
Ocean Modelling 13 (2006) 197–220

www.elsevier.com/locate/ocemod
Web-enabled configuration and control of legacy codes:
An application to ocean modeling

C. Evangelinos a,*, P.F.J. Lermusiaux b, S.K. Geiger a,
R.C. Chang a, N.M. Patrikalakis a

a Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
b Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA

Received 16 August 2005; received in revised form 30 September 2005; accepted 4 October 2005
Available online 17 November 2005
Abstract

For modern interdisciplinary ocean prediction and assimilation systems, a significant part of the complexity facing users
is the very large number of possible setups and parameters, both at build-time and at run-time, especially for the core phy-
sical, biological and acoustical ocean predictive models. The configuration of these modeling systems for both local as well
as remote execution can be a daunting and error-prone task in the absence of a graphical user interface (GUI) and of soft-
ware that automatically controls the adequacy and compatibility of options and parameters. We propose to encapsulate
the configurability and requirements of ocean prediction codes using an eXtensible Markup Language (XML) based
description, thereby creating new computer-readable manuals for the executable binaries. These manuals allow us to
generate a GUI, check for correctness of compilation and input parameters, and finally drive execution of the prediction
system components, all in an automated and transparent manner. This web-enabled configuration and automated control
software has been developed (it is currently in ‘‘beta’’ form) and exemplified for components of the interdisciplinary
Harvard ocean prediction system (HOPS) and for the uncertainty prediction components of the error subspace statistical
estimation (ESSE) system. Importantly, the approach is general and applies to other existing ocean modeling applications
and to other ‘‘legacy’’ codes.
� 2005 Elsevier Ltd. All rights reserved.

PACS: 92.10.�c; 92.20.�h; 92.60.Wc; 95.75.�z

Keywords: XML; Encapsulation; Metadata; GUI; Numerical ocean models; HOPS; ROMS; MITgcm; Primitive equation; Data assim-
ilation; Ocean observing and prediction systems
1463-5003/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ocemod.2005.10.002

* Corresponding author. Address: Room 54-1518, Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.

E-mail address: ce107@mit.edu (C. Evangelinos).

mailto:ce107@mit.edu


198 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
1. Introduction

Effective ocean modeling and forecasting is essential for scientific investigations and other human opera-
tions and activities in the ocean. Application areas include among others fisheries management, pollution
control and maritime and naval operations. The advances in physical oceanography numerical models and
data assimilation (DA) schemes have given rise to complete ocean prediction systems that are used in opera-
tional settings. Computationally intensive modeling research in interdisciplinary ocean science is emerging, on
multiple scales and for multiple applications, including the coupling of physical and biological oceanography
with ocean acoustics (Patrikalakis et al., 2000; Robinson and Lermusiaux, 2004). The learning curve to
achieve confident and robust utilization of disciplinary modeling systems is often steep; the additional com-
plexities of interdisciplinary computations renders the learning curve even steeper. Recent developments in
high-performance computing, networking infrastructure and configuration and control software now make
it possible to construct distributed computing systems that address such computationally intensive problems.
The present contribution aims to help utilize some of these developments, focusing on modern web-enabled
user-software interactions and automated oversight of complex interdisciplinary ocean prediction and data
assimilation systems, from the setup-time to the run-time of a specific ocean application.

There is now a body of literature on computational ocean modeling (e.g. Haidvogel and Beckmann, 1999;
Kantha and Clayson, 2000). Such research occurs on multiple scales, from unstructured mesh for coastal
ocean applications (Pietrzak et al., 2005) to specific approaches for the world ocean (Semtner, 1997), global
climate modeling (Griffies, 2004) or even the age of properties in the ocean (Deleersnijder et al., 2001). Com-
putational schemes have been developed within several ocean prediction models implemented for many
regions and scales (e.g. Lynch and Davies, 1995; Mooers, 1999). Recent examples include, for the: US eastern
coastal oceans (Signell et al., 2000; Lynch et al., 2001; Robinson and the LOOPS Group, 1999), northwestern
Atlantic (Chassignet and Malanotte-Rizzoli, 2000), Atlantic Ocean (Halliwell et al., 2001; Stammer and Chas-
signet, 2000), Pacific Ocean and US western coastal oceans (De Szoeke et al., 2000), Mediterranean Sea
(Pinardi and Woods, 2002; Onken et al., 2004), European NorthSeas (Berntsen and Svendsen, 1999; Burchard
and Bolding, 2000), and other basins and the global ocean (Dutay et al., 2002; Gent et al., 1998). Some models
are also utilized by multiple users for various purposes, e.g., MOM (Pacanowski and Griffies, 2000), NLOM/
DART (Wallcraft, 1991), ROMS (Haidvogel et al., 2000; Arango et al., 2000), POM (Ezer et al., 2000), POP
(Smith et al., 1992), MITgcm (Marshall et al., 1997a,b) and TOMS (Arango, 2001). Some of these systems
have initiated interdisciplinary modeling and forecasting research.

On the other hand, efficient, web-enabled and user-friendly numerical systems for environmental and earth
science research and applications are just starting to be developed. Recent progress includes solver interfaces
for parallel oceanic and atmospheric models (Frickenhaus et al., 2005), Java frameworks for parallel ecosys-
tem simulations (Wenderholm, 2005) and home desktop hosted GUI-driven programs for climate, meteoro-
logical and air pollution modeling (EDGCM, 2005; Hurley et al., 2005). A lot of effort (e.g. DAGman, 2005;
Deelman et al., 2004; Hategan et al., 2004; Buyya and Venugopal, 2004) within the wider context of grid com-
puting, has been concentrated on the workflow aspects of the composition of more complicated interdisciplin-
ary applications; adapting monolithic legacy workflows to execution on the Grid is another aspect of the same
problem. A few projects have looked into efficient computational and web-based integration of diverse envi-
ronmental software and applications (e.g. Argent, 2004). Specific Internet-based execution environments are
also being developed (Fatoohi et al., 2005). Such advances will be useful for state-of-the-art prediction systems
for complex natural processes.

The present effort is part of a larger NSF-sponsored distributed computing project (Patrikalakis, 2005), that
brings together advanced modeling, observation tools, and estimation methods for oceanographic research.
The focus is on one of the objectives of this larger initiative: To contribute to the seamless access, analysis,
and visualization of experimental and simulated forecast data, through a science-friendly web interface that
hides the complexity of the underlying distributed heterogeneous software and hardware resources. The
aim is thus to allow the ocean scientist/forecaster to concentrate on the task at hand as opposed to the
micro-management of the underlying modeling mechanisms and computational details.

As a starting point we employ the Harvard ocean prediction system (HOPS) (Robinson et al., 2005;
Robinson, 1999; Lozano et al., 1996; Robinson et al., 2002) as an advanced ocean forecast system. HOPS



C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 199
is a portable and generic system for interdisciplinary nowcasting and forecasting through numerical simula-
tions of the ocean. It provides a framework for obtaining, processing, and assimilating data in a dynamic
model capable of generating forecasts with 3D fields and error estimates. HOPS has been successfully applied
to several diverse coastal and shelf regions, and analysis has indicated that real-time operational forecast capa-
bilities were achieved. HOPS is also coupled to an advanced estimation system (error subspace statistical esti-
mation—ESSE (Lermusiaux and Robinson, 1999; Lermusiaux et al., 2002)) that allows quasi-optimal DA and
provides real-time estimates of the dominant uncertainty modes in the forecast. With such error estimates,
ESSE allows quantitative adaptive sampling and adaptive modeling (Lermusiaux et al., 2004). ESSE is also
part of our encapsulation efforts.

One of the first practical problems is that HOPS (as well as other ocean modeling systems, e.g. for ocean
physics, ROMS (Haidvogel et al., 2000), or acoustics, OASES (Schmidt and Tango, 1986)) are, like the vast
majority of scientific applications, what computer scientists tend to term as ‘‘legacy code’’. The term ‘‘legacy’’
should not be misconstrued to imply outdated code in our context: these are all models with an active devel-
opment community and recent enhancements. For various reasons, several codes are still being written at least
partially in Fortran 77. Even when Fortran 90/95 is used, most user interactions occur via the command line.

These command-line driven applications consist of native binaries (as opposed to fat binaries or bytecode
for Java/CIL etc.) that expect a standard input (stdin) stream, maybe some command-line options and a set of
input files, and generate a set of output files as well as standard output (stdout) and error (stderr) streams. In
such a setup, any workflows are either executed interactively (a very common approach) or (after all potential
problems are handled) hard-coded in scripts. While this command-line driven approach, which dates from the
days when graphical user interfaces (GUIs) were not available, is efficient for a skilled user, it is cumbersome
and error-prone and entails a steep learning curve. Moreover it is not suited for efficient web-driven remote
usage and does not fit the novel distributed computing model of software components interacting through
remote procedure calls.

We examined various ways of dealing with this issue of ‘‘legacy’’, with the more expensive ranging from
costly rewriting of the code (Terekhov and Verhoef, 2000) to reformating the code in discrete, well-defined
components (e.g. CCA, 2004). Given our specific requirements however and keeping in mind that our system
was intended from the outset to be able to handle non-HOPS models in the future, we opted instead to keep
working with Fortran binaries developed by the ocean modelers and to encapsulate their functionality and
requirements using the eXtensible Markup Language (XML, 2005). In this manner we create a computer-
readable manual for the codes, allowing us to generate a GUI, check for parameter correctness and drive exe-
cution in a transparent manner. This methodology is general by design and it applies to many other ‘‘legacy’’
codes, allowing for the automated generation of corresponding validating GUIs.

In what follows, Section 2 briefly describes HOPS/ESSE-based forecast workflows and their characteristics,
and our motivations for this work. Section 3 discusses requirements that legacy software, such as HOPS/
ESSE, MITgcm or ROMS, impose on our system design and outlines some solutions. Section 4 describes
the new XML schema (XML schema, 2005) based language (Legacy Computing Markup Language, LCML)
utilized for constraining descriptions of encapsulated binaries. Section 5 presents results to illustrate our
implementation, Section 6 discusses some related work and Section 7 concludes.

2. Motivation: ocean prediction and data assimilation workflows

As a motivating example of the complexity of an ocean prediction workflows, we first concentrate in this
section on the setup and initialization of HOPS for ocean simulations and predictions. For each application to
a specific ocean region, the most frequent tasks are, successively: the definition of modeling domains (grid gen-
eration, topography, coastlines); the preparation of the synoptic and historical data sets (data file manage-
ment, adding salt to temperature profiles, etc.); the griding of these data for initialization and possible
assimilation (objective analyses, feature models, etc.); the computation of the non-observed or partially
observed variables for initialization of the full numerical ocean state (e.g. the use of geostrophic equilibrium
for computing a first-guess at the internal velocities from density); the preparation of ocean-atmosphere fluxes
saved as forcing fields; the setup of the files for the ocean simulation or prediction; running the numerical pre-
dictive model (e.g. run the primitive equation (PE) model); and finally, the visualization of the output datasets.



200 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
For all these tasks, a series of codes need to be compiled and set up. Parameter files need to be defined and
directories and links created for each simulation. Finally, for each ocean application or scientific study, a
multitude of setups, initializations and simulations are carried out. This includes for example multiple runs
for model tuning and/or for ensemble predictions. With the recent progress in computer science and web-
based technologies, the details related to the management of all of these tasks and their results should now
be carried out by automated web-enabled software.

The specific software modules that are most frequently involved in the above setup and initialization steps
of HOPS are illustrated in Fig. 1. First, repeated utilization of the GRIDS program generate an appropriate
2D horizontal grid discretization of the solution domain. The land mask points for the grid (if the solution
domain covers both the ocean and land) are then generated by repeated applications of PE_mask. The result-
ing 3D grid’s bottom topography is then conditioned by Cond_Topo through filtering, which aims to eliminate
possible numerical instabilities. If the initialization or data assimilation is based on objective analyses (OA) of
ocean observations, either the full-matrix (global) objective analysis OAG or a local approximation OA soft-
ware module is utilized to grid the synoptic and historical data. In doing so, data files are prepared, for exam-
ple remote or in situ field measurements are concatenated into different modular ocean data sets (MODS, i.e.
ASCII format files, usually processed by multiple data management codes and possibly by the AddSalt pro-
gram). The initial conditions and external forcing are then prepared by PE_initial and PE_forcing respectively,
leading to the execution of the PE_model forecast binary.

During a numerical simulation, ocean data can be assimilated, in part to control the loss of predictability
due to the non-linear growth of errors. Data assimilation (DA, Robinson et al., 1998) leads to estimates of
natural fields that are better than can be obtained by using only observations or a dynamical model. Data
and models are usually combined in accord with their respective uncertainties, by quantitative minimization
of a cost function. Model and data uncertainties need to be adequate (Killworth et al., 2003). DA computa-
tions can be very expensive. The simplest and robust DA scheme utilized in HOPS is an optimal interpolation
(OI) scheme, which combines the OA-ed data with the model forecast by blending, in agreement with data
uncertainties. The other scheme in use with HOPS, ESSE (Lermusiaux and Robinson, 1999; Lermusiaux
et al., 2002), aims to provide an optimal reduction of the DA problem: only the dominant errors are mini-
mized. For example, if a variance criterion is used to combine data and dynamics, the ‘‘dominant errors’’
are defined by the dominant ordered eigen-decomposition of a normalized form of the error covariance
matrix. Even with such reductions, ESSE still involves massive throughput computations. However, by design,
it provides tremendous opportunities for scalable parallelism.

The present ESSE DA workflow, builds on top of the standard HOPS workflow as follows. First, the inter-
disciplinary error subspace is initialized (Fig. 2, far left oval) based on a dominant error decomposition on
multiple scales (Lermusiaux et al., 2000; Lermusiaux, 2002) (using binary mapcor) and by perturbing (binary
pert) the central initial state using these dominant error modes and a simple random number model for the
truncated errors. The dominant initial errors are then evolved by an ensemble of perturbed non-linear and
stochastically forced dynamical model integrations (PE_model: Fig. 2, center left oval). As the size of the
Fig. 1. The HOPS pipelined setup, initialization and simulation workflow. Except for the infrequent usage of forcing files in ‘‘native’’
binary format, all binary (blue) files are in the NetCDF portable format. User interactions (stdin) are yellow. Other external ASCII and
NetCDF input files (e.g. ocean data) are omitted for clarity. (For interpretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)



Fig. 2. The ESSE schematic workflow.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 201
ensemble is increased, a repetitive sequence of three binaries calculates the: ensemble spread or uncertainty
matrices (differ), singular value decompositions (SVD) of these matrices (svddif), and convergence criteria
(chcksvd) usually comparing the error subspaces provided by the SVDs. Converged ensemble sizes are often
O(100–1000). This provides a significant opportunity for throughput parallelism. Individual model integra-
tions (PE_model runs) can also be parallel simulations (depending on the problem size and interdisciplinary
nature of the problem).

Once error estimates have converged, adaptive sampling forecasts are issued (Fig. 2, bottom left oval). For
example, future sampling patterns of autonomous underwater vehicles are computed using modified integer
programming (Yilmaz, 2005) so as to maximize the reduction of forecast errors. As new data are available,
data-forecast misfits are computed and used to correct the predicted fields by minimum error variance estima-
tion (meld) in the error subspace (Fig. 2, center right oval). Outputs are filtered fields and error estimates. A
posteriori data misfits are then calculated and used for adaptation of the dominant errors (Fig. 2, right oval).
Ultimately, the smoothing via ESSE is carried out using a set of software (ESSE_smooth: Fig. 2, top oval) to
correct, based on future data, the past fields and uncertainties (Lermusiaux et al., 2002).

The computationally challenging management of the ESSE/HOPS workflows is compounded by the fact
that just as in the case of standalone HOPS, each one of the ESSE binaries also requires build- and run-time
configuration (user interaction as in Fig. 1). The specifics will be described in Section 3. Given the rather
heavy-weight and complex nature of the individual workflow binaries and the fixed nature of the ESSE work-
flow, Grid-enabled (Foster et al., 2003) workflow execution provides a natural fit. Beyond workflow manage-
ment which, in the case of the Grid, has had a lot of research activity, issues with configuring (build- and
run-time) executables also need to be tackled, preferably in a web-enabled manner.

Importantly, our configuration software needs to be modular and flexible enough so as to easily include
new developments to the above ocean prediction and data assimilation system workflow. In the particular case
of HOPS-ESSE, this includes adaptive modeling and adaptive sampling software, and plans to further distrib-
ute certain forecasting and data assimilation components by separating/parallelizing sequential modules. For
example, physical and biological time-stepping modules can be run simultaneously on different grids by
different CPUs with data exchanges between modules.

3. Legacy codes

The ocean modeling and data assimilation software of HOPS are legacy codes mostly in Fortran 77 and
matlab. As such they do not immediately fit well within a modern distributed computing model: for example,
there is no support for dynamic memory allocation and no straightforward provision for remote procedure



202 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
calls. At worst, some ocean modeling codes require manual intervention (conversion, concatenation, file edit-
ing) to work with each other using file I/O exchange. At best, as in the case of HOPS, they have been designed
to interoperate in prescribed workflows. The individual components of such workflows are the legacy binaries
and the connections between them are files and/or streaming input/output. This type of setup is common
among scientific codes that have evolved over many years.

