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Abstract—Uncertainty prediction for ocean and climate predictions is essential for multiple applications today. Many-Task Computing

can play a significant role in making such predictions feasible. In this manuscript, we focus on ocean uncertainty prediction using the

Error Subspace Statistical Estimation (ESSE) approach. In ESSE, uncertainties are represented by an error subspace of variable size.

To predict these uncertainties, we perturb an initial state based on the initial error subspace and integrate the corresponding ensemble

of initial conditions forward in time, including stochastic forcing during each simulation. The dominant error covariance (generated via

SVD of the ensemble) is used for data assimilation. The resulting ocean fields are used as inputs for predictions of underwater sound

propagation. ESSE is a classic case of Many Task Computing: It uses dynamic heterogeneous workflows and ESSE ensembles are

data intensive applications. We first study the execution characteristