Gi;j ¼ Fi;j þ Ci;j: ðA:2Þ

If there is no data within the area defined by the influence radius,
the correction is zero and the analyzed value is the first-guess.
The analysis scheme is set up such that the inference radius can
be varied at each iteration. To progressively analyze the smaller
scale phenomena with each iteration, the analysis begins with a
large inference radius which is decreased gradually with each iter-
ation. Eq. (A.2) can also be expressed in a matrix–vector form:

G ¼ Fþ diagðWedÞ½ ��1WQ ; ðA:3Þ

where, if n and d denote the number of model-grid and data points,
respectively, the analyzed field G and the first guess F are n-by-1,
the correlation weight matrix W is n-by-d, the difference Q between
the observed mean and first-guess at data points is d-by-1, and ed is
d-by-1 with unit entities. The operation diag (v) creates a diagonal
matrix i.e. it puts the vector v on the main diagonal.

In analogy to the Kalman Gain (K) from the Gauss Markov crite-
rion (K = Cor(x,X)[Cor(X,X) + R]�1), Eqs. (A.3) and (1) show that a
similar Gain matrix (KL = [diag(Wed)]�1W) can be defined for the
Levitus methodology. While the multi-scale OA approach in MSEAS
is based on Gauss Markov estimation theory and successive scale-
by-scale updates, the Levitus OA is based on computing the dis-
tance-weighted mean of all differences between the most recent
first-guess field and the data mean within the inference radius
and then repeat with a reduced inference radius. The main differ-
ence is that Gauss Markov estimation theory requires and uses
prior error covariances for the data and the first-guess, while the
Levitus OA requires radius of influence estimates and uses data
averaging.
Appendix B. Fast Marching algorithm

The fast marching algorithm (Sethian, 1996; Sethian, 1999b) is:

1. Initialize
(a) Alive points: Let A be the set of all grid points (i, j) on the

starting position of the interface C; set Tij = 0 for all points
in A.

(b) Narrow Band points: Let the Narrow Band be the set of all
grid points (i, j) in the immediate neighborhood of A; set
Tij ¼ d

Fij
for all points in the Narrow Band where, d is the grid

separation distance and F is the front speed (see Eq. (13)).
(c) Far Away points: Let the Far Away region be the set of all

remaining grid points (i, j); set Tij =1 for all points in the
Far Away region.

2. Marching Forward
(a) Begin Loop: Let (imin, jmin) be the point in the Narrow Band

with the smallest value for T.
(b) Add the point (imin, jmin) to A; remove it from the Narrow

Band.
(c) Tag as neighbors any points (imin � 1, jmin), (imin + 1, jmin),

(imin, jmin � 1), (imin, jmin + 1) that are either in the Narrow
Band or the Far Away region. If the neighbor is in the Far
Away region, remove it from that list and add it to the Nar-
row Band.

(d) Recompute values of T at all neighbors in accordance with
Eq. (14). Select the largest possible solution to the quadratic
equation.

(e) Return to the top of the loop.

Here are some properties of the fast marching algorithm. The
smallest value in the Narrow Band is always correct. Other Narrow
Band or Far Away points with larger values of T cannot affect the
smallest value. Also, the process of recomputing T values at the
neighboring points cannot give a value smaller than any of the ac-
cepted value at Alive points, since the correct solution is obtained
by selecting the largest possible solution to the quadratic equation
(Eq. (14)). Thus the algorithm marches forward by selecting the
minimal T value in the Narrow Band and recomputing the values
of T at all neighbors in accordance with Eq. (14).

The key to an efficient version of the algorithm lies in finding a
fast way to locate the grid point in the Narrow Band with the min-
imum value for T. To do so, the heapsort algorithm (Williams,
1964; Sedgewick and Wayne, 2011) with backpointers is often
implemented and it is the algorithm we used here. This sorting
algorithm generates a ‘‘complete binary tree’’ with the property
that the value at any given parent node is less than or equal to
the value at its child node. Heap is represented sequentially by
storing a parent node at the location k and its child at locations
2k and 2k + 1. The member having the smallest value is stored at
the location k = 1.

All Narrow Band points are initially sorted in a heapsort. The fast
marching algorithm works by first finding, and then removing, the
member corresponding to the smallest T value from the Narrow
Band which is followed by one sweep of DownHeap to ensure that
the remaining elements satisfy the heap property. The DownHeap
operation moves the element downwards in the heap until the
new heap satisfies the heap properties. Far Away neighbors are
added to the heap using the Insert operation which increases the
heap size by one and brings the new element to its correct heap
location using the UpHeap operation. The UpHeap operation
moves the element upwards in the heap until the new heap satis-
fies the heap properties. The updated values at the neighbor points
obtained from Eq. (14) are also brought to the correct heap location
by performing the UpHeap operation.
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Appendix C. Estimating the total velocity field under
geostrophic balance by minimizing unknown inter-island
transports

For mesoscale ocean flows, away from boundary layers, the
dominant terms in the horizontal momentum equations are often
the Coriolis force and the pressure gradient. Such a flow field,
where a balance is struck between the Coriolis and pressure forces,
is called geostrophic. The thermal wind equations are obtained for
geostrophic flows by assuming that the vertical momentum equa-
tion is approximately given by hydrostatic balance. The thermal
wind equations are:

�f
oðqvÞ

oz
¼ g

oq
ox

and f
oðquÞ

oz
¼ g

oq
oy
; ðC:1Þ

where, q is the density, u and v are the horizontal fluid velocity in
the zonal (x) and meridional (y) directions respectively, and f = 2X
sin/ is the Coriolis parameter at latitude / for the spherical earth
rotating at a rate of X. The thermal wind Eq. (C.1) when integrated
in the vertical give:

qv x; y; z; tð Þ ¼ �g
f

Z z

z0

oq
ox

dzþ qv0;

qu x; y; z; tð Þ ¼ g
f

Z z

z0

oq
oy

dzþ qu0;