3.1. The modernization conundrum

Seen from an information technology viewpoint (for an overview see Argent (2004)), there are two major
options for dealing with the issue of legacy: Migration and Encapsulation (wrapping). The cleanest approach
for adapting to a modern distributed computing infrastructure appears to be migrating the code and rewrite
all applications in a language platform employing object-oriented and component technologies such as C++/
CORBA (Serrano et al., 2002). Moving to the use of platform–agnostic platforms (by transferring the codes to
Java, Seymour and Dongarra, 2003, for example) and Mobile Agents (Houstis et al., 2002) for the distributed
calculations would be a radical form of such modernization. Such an option is very flexible if implemented in
the context of a complete framework for future code development (e.g. Wenderholm, 2005), but it is obviously
extremely costly in terms of programming effort and accounting of all evolutionary work done so far. More-
over, it is error-prone as it is impractical to convert existing procedural programs to object-oriented compo-
nents (Terekhov and Verhoef, 2000). Finally, and very importantly for the case of scientific applications that
are performance sensitive, it comes at a heavy price in performance, especially for Java-based solutions.

The invasive but more traditional approach is to encapsulate legacy codes as modern software components
using wrappers. For example, CORBA (OMG, 2005), or better still, Common Component Architecture
Forum (CCA, 2004), can be used. The code can also be wrapped in C/C++ and then called from Java (in
a more complicated Mobile Agent setting for distributed computing) using JNI (JNI, 2004; Bubak et al.,
2001). However this powerful encapsulation approach involves breaking the Fortran code into separately call-
able components (Sang et al., 2002) that a main program can access, which once again is a very expensive exer-
cise without commensurate returns. One can also choose to encapsulate the whole of a program instead
(Walker et al., 2000a,b; Fatoohi et al., 2005; Wohlstadter et al., 2001).

A non-invasive approach is to keep employing the legacy binaries in predefined (but configurable) work-
flows with all data exchange between binaries continuing to take place through file I/O. The binaries config-
uration however is shifted from hand-edited files and scripts to automatically generated GUIs. This way of
working with legacy codes reduces to devising an extensible encapsulation of the software components (as
binaries) that treats them as black boxes with a set of inputs/outputs and a set of valid types and ranges of
compile-time and run-time parameters. The advent of XML provides a standards-based way to accomplish
this. XML describes data through the use of custom tags thus eliminating the need to conform to a specific
programming structure and offering the possibility to integrate legacy software with new technology.

Due to both some common ‘‘ancestral’’ links and adoption of dominant programming languages in use at
the time of development, a lot of ocean codes share common build- and run-time coding options: C-prepro-
cessor directives are mainly used to incorporate many different and possibly alternative code paths/modules in
the same program, selectable at compile time with the resulting speed and memory savings. Namelists have
been chosen by many models as a simple yet powerful way to provide run-time parameter and option handling
without having to write a lot of user interaction code. Due to a heritage of development on Unix platforms,
the build system is Makefile based (either directly or through some approach that creates Makefiles). NetCDF
(2005) is often the preferred I/O approach for model data input and output while ASCII files (including the
case of redirected standard input) are usually used to provide for run-time parameters and options. In the
following subsections we present (in alphabetical order) three different ocean models in more detail in light
of their build- and run-time configuration requirements.

3.2. HOPS

HOPS was built based on the Geophysical Fluid Dynamics Laboratory primitive equation model, (e.g.
Bryan and Cox, 1967). As summarized in Sections 1 and 2, it has evolved in the last 20 years into a



C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 203
relatively complex system, including software modules for physical, biological and acoustical modeling, initial-
ization, boundary conditions, data assimilation, adaptive sampling and skill evaluation. In this subsection, we
review only computational properties of the ocean physics PE model software module. Other modules have
similar build- and run-time characteristics.

The PE model employs stretched terrain-following or flat coordinates in the vertical and a choice between a
cartesian, aligned or rotated spherical polar grid in the horizontal. It can be used in a rigid-lid, surface pressure
or free-surface configuration, with various options for tidal forcing. The PE software consist of a suite Fortran
77 codes with no dynamic memory allocation and mostly NetCDF-based I/O. Therefore the PE binary needs
to be compiled either with large enough arrays to run with smaller problem sizes or be recompiled every time it
is used in different configurations or applied to another application. The PE of HOPS uses mostly GNU make
(Stallman and McGrath, 2005) and platform specific Makefiles (that differ in very few locations). The vast
majority of code configuration is done at build-time through the use of multiple alternative code sections
selectable via more than 100 different C-preprocessor directives declared in the Makefile (see Fig. 3). Some
of these directives are not orthogonal and therefore have dependencies (requirements or conflicts with each
other).

While preprocessor directives handle the specialization of the code paths, adaptation of the model to a par-
ticular region of the ocean is done via modifying an include file (‘‘param.h’’) as seen in Fig. 4.

What is shown in Figs. 3 and 4 are but a small subset of the total space of compile-time configurability
of the PE model of HOPS. As can easily be surmised, the task of configuring a robust model adequate for
a specific application is challenging and the learning curve for a new user can be steep.

This level of complexity continues at the level of run-time configuration, which is provided by a minimum
of one file (piped through standard input—see Fig. 5). Run time parameters in that file are read from
Fig. 3. Heavily edited-out example subset of the PE model of HOPS built-time Makefile.



Fig. 4. Heavily edited-out example subset of the PE model of HOPS compile-time parameters file.

204 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
alternating lines (the intervening lines serving as titles/comments for each parameter provided). Each line
(‘‘card’’ in the PE model terminology) has a different number of parameters (of differing data types) and usu-
ally addresses a particular subset of the run-time parameters. Some of these parameters may constrain subse-
quent parameter entries (e.g. the number of entries to follow—see card 15 in Fig. 5). Others are strings that
provide the filenames for reading in grid, IC and forcing fields as well as outputting run-time diagnostics, fields
and checkpoints or other run-time parameter files. A glossary to help the user can be appended to the end of
the file—after ‘‘card 99’’—the code ignores it.

The very modular nature of these options (and their range constraints or interdependencies) can be very
useful for the seasoned user of the PE model but can also exacerbate difficulties faced by a new user. When
the whole HOPS system is utilized, including the other software modules for acoustical and biological mod-
eling, skill evaluation and ESSE assimilation, error predictions and adaptive sampling (not described here), the
number of possibilities and options are further increased.

3.3. MITgcm

MITgcm (MIT general circulation model) (Marshall et al., 1997a,b) is a is a z/p-coordinate finite volume
numerical model designed for study of the atmosphere, ocean, and climate. It allows for a non-hydrostatic



Fig. 5. Heavily edited-out example subset of the PE model of HOPS run-time parameters file.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 205
formulation and employs cartesian, spherical polar or general orthogonal curvilinear grids in the horizontal
and shaved cells in the vertical to represent the topography. MITgcm is a modular Fortran 77 code with
no dynamic memory allocation and emerging full support for NetCDF-based I/O (for parallel I/O the native
MDS package is recommended). Thus MITgcm binaries need to be recompiled every time depending on the
model setup resolution, etc. The MITgcm is very portable; at the deeper level it employs Makefiles—GNU or
system—but that level of complexity is hidden from the user through the use of a meta-make tool called ‘‘gen-
make2’’. In the spirit of GNU configure (Taylor, 1998), this tool automatically detects the presence and
required functionality of support software and proceeds to construct a platform specific Makefile. Like ‘‘con-
figure’’, ‘‘genmake2’’ takes further command-line arguments that allow the customization of its behavior.

At the most basic level, code configuration is carried out both at build-time and at run-time. The former is
handled through the heavy use of alternative code sections selectable via C-preprocessor directives defined in
the Makefile. The latter is done by switching activated code paths on through run-time switches. Thus to
employ a given functionality, it is not enough to compile it in but one also needs to enable it at run-time. This
approach cuts down on the necessity for recompilation. This type of software design allows for great compu-
tational modularity in MITgcm: multiple separately maintained packages with clearly defined entry and exit
points in the main code path can be activated depending on the modeling needs.



206 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
The user is encouraged to work at the ‘‘genmake2’’ level instead of making changes to the Makefile directly.
To activate a package one needs to provide it as an argument to genmake2 ‘‘-enable ‘pkgname1 pkgname2 ...’ ’’;
similarly to disable a package, the ‘‘-disable’’ flag is provided. Modifications to the standard files in the main
model or in enabled packages can be all put in subdirectories which are specified to ‘‘genmake2’’ using the
‘‘-mods’’ flag. Sanity checks for package dependencies are automatically handled by genmake2. Instead of
specifying the list of packages on the command line, one can write them directly in a file called ‘‘pack-
ages.conf’’ (one package name per line) in a directory specified using the ‘‘mods’’ flag. The directory contain-
ing modifications is expected to always include a file called ‘‘SIZE.h’’ (see Fig. 6) where the definitions of the
main array sizes used in the code are stated.

Similarly to the PE model of HOPS, other include files usually modified are ‘‘CPP_OPTIONS’’, where basic
options about the code’s use are set and package-specific options are selected and defined, e.g. ‘‘GMRE-
DI_OPTIONS.h’’—see Fig. 7, for a Gent/McWiliams/Redi SGS Eddy parameterization.

After invoking ‘‘genmake2’’ and ‘‘make’’ for several targets specified in sequence, the MITgcm binary is
built. Run-time configuration of MITgcm is done entirely via namelists. MITgcm expects to find files ‘‘data’’
(see Fig. 8) and ‘‘data.pkg’’ (see Fig. 9). Depending on which packages are being used, additional files, e.g.
‘‘data.diagnostics’’, ‘‘data.gmredi’’, etc., also need to be specified. Variables can be in any order, lines can
be commented out and variables not appearing are set to their default values.

As for the PE model of HOPS, the modular nature of the build-time and run-time options of the MITgcm is
essential but can also exarcebate difficulties faced by new users. A web-enabled system for the user-friendly
configuration and control of such legacy software is needed.

3.4. ROMS

ROMS (Haidvogel et al., 2000; Arango et al., 2000) in its latest release (2.2) of May 2005 is a free-surface
hydrostatic PE ocean model; it employs stretched terrain-following coordinates in the vertical and an orthog-
onal curvilinear grid in the horizontal. ROMS is written in Fortran 90 (with dynamic memory allocation, a
flexible choice with some possible performance implications, e.g. Ashworth et al., 2001) and NetCDF-based
I/O. The more modern features of Fortran 90 allow ROMS to be more flexible in its use and do not require
recompilation for slight adjustments, for example, the model resolution. On the other hand, most of the build-
Fig. 6. Edited-out example subset of MITgcm build-time array configuration file.



Fig. 7. Edited-out example of MITgcm build-time configuration files (for the GM/Redi package).

Fig. 8. Edited-out example subset of MITgcm run-time main configuration file.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 207
time configuration of ROMS is still done using C-preprocessor directives to select alternative code blocks, as
for the PE model of HOPS. These directives are specified in an include file (‘‘cppdefs.h’’) that is automatically
inserted in all relevant source code files. Compilation is currently controlled using GNU make, with system-
specific Makefiles being automatically included depending on the platform and user-specified command-line
options for the make command.



Fig. 9. Edited-out example subset of MITgcm run-time package configuration file.

208 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
The compile-time configuration choices (see Fig. 10) cover both the setting of individual option values to
true or false, or the combined settings of values according to predefined model scenarios (by turning the sce-
nario flag on). There are more than 350 such options with complexity further increased with any
interdependencies.

At the level of run-time parameters, ROMS relies on a file (piped through standard input, see Fig. 11, or
given as the first command-line argument) that specifies both run-time parameter values and filenames includ-
ing those of other files containing further run-time parameterization. The syntax of the ROMS parameter files
is more flexible than that of the PE model of HOPS. Essentially input parameters can be entered in any order,
with the parameter name followed by ‘‘=’’ or ‘‘==’’ and the parameter value. Comments in the Fortran 90
Fig. 10. Heavily edited example subset of ROMS build-time configuration file.



Fig. 11. Heavily edited-out example subset of ROMS run-time parameters file.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 209
mode follow the ‘‘!’’ symbol. Fortran syntax multiplicative assignments (‘‘*’’) and unix shell continuation lines
(‘‘ 0’’) are also allowed.

As in the case of the PE model of HOPS, some of these parameters may constrain subsequent parameter
entries (e.g. see ‘‘NFFILES’’ in Fig. 11). Others are shortcuts for ‘‘TRUE’’ and ‘‘FALSE’’ switches. Finally,
specific strings provide the filenames for reading in grid, IC and forcing fields as well as output run-time diag-
nostics, fields and checkpoints or other run-time parameter files.

4. Legacy Computing Markup Language (LCML) schema design

Based on our requirements laid out in Section 3, an XML-based encapsulation of the configuration options
and parameters of the binaries should be self-contained; it should not require any modifications to the bina-
ries. By providing a detailed description in XML for a binary, we may treat it as a black box. A controlling
application should then be able to parse in the XML description, and from its contents, determine the specifics
on how to properly build and execute the binary with the appropriate input parameters.

We opted to employ XML schemata (XML schema, 2005) to constrain the vocabulary and syntax of our
XML descriptions. We call the resulting XML-schema-based language the ‘‘Legacy Computing Markup
Language (LCML)’’. Several key concerns have to be addressed and supported by LCML. A first issue is that
the resulting LCML documents should provide as much useful information to the user as possible, so that well



Fig. 12. Hierarchy of schemata.

210 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
informed decisions can be taken while making changes to parameters. There should be a set of default param-
eter values so that manual entry of all values for each compilation or execution is avoided, especially since
there can be hundreds of them. The LCML descriptions should also be capable of specifying input and output
files for the binary execution. Since run-time parameters should be checked after user changes, the schema
must support data types and constraints or requirements on parameter values and combinations thereof. This
is to facilitate the building or execution of the binary and ensure that all compile or input parameters are
acceptable. Each parameter value can then be validated against its constraints and data type before proceed-
ing. Support must also exist for more complicated data types such as variable length arrays (representing com-
pound lines) consisting of multiple constituent data types. This was one of the more difficult problems faced in
the design of LCML (Geiger, 2004).

Our hierarchical schema design, shown in Fig. 12, supports the description of the legacy program such the
ocean numerical models of HOPS, MITgcm and ROMS (Section 3), from using the source to build a binary,
to running a binary. In the absence of source code only the left side of the tree is available, while given source
code we may have multiple binaries built with different compilation options and parameters. LCML descrip-
tions at the source code level involve Makefile parameterizations, in terms of architecture, compiler options,
include and library paths, preprocessor defines, alternative sources etc. as well as parameters (initial values as
well as constants) provided in include files and sections of source files. LCML descriptions at the binary level
include the names and locations of input (and output) files, as well as the run-time input parameters that are
read in from stdin. Also described are command-line arguments and other run-time parameter sources
(specific files with predetermined names or names provided at the command line). Most elements in the schema
have parameters for name and description. These parameters are very useful for generating a GUI that
provides sufficient information for the users. The initial work is described in Chang (2003) while a more
detailed description of the schemata with example LCML descriptions of software components are presented
in Geiger (2004).

5. Initial results

Based on the ideas outlined above, we developed a generic GUI-generator in Java (called LEGEND for
LEGacy Encapsulation for Network Distribution) that can parse the LCML description of a code and present
the user with a validating GUI specifically tailored to the build-time and run-time parameterization of the
code. Our tool is currently a Java applet but its classes (specifically, the LCML API) could be re-used in a
server-side framework employing EJB (EJB, 2005)/JSP (JSP, 2005) and portlets. The tool allows the user
to customize the Makefile and source/include files in order to build a binary with the required capabilities
and attributes. Through the tool, the user can then build the application, either locally or remotely, through
a job script submission to a queuing system. Given a binary, the tool allows the user to customize the run-time
behavior of the binary, specify input and output files and finally execute the binary, again either locally or
remotely via a queuing system. In what follows, we illustrate this new tool by its application to the PE dynam-
ical model of the HOPS system (Sections 2 and 3.2). We also briefly show an example for the ESSE system,
focusing only on the ensemble uncertainty predictions, specifically on the binaries and output/input directories
that usually remain constant within such predictions.



C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 211
5.1. Build-time GUIs

Before compiling the PE Model code, the user has to make several Makefile choices and select a PE model
configuration among multiple C preprocessing options. These options are read in from the Makefile. The user
can also select several compile-time constants and other parameters. We wrote an LCML description of these
options and parameters. The GUIs generated for this build-time parameterization are shown in Fig. 13 for the
Makefile and Fig. 14 for the include file containing compile-time constants for the PE model.

Information about preprocessor macros and values for the constants (parameters and dimensions) used at
compile time are available and utilized by the GUI (Fig. 14). User interaction is either via value substitution or
toggling of an ‘‘on–off’’ flag. User selections are validated according to the data types and constraints
described in the LCML descriptions, taking into account interdependencies between parameters and options.