ðC:2Þ

where, z0 is a level of reference where v0, u0 are assumed known (z0

is referred to the level of no motion if v0, u0 = 0).
Flow estimation based on thermal wind balance (Eq. (C.2)) is a

classical problem in oceanography (Wunsch, 1996). Historically,
the main routine measurements were hydrographic: temperature,
T, and salinity, S, at various depths. The equation of state for seawa-
ter then permits the estimation of density at a given pressure from
these hydrographic data. Thus, with Eq. (C.2), the vertical shear of
the geostrophic flow can be computed from hydrographic data
alone and added to a velocity field of reference. This leads to
mass-conserving estimates if the reference velocity field is conser-
vative since the geostrophic shear already satisfies continuity. If
reference or external barotropic velocities are provided at open
boundaries, a Poisson equation can be formed for a transport
streamfunction by taking the curl of this barotropic velocity. Solv-
ing for the transport streamfunction is then straightforward for do-
mains without any islands. For complex coastal regions with
islands, the same Poisson equation can be solved, imposing a fixed
transport streamfunction value around each island. The result con-
serves mass by construction. Details are provided in App. 2.2 of Ha-
ley and Lermusiaux (2010) for both rigid-lid and free-surface
primitive equations.

In the case with islands, a first-guess at the streamfunction
along each island coast can be obtained by sinking the islands to
a shallow depth, solving for the corresponding streamfunction
and averaging its values along each island coast. However, we
found that some of the resulting inter-island transports can be
unrealistic, often much too large. Hence, a methodology was de-
rived to correct for this (MSEAS, 2010). Specifically, the somewhat
known inter-island transports are optimized (i.e. add a least-
square penalty towards these values) and the unknown ones min-
imized. These optimized island transport streamfunctions are then
used as Dirichlet boundary conditions in the Poisson equation. The
result is a mass-conserving geostrophic flow in balance with the
hydrographic OA maps and with optimized inter-island transports.
This methodology was illustrated in Section 6.2.

Summarizing the inter-island transport optimization, the objec-
tive is to find a set of constant values for (W) along the island coast-
lines that produce a suitably smooth initialization velocity field,
e.g. with no unrealistically large velocities. In the unknown straits,
the goal is to minimize the kinetic energy or the maximum abso-
lute velocity. The working assumptions are:

1. Coastlines in the given domain can be divided into two distinct
subsets:
(a) Set A: N coastlines along which the transport streamfunc-

tion is unknown, N – 0.
(b) Set B: M coastlines along which the transport streamfunc-

tion is known.
2. A first-guess W0 exists for the case with coasts in set B, but no

coasts in set A, i.e. these coasts and their corresponding interiors
are replaced by open ocean (e.g. island sunk to 10 m depth).

3. The difference between the first-guess W0 and the final solution
W is not extremely large. Otherwise, W0 would not be accurate
enough.

W0 contains useful information such as the position of major
currents relative to various coastlines and the effects of topography
on the flow. Thus, W0 can be used to estimate W along the other
island coastlines by constructing an optimization functional for
minimizing (in general optimizing) the inter-island transports sub-
ject to weak constraints. The optimization functional (E) is con-
structed as follows. Its general form is divided into a summation
of three terms, given by:

E ¼ E1 þ E2 þ E3; ðC:3Þ

where, E1 is the minimizing target for the transport between all
pairs of the unknown (Set A) coasts, E2 is the minimizing target
for the transport between all pairs of unknown (Set A) and known
(Set B) coasts and E3 is the minimizing target for the transport be-
tween all pairs of the unknown (Set A) coasts and the open bound-
aries of the domain. The minimum of E is computed by solving a
standard least square problem, i.e. by setting gradients with respect
to the unknown W values equal to zero. These streamfunction val-
ues, which smooth the velocity field, are then used as Dirichlet
boundary conditions to the final Poisson equation.

The expressions for E1, E2 and E3 are provided in MSEAS (2010).
They require the use of appropriate weights: wnm for the pair of is-
lands denoted here by subscripts n and m. These weights are com-
puted using a FMM scheme. Specifically, consider the stream
function (W) for a 2D horizontal flow. It is defined such that the
flow velocity can be expressed as:

~u ¼ ðu;vÞ ¼ � 1
H
r�Wk̂) u ¼ � 1

H
oW
oy

; v ¼ 1
H

oW
ox

: ðC:4Þ

Here, H is the ocean depth. The transport between a pair of islands
having streamfunction w1 and w2 is given by:

w2 � w1 ¼
Z

A

~u � n̂dA; ðC:5Þ

where, A is the vertical area between the two islands and n̂ is the
unit vector normal to the vertical area. Eqs. (C.4) and (C.5) suggest
that the appropriate weight function to optimize the velocity field
should be wnm ¼ 1=A2

nm, where, Anm is the minimum vertical area
along any path between the two islands n and m. Another heuristic
choice of weight function can be wnm ¼ 1=d2

nm, where the dnm’s are
mean depths. We found this choice only appropriate when the
depth is almost uniform in between each pair of islands (n,m). In
general, this is not the case and we thus needed to compute the
minimum areas Anm. Using the FMM, as described in Section 4.2,
is a very convenient and efficient way to compute these Anm’s. Sim-
ulations (Agarwal, 2009) have been performed with several other
weight functions and they confirmed that the choice of weights
wnm ¼ 1=A2

nm lead to the most accurate flow fields.
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