5.2. Input run-time parameter GUIs

The PE model binary has run-time parameters read in from stdin. We wrote an LCML description based on
the values and types of these parameters. After validating the description using the schemata (Section 4),
LEGEND processes the description and produce a GUI for the run-time parameters of the PE model, as
shown in Fig. 15.

The system presents the contents of the stdin stream in an organized manner that is easily understood.
Parameters are shown grouped together in the set structure imposed by the code (but can also be presented
indexed by name—for more easily locating a particular one—or in table format for compactness). Their
Fig. 13. Screen capture of GUI displaying Makefile options.



Fig. 14. Screen capture of GUI displaying compile-time parameters.

212 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
current value and data type is shown and additional information regarding their meaning and use is available
in the bottom frame. Beyond the default values provided for all parameters (as required by the schema),
importing and exporting of values allows a user to re-use the parameters of previous simulations, thereby less-
ening one’s workload. This way, instead of editing the input file, the user updates parameter values in the GUI
directly. Changes in the GUI are then checked for validity (type, range and conflicts with other parameters—
see Fig. 16) before the system generates the new stdin input file and execution script automatically. An exam-
ple of such automatically created stdin files was illustrated in Fig. 5.

Importantly, with our build-time and run-time GUIs, the user does not see any of the intricate details of the
input files (e.g. Figs. 5, 8 and 11). The user updates all parameters and submits all requests in a modern and
friendly web-based local environment. The required files are then created in the background. Should develop-
ers or advanced users modify the ocean model and its input characteristics, corresponding incremental changes
to the LCML description would still allow LEGEND to automatically generate the appropriate GUI.

5.3. ESSE GUI for ensemble uncertainty prediction

To illustrate the application of LEGEND to a modern data assimilation system, we focus on the uncer-
tainty prediction module of the ESSE system, specifically on the corresponding workflows. Such predictions
currently involve a C-shell which manages the perturbation of the initial conditions and ensemble of stochastic
PE model runs, including the successive computations of the singular value decomposition of the ensemble
spread until a criterion estimating convergence is satisfied. The C-shell workflow contains different types of
variables, including limit values, constant variables and evolving variables. In Fig. 17, we illustrate a GUI
for the constant variables involved in such workflows, including the: (i) binaries, from the codes which carry



Fig. 15. Screen capture of GUI displaying run-time parameters.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 213
out checks for physically admissible perturbations to the stochastic PE model code, (ii) output/input directo-
ries that usually remain constant, and (iii) management variables.

5.4. LCML issues

The LCML descriptions of the binaries are meant to be written once and only revised/enlarged when
configuring the build- or run-time behavior of the code changes. Code enhancements that do not affect the
user-interaction thus do not warrant any changes in the LCML descriptions. Developers need only to carry
out incremental changes to the LCML code descriptions. The latter, as always in the case of XML, are rather
verbose files (see Fig. 18 for an example) but are not very difficult to write with an XML or specialized LCML
editor (Geiger, 2004).

6. Related work

Among the earliest work done to encapsulate legacy binaries for use over the web was Javamatic (Phanou-
riou and Abrams, 1997). Their system required the user to write Java classes to describe the application or
attempt to graphically compose derived/extended Javamatic classes. The application description was not
separate from the GUI look and feel.

The bioinformatics community has had a great need for simplified access to command-line driven genomics
tools and several efforts have attempted to meet that need: W2H (Senger et al., 1998) and AppLab (Senger,
1999) paved the way, followed by PISE (Letondal, 2001) and GenePattern (Reich and the GenePattern
team, 2005). All of the latter tools were XML-based but followed significantly different implementation



Fig. 16. Screen capture of GUI validating user input.

Fig. 17. Screen capture of a GUI for variables that usually remain constant within the uncertainty prediction module of the ESSE system.

214 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
philosophies: CORBA is used for AppLab, Perl for PISE and Java/JNI for GenePattern. The emphasis is on
command-line arguments and, quite significantly, workflows. There is no support for configuring the building



Fig. 18. Heavily edited-out example LCML description.

C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 215
of an application. Of the systems mentioned, PISE has the most common features with LCML/LEGEND in
that it supports the concepts of dependencies and validity ranges. The web services/grid computing community
has placed a lot of emphasis on distributed workflow execution. Grid workflow solutions like Keppler (Altin-
tas et al., 2005), Karajan (Hategan et al., 2004), GRB (Aloisio and Cafaro, 2002) and Gridbus (Buyya and
Venugopal, 2004) provide some limited access to command-line configuration for the individual workflow
components. Once again the underlying description language is XML but the GUI deals with the workflow
aspect.

More detailed configuration of Grid-enabled applications has been provided by the emergence of more
involved GUI-generation tools such as GUIGen (Reinerfeld et al., 2002) and Gridspeed (Suzumura et al.,
2004). Handling of run-time configuration of input files is done via parameter substitution in template files
specified in some scripting or programming language (GUIGen) or in a Java-based template engine (Apache
velocity—gridspeed).

In the engineering community some similar abstraction efforts have been made: e.g. XGui for the ICE
project (Clarke and Namburu, 2002) and MAUI (2002) with the latter being far more generic. In both cases
the GUI presentation is part of the application description, requiring more work at the level of writing the
application description.

Finally, in the area of environmental applications, efforts have arisen in application specific platforms such
as WRFIS/GUI (McCaslin et al., 2004). More general approaches in the context of a grid computing infra-
structure can be seen in DMEFS (Haupt et al., 2002) and ECMWF’s (PrepIFS, 2005). Both are XML-based
and provide for configuring the run-time and (in the case of the latter) build-time options of command-line
driven binaries. Moreover they form very complete environments for the remote control of applications, from
configuration through execution to postprocessing.

LCML/LEGEND is largely orthogonal to any of the workflow-oriented work mentioned above. In fact it
was purposefully designed to allow coupling to more than one workflow solution. The strength of our work
lies in that LCML provides for a generic approach to the abstraction of an application’s configuration, with-
out bothering the application developer with specifying GUI presentation details, but providing for validation
of the input values through constraints and dependencies. Our system handles not only run-time options and



216 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
parameters but also build-time ones. Our LCML customizations go beyond command-line arguments and
the simple value-pair substitutions in template files and allow for varying length multi-type arrays and other
complex objects.

7. Conclusion and future research

We developed a novel XML-schema-based language (LCML) and implemented new software (LEGEND)
for the web-enabled configuration and control of ‘‘legacy’’ codes and applied them to components of an inter-
disciplinary ocean modeling and data assimilation system. Schema-validated LCML descriptions are imple-
mented to provide a machine (and human) readable standard for managing the tasks involved in carrying
out research and operations with such complex computational command-line-driven codes. All options and
parameterizations of the binaries are described using LCML, and LEGEND automatically generates validat-
ing GUIs to handle the interactions with the user.

By wrapping the codes using LCML, their build-time and compile-time parameterizations, as well as their
input and output files, stdin and command-line-provided run-time parameters are described. A prototype sys-
tem was implemented as a Java applet and graphical interfaces displaying user-configurable parameters were
generated, based on the LCML description. The GUI allows for user customization of parameters and
validates user changes. Include files, source files and Makefiles are modified and input and script files for
the compilation and execution of binaries, respectively, are produced.

LCML and LEGEND are available under an MIT open source license from http://www.sf.net/lcml and
http://www.sf.net/legend-lcml. We expect LCML to slowly evolve to deal with cases where it may be discov-
ered that it cannot adequately describe the particulars of a specific code. LEGEND has the potential of being
enhanced to have direct Grid connectivity or its code may be re-used in a new more powerful LCML-parsing
GUI generator.

Current research includes completing production-quality LCML descriptions for the whole HOPS and
ESSE systems, and for ROMS (Haidvogel et al., 2000) and MITgcm (Marshall et al., 1997a,b). Our approach
can also be extended to cover more codes from the ocean forecasting/simulation and data assimilation com-
munity. In the future, as our new LCML and LEGEND are applied to other models, our schema and software
may need to be further enhanced to handle unusual structures of input files, etc. While these structures are
only limited by the imagination of ocean model developers, we expect that over time any necessary changes
to LCML will be ever more uncommon and incremental.

Other usability extensions involve style sheets allowing for a more flexible presentation of the GUI and
supports for units. For example, this could allow a user to provide parameter values in the units she/he is more
accustomed to. The software would then automatically transform units and validate input values against the
allowed values in the units the program uses.

We have designed our system in expectation of being able to deal with codes that employ other build-time
systems, for example cmake (2004) or others. As any such systems are themselves either legacy-binary or con-
figuration file driven, we expect that the same approach will be easily used to cover them.

Going beyond the current capabilities of our software tools which drive the building and execution of
ocean model binaries through submission of jobs to queuing systems, we have started to integrate the full
system within a Grid infrastructure using the Globus toolkit (Globus, 2005). So instead of LEGEND work-
ing with local files, it would create files and execute scripts on Globus-enabled remote platforms. That would
enable the remote use of LEGEND from essentially any Internet connected machine. A server-centric
approach to the GUI generation that uses JSP/portlets instead of an applet is being investigated in relation
to integration within a Grid Portal. Another direction of interest is integrating our applet in the ARION
system (Houstis et al., 2002), allowing for a generic applet to drive remote binaries. Further work could
include the introduction of the concept of virtual data files, a capability that is already partially in place
in our tools with support for pre and poststaging of I/O files. Just as XML metadata about building and
running a legacy binary are central to our system, metadata about data file contents and locations (of
replicas, etc.) are going to be important for a future system that would support a fully virtual data file that
is described by information about its contents (or instructions about how it can be generated dynamically)
instead of a name and a location.

http://www.sf.net/lcml
http://www.sf.net/legend-lcml


C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 217
Currently, our system workflows are predefined and our software tools serve to prepare the individual com-
ponents of these workflows prior to their utilization. In the long term, one can envision other scenarios involv-
ing legacy binaries where workflows are flexible and composed interactively by the user or dynamically and
automatically by an expert system. A full, machine-readable description of the parameters in, and other attri-
butes of, input and output files used to connect workflow components is a prerequisite for a fully flexible sys-
tem allowing the validated composition of such workflows. This would extend our approach by further
integrating data file metadata and requiring descriptions for output files as well. Going beyond validation,
mismatched component connections can sometimes be handled by mediating agents, the requirements for
which can be generated from the available XML binary and data file descriptions. Given these requirements,
a (relatively simple) mediating agent could even be automatically composed from a set of predefined
components.

Acknowledgments

The authors would like to acknowledge the assistance of Dr. P.J. Haley and Professors J.J. McCarthy, A.R.
Robinson and H. Schmidt. Discussions with W. Leslie, S. Lalis and R. Tian were also appreciated. We thank
Prof. Killworth and two anonymous reviewers for a rapid and useful review. This work was funded under the
support of Dr. F. Darema from NSF/ITR (under Grant EIA-0121263) and in part from DoC (NOAA via
MIT Sea Grant, under Grant NA86RG0074) and from ONR for PFJL (under Grant N00014-05-1-0335,
N00014-05-1-0370, N00014-01-1-0771 and N00014-97-1-0239).

References

Aloisio, G., Cafaro, M., 2002. Web-based access to the Grid using the Grid Resource Broker portal. Concurr. Comput.: Pract. Exper. 14,
1145–1160.

Altintas, I., Birnbaum, A., Baldridge, K., Sudholt, W., Miller, M., Amoreira, C., Potier, Y., Ludaescher, B., 2005. A framework for the
design and reuse of grid workflows. In: International Workshop on Scientific Applications on grid computing (SAG’04)LNCS, vol.
3458. Springer.

Arango, H.G., 2001. A community terrain-following ocean modelling system. Available from: <http://marine.rutgers.edu/cool/
coolresults/ams2001/index.html/TOMS.ppt>.

Arango, H.G. et al., 2000. ROMS. The regional ocean modeling system. Available from: <http://marine.rutgers.edu/po/models/roms/
index.php>.

Argent, R.M., 2004. An overview of model integration for environmental applications—components, frameworks and semantics. Environ.
Modell. Software 19 (3), 219–234.

Ashworth, M., Emerson, D.R., Sandham, N.D., Yao, Y., Li, Q., 2001. Parallel DNS using a compressible turbulent channel flow
benchmark. In: ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, 4–7 September.

Berntsen, J., Svendsen, E., 1999. Using the SKAGEX dataset for evaluation of ocean model skills. J. Mar. Syst. 18 (4), 313–331, for model
information: http://www.mi.uib.no/BOM/.

Bryan, K., Cox, M.D., 1967. A numerical investigation of the oceanic general circulation. Tellus 19 (1), 54–80.
Bubak, M., Kurzyniec, D., Luszczek, P., 2001. Convenient use of legacy software in Java with Janet package. Future Gener. Comput.

Syst. 17, 987–997.
Burchard, H., Bolding, K., 2000. GOTM—a public-domain-model for the water column. Available from: <http://www.gotm.net>.
Buyya, R., Venugopal, S., 2004. The gridbus toolkit for service oriented grid and utility computing: an overview and status report. In: 1st

IEEE International Workshop on Grid Economics and Business Models (GECON 2004, April 23, 2004, Seoul, Korea). IEEE Press,
New Jersey, USA, ISBN 0-7803-8525-X, pp. 19–36.

CCA Forum, 2004. Common Component Architecture. Available from: <http://www.cca-forum.org/>.
Chang, R.C., 2003. The Encapsulation of Legacy Binaries using an XML-Based Approach with Applications in Ocean Forecasting.

M.Eng. in Electrical Engineering and Computer Science thesis, Massachusetts Institute of Technology.
Chassignet, E.P., Malanotte-Rizzoli, P., 2000. Ocean circulation model evaluation experiments for the North Atlantic basin, Elsevier

Science, special DAMEE issue, Dyn. Atmos. Oceans 32, 155–432, for model information: http://oceanmodeling.rsmas.miami.edu/
micom/.

Clarke, J.A., Namburu, R.R., 2002. A distributed computing environment for interdisciplinary applications. Concurr. Comput.: Pract.
Exper. 14, 1161–1174.

Cross-Platform Make, 2004. Available from: <http://www.cmake.org/>.
DAGman developers in the Condor Group, 2005. The directed acyclic graph manager (DAGMan). Available from: <http://

www.cs.wisc.edu/condor/dagman>.
De Szoeke, R.A., Springer, S.R., Oxilia, D.M., 2000. Orthobaric density: a thermodynamic variable for ocean circulation studies. J. Phys.

Oceanogr. 30 (11), 2830–2852, for model information: http://posum.oce.orst.edu/.

http://marine.rutgers.edu/cool/coolresults/ams2001/index.html/TOMS.ppt
http://marine.rutgers.edu/cool/coolresults/ams2001/index.html/TOMS.ppt
http://marine.rutgers.edu/po/models/roms/index.php
http://marine.rutgers.edu/po/models/roms/index.php
http://www.mi.uib.no/BOM/
http://www.gotm.net
http://www.cca-forum.org/
http://oceanmodeling.rsmas.miami.edu/micom/
http://oceanmodeling.rsmas.miami.edu/micom/
http://www.cmake.org/
http://www.cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/dagman
http://posum.oce.orst.edu/


218 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi, K., Livny, M., 2004. Pegasus: mapping scientific
workflows onto the gridLNCS, vol. 3165, pp. 11–20.

Deleersnijder, E., Campin, J.-M., Delhez, E.J.M., 2001. The concept of age in marine modelling: I. Theory and preliminary model results.
J. Mar. Syst. 28 (3–4), 229–267.

Dutay, J.-C., Bullister, J.L., Doney, S.C., Orr, J.C., Najjar, R., Caldeira, K., Campin, J.-M., Drange, H., Follows, M., Gao, Y., 2002.
Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modell. 4 (2), 89–120, TY—JOUR,
http://www.ipsl.jussieu.fr/OCMIP/phase2/poster/dutay.CFC.pdf.

EdGCM, 2005. Available from: <http://www.edgcm.org>.
Enterprise JavaBeans Technology, 2005. Available from: <http://java.sun.com/products/ejb/>.
Ezer, T. et al., 2000. The Princeton Ocean Model, Program in Atmospheric and Oceanic Sciences, P.O. Box CN710, Sayre Hall, Princeton

University, Princeton, NJ 08544-0710. Available from: <http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/>.
Fatoohi, R., Gokhale, N., Viswesan, S., 2005. iJob: an Internet-based job execution environment using asynchronous messaging. Inform.

Software Technol. 47 (8), 565–574.
Foster, I., Kesselman, C. (Eds.), 2003. The Grid 2: Blueprint for a New Computing Infrastructure, second ed. Morgan Kaufmann.
Frickenhaus, S., Hiller, W., Best, M., 2005. FoSSI: the family of simplified solver interfaces for the rapid development of parallel

numerical atmosphere and ocean models. Ocean Modell. 10 (1–2), 185–191.
Geiger, S.K., 2004. LEGacy Encapsulation for Network Distribution. S.M. in Ocean Engineering thesis, Massachusetts Institute of

Technology.
Gent, P.R., Bryan, F.O., Danabasoglu, G., Doney, S.C., Holland, W.R., Large, W.G., McWilliams, J.C., 1998. The NCAR Climate

System Model global ocean component. J. Climate 11 (6), 1287–1306, for model information: http://www.cgd.ucar.edu/csm/models/
ocn-ncom/.

Globus Alliance, 2005. The Globus Toolkit. Available from: <http://www.globus.org/toolkit/>.
Griffies, S., 2004. Fundamentals of Ocean Climate Models. Princeton University Press, 496 pp.
Haidvogel, D.B., Beckmann, A., 1999. Numerical Ocean Circulation Modeling. World Scientific Pub. Co., ISBN 1860941141, 318 pp.
Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., Shchepetkin, A.F., 2000. Model evaluation

experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans 32 (3–4), 239–
281, for model information: http://marine.rutgers.edu/po/models/.

Halliwell, G., Bleck, R., Chassignet, E.P., Smith, L., 2001. Evaluation of the HYbrid Coordinate Ocean Model (HYCOM) Using Atlantic
Ocean Simulations. Available from: <http://hycom.rsmas.miami.edu/halliwell_01/slides_files/v3_document.htm>.

Hategan, M., von Laszewski, G., Amin, K., 2004. Karajan: a grid orchestration framework. Supercomputing 2004, Pittsburgh, 6–12
November (Refereed Poster). Available from: <http://www.sc-conference.org/sc2004>.

Haupt, T., Bangalore, P., Henley, G., 2002. Mississippi computational portal. Concurr. Comput.: Pract. Exper. 14, 1275–1287.
Houstis, C., Lalis, S., Christophides, V., Plexousakis, D., Vavalis, E., Pitikakis, M., Kritikos, K., Smardas, A., Gikas, C., 2002. A service

infrastructure for e-Science: the case of the ARION system. In: Proceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE 2002), E-Services and the Semantic Web workshop (WES2002), Toronto, Canada, LNCS,
vol. 2512, Springer, pp. 175–187.

Hurley, P.J., Physick, W.L., Luhar, A.K., 2005. TAPM: a practical approach to prognostic meteorological and air pollution modeling.
Environ. Modell. Software 20 (6), 737–752.

Java Native Interface, 2004. Available from: <http://java.sun.com/j2se/1.5.0/docs/guide/jni/>.
JavaServer Technology, 2005. Available from: <http://java.sun.com/products/jsp/>.
Kantha, L.H., Clayson, C.A., 2000. Numerical Models of Oceans and Oceanic Processes. Academic Press, 940 pp.
Killworth, P.D., Li, J.-G., Smeed, D.A., 2003. On the efficiency of statistical assimilation techniques in the presence of model and data

error. J. Geophys. Res. 108 (C4), 3113.
Lermusiaux, P.F.J., 2002. On the mapping of multivariate geophysical fields: sensitivity to size, scales and dynamics. J. Atmos. Oceanic

Technol. 19, 1602–1637.
Lermusiaux, P.F.J., Robinson, A.R., 1999. Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Month.

Weather Rev. 127, 1385–1407.
Lermusiaux, P.F.J., Anderson, D.G.M., Lozano, C.J., 2000. On the mapping of multivariate geophysical fields: error and variability

subspace estimates. Q.J.R. Meteorol. Soc., 1387–1430.
Lermusiaux, P.F.J., Robinson, A.R., Haley Jr., P.J., Leslie, W.G., 2002. Advanced interdisciplinary data assimilation: filtering and

smoothing via error subspace statistical estimation. In: Proceedings of the OCEANS 2002. MTS/IEEE, Holland Publications, pp. 795–
802.

Lermusiaux, P.F.J., Evangelinos, C., Tian, R., Haley Jr., P.J., McCarthy, J.J., Patrikalakis, N.M., Robinson, A.R., Schmidt, H., 2004.
Adaptive coupled physical and biogeochemical ocean predictions: a conceptual basis. In: Darema, F (Ed.), Computational Science—
ICCS 2004, LNCS, vol. 3038, pp. 685–692.

Letondal, C., 2001. A web interface generator for molecular biology programs in Unix. Bioinformatics 17 (1), 73–82.
Lozano, C.J., Robinson, A.R., Arango, H.G., Gangopadhyay, A., Sloan, Q., Haley Jr., P.J., Anderson, L., Leslie, W.G., 1996. An

interdisciplinary ocean prediction system: assimilation strategies and structured data models. In: Malanotte-Rizzoli, P. (Ed.), Modern
Approaches to Data Assimilation in Ocean Modeling. Elsevier Science, pp. 413–452.

Lynch, D.R., Davies, A.M., 1995. Quantitative skill assessment for coastal ocean models. In: Lynch, D.R., Davies, A.M. (Eds.), Coastal
and Estuarine Studies, vol. 47. American Geophysical Union, Washington, DC, pp. 153–174.

http://www.ipsl.jussieu.fr/OCMIP/phase2/poster/dutay.CFC.pdf
http://www.edgcm.org
http://java.sun.com/products/ejb/
http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
http://www.cgd.ucar.edu/csm/models/ocn-ncom/
http://www.cgd.ucar.edu/csm/models/ocn-ncom/
http://www.globus.org/toolkit/
http://marine.rutgers.edu/po/models/
http://hycom.rsmas.miami.edu/halliwell_01/slides_files/v3_document.htm
http://www.sc-conference.org/sc2004
http://java.sun.com/j2se/1.5.0/docs/guide/jni/
http://java.sun.com/products/jsp/


C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220 219
Lynch, D.R., Naimie, C.E, Ip, J.T., Lewis, C.V., Werner, F.E., Luettich, R., Blanton, B.O., Quinlan, J., McGillicuddy Jr., D.J., Ledwell,
J.R., Churchill, J., Kosnyrev, V., Davis, C.S., Gallager, S.M., Ashjian, C.J., Lough, R.G., Manning, J., Flagg, C.N., Hannah, C.G.,
Groman, R.C., 2001. Real-time data assimilative modeling on Georges Bank. Oceanography 14 (1), 65–77. Available from: <http://
www-nml.dartmouth.edu/Publications/external_publications/PUB-99-2/>.

Marshall, J., Hill, C.N., Perelman, L., Adcroft, A., 1997a. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J.
Geophys. Res. 102 (C3), 5733–5752, for model information: http://mitgcm.org/.

Marshall, J., Adcroft, A., Hill, C.N., Perelman, L., Heisey, C., 1997b. A finite-volume, incompressible Navier Stokes model for studies of
the ocean on parallel computers. J. Geophys. Res. 102 (C3), 5753–5766.

MAUI: rapidly developing a graphical user interface (GUI) for an application, 2002. Available from: <http://csmr.ca.sandia.gov/projects/
maui/index.php>.

McCaslin, P.T., Smart, J.R., Shaw, B., Jamison, B.D., 2004. Graphical user interface to prepare the standard initialization for WRF. In:
20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 84th AMS Annual Meeting
11–15 January.

Mooers, C.N.K. (Ed.), 1999. Coastal Ocean Prediction. AGU Coastal and Estuarine Studies Series. American Geophysical Union,
Washington, DC, 523 pp.

Network Common Data Format, 2005. Available from: <http://my.unidata.ucar.edu/content/software/netcdf/index.html>.
Open Management Group, 2005. Common Object Request Broker Architecture. Available from: <http://www.corba.org/>.
Onken, R., Robinson, A.R., Lermusiaux, P.F.J., Haley Jr., P.J., Anderson, L.A., 2004. Data-driven simulations of synoptic circulation

and transports in the Tunisia–Sardinia–Sicily region. J. Geophys. Res. 108 (C9), 8123–8136.
Pacanowski, R.C., Griffies, S.M., 2000. Modular Ocean Model 3.0 Manual, GFDL. Available from: <http://www.gfdl.gov/smg/MOM/

web/guide_parent/guide_parent.html>.
Patrikalakis, N.M., 2005. Poseidon: a distributed information system for ocean processes. Available from: <http://czms.mit.edu/poseidon/>.
Patrikalakis, N.M., Abrams, S.L., Bellingham, J.G., Cho, W., Mihanetzis, K.P., Robinson, A.R., Schmidt, H., Wariyapola, P.C.H., 2000.

The digital ocean. In: Proceedings of Computer Graphics International, GCI ’2000, Geneva, Switzerland, June. IEEE Computer
Society Press, Los Alamitos, CA, pp. 45–53.

Phanouriou, C., Abrams, M., 1997. Transforming command-line driven systems to Web applications. Comput. Networks ISDN Syst. 29,
1497–1505.

Pietrzak, J., Deleersnijder, E., Schrter, J., 2005. The second international workshop on unstructured mesh numerical modelling of coastal,
shelf and ocean flows, Delft, The Netherlands, September 23–September 25. Ocean Modell. 10 (1–2), 1–3.

Pinardi, N., Woods, J.D., 2002. Ocean Forecasting: Conceptual Basis and Applications. Springer-Verlag, Berlin.
PrepIFS, 2005. Available from: <http://www.ecmwf.int/services/prepifs>.
Reich, M., the GenePattern team, 2005. GenePattern. Available from: <http://www.broad.mit.edu/cancer/software/genepattern.
Reinerfeld, A., Stüben, H., Schintke, F., Din, G., 2002. GUIGen: a toolset for creating customized interfaces for grid user communities.

Future Gener. Comput. Syst. 18, 1075–1084.
Robinson, A.R., 1999. Forecasting and simulating coastal ocean processes and variabilities with the Harvard ocean prediction system. In:

Mooers, C.N.K. (Ed.), Coastal Ocean Prediction, AGU Coastal and Estuarine Studies Series. American Geophysical Union, pp. 77–
100.

Robinson, A.R., Lermusiaux, P.F.J., 2004. Prediction systems with data assimilation for coupled ocean science and ocean acoustics. In:
Tolstoy, A. et al. (Eds.), Proceedings of the Sixth International Conference on Theoretical and Computational Acoustics. World
Scientific Publishing, pp. 325–342.

Robinson, A.R., the LOOPS Group, 1999. Realtime forecasting of the multidisciplinary coastal ocean with the littoral ocean observing
and predicting system (LOOPS). In: Third Conference on Coastal Atmospheric and Oceanic Prediction and Processes, New Orleans,
LA, 3–5 November, American Meteorological Society, pp. 30–35. Available from: <http://www.deas.harvard.edu/robinson/PAPERS/
AMS_NO.html>, for model information: http://www.deas.harvard.edu/robinson/activities.html.

Robinson, A.R., Lermusiaux, P.F.J., Sloan III, N.Q., 1998. Data assimilation. In: Brink, K.H., Robinson, A.R. (Eds.), The Sea: The
Global Coastal Ocean I: Processes and Methods, vol. 10. John Wiley and Sons, New York, NY, pp. 541–594.

Robinson, A.R., Lermusiaux, P.F.J., Haley Jr., P.J., Leslie, W.G., 2002. Predictive skill, predictive capability and predictability in ocean
forecasting. In: Proceedings of The OCEANS 2002 MTS/IEEE Conference. Holland Publications, pp. 787–794.

Robinson, A.R., Haley Jr., P.J., Lermusiaux, P.F.J., Leslie, W.G., 2005. Harvard ocean prediction system (HOPS). Available from:
<http://oceans.deas.harvard.edu/HOPS/HOPS.html>.

Sang, J., Follen, G., Kim, C., Lopez, I., 2002. Development of CORBA-based engineering applications from legacy Fortran programs.
Inform. Software Technol. 44, 175–184.

Schmidt, H., Tango, G., 1986. Efficient global matrix approach to the computation of synthetic seismograms. Geophys. J.R. Astr. Soc.,
84.

Semtner, A.J., 1997. Introduction to a numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 135 (2),
149–153.

Senger, M., 1999. AppLab: CORBA-Java based application wrapper, CCP11 Newsletter, 8.
Senger, M., Flores, T., Glatting, K.-H., Hotz-Wagenblatt, A., Suhai, H., 1998. W2H: WWW interface the GCG sequence analysis

package. Bioinformatics 14, 452–457.
Serrano, M.A., Carver, D.L., de Oca, C.M., 2002. Reengineering legacy systems for distributed environments. J. Syst. Software 64, 37–55.
Seymour, K., Dongarra, J., 2003. Automatic translation of Fortran to JVM bytecode. Concurr. Comput.: Pract. Exper. 15 (3–5), 207–222.

http://www-nml.dartmouth.edu/Publications/external_publications/PUB-99-2/
http://www-nml.dartmouth.edu/Publications/external_publications/PUB-99-2/
http://mitgcm.org/
http://csmr.ca.sandia.gov/projects/maui/index.php.
http://csmr.ca.sandia.gov/projects/maui/index.php.
http://my.unidata.ucar.edu/content/software/netcdf/index.html
http://www.corba.org/
http://www.gfdl.gov/smg/MOM/web/guide_parent/guide_parent.html
http://www.gfdl.gov/smg/MOM/web/guide_parent/guide_parent.html
http://czms.mit.edu/poseidon/
http://www.ecmwf.int/services/prepifs
http://www.broad.mit.edu/cancer/software/genepattern
http://www.deas.harvard.edu/robinson/PAPERS/AMS_NO.html
http://www.deas.harvard.edu/robinson/PAPERS/AMS_NO.html
http://www.deas.harvard.edu/robinson/activities.html
http://oceans.deas.harvard.edu/HOPS/HOPS.html


220 C. Evangelinos et al. / Ocean Modelling 13 (2006) 197–220
Signell, R.P., Jenter, H.L., Blumberg, A.F., 2000. Predicting the physical effects of relocating Boston’s sewage outfall. J. Estuarine Coastal
Shelf Sci. 50 (1), 59–72, for model information: http://crusty.er.usgs.gov/ecomsi.html.

Smith, R.D., Dukowicz, J.K., Malone, R.C., 1992. Parallel ocean general circulation modeling. Physica D 60, 38–61, for model
information: http://www.lanl.gov/orgs/t/t3/globalclimate.shtml.

Stallman, R.M., McGrath, R., 2005. GNU Make: A Program for Directing Recompilation, Free Software Foundation. Available from:
<http://directory.fsf.org/devel/build/make.html>.

Stammer, D., Chassignet, E.P., 2000. Ocean state estimation and prediction in support of oceanographic research. Oceanography 13, 51–
56.

Suzumura, T., Nakada, H., Matsuoka, S., Casanova, H., 2004. GridSpeed: A Web-based Grid Portal Generation Server. In: Proceedings
of the 7th International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’04), Tokyo.

Taylor, I.L., 1998. The GNU configure and build system, Cygnus Solutions.
Terekhov, A., Verhoef, C., 2000. The realities of language conversions. IEEE Software 17 (6), 111–124.
Walker, D.W., Li, M., Rana, O.F., 2000a. An XML-based component model for wrapping legacy codes as Java/CORBA components. In:

Proceedings of the Fourth International Conference on High Performance Computing in the Asia-Pacific Region, Beijing, China.
IEEE Computer Society Press, pp. 507–512.

Walker, D.W., Li, M., Rana, O.F., Shields, M.S., Huang, Y., 2000b. The software architecture of a distributed problem-solving
environment. Concurr. Comput.: Pract. Exper. 12, 1455–1480.

Wallcraft, A.J., 1991. The Navy Layered Ocean Model Users Guide, Naval Research Laboratory, Stennis Space Center, MS, 21, NOARL
Report 35. Available from: <http://www7320.nrlssc.navy.mil/html/images/users_guide.ps.gz>, for model information: http://
www7320.nrlssc.navy.mil/global_nlom/.

Wenderholm, E., 2005. Eclpss: a Java-based framework for parallel ecosystem simulation and modeling. Environ. Modell. Software 20 (9),
1081–1100.

Wohlstadter, E., Jackson, S., Devanbu, P., 2001. Generating Wrappers for Command Line Programs: The Cal-Aggie Wrap-O-Matic
Project. In: 23rd International Conference on Software Engineering (ICSE’01), p. 243.

eXtensible Markup Language, 2005. Available from: <http://www.w3.org/XML/>.
XML schema specification, 2005. Available from: <http://www.w3.org/XML/Schema.
Yilmaz, N.K., 2005. Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling. Mechanical Engineering Department,

MIT, Ph.D. thesis in final preparation, September, Cambridge, MA.

http://crusty.er.usgs.gov/ecomsi.html
http://www.lanl.gov/orgs/t/t3/globalclimate.shtml
http://directory.fsf.org/devel/build/make.html
http://www7320.nrlssc.navy.mil/html/images/users_guide.ps.gz
http://www7320.nrlssc.navy.mil/global_nlom/
http://www7320.nrlssc.navy.mil/global_nlom/
http://www.w3.org/XML/
http://www.w3.org/XML/Schema

	Web-enabled configuration and control of legacy codes: An application to ocean modeling
	Introduction
	Motivation: ocean prediction and data assimilation workflows
	Legacy codes
	The modernization conundrum
	HOPS
	MITgcm
	ROMS

	Legacy Computing Markup Language (LCML) schema design
	Initial results
	Build-time GUIs
	Input run-time parameter GUIs
	ESSE GUI for ensemble uncertainty prediction
	LCML issues

	Related work
	Conclusion and future research
	Acknowledgments
	References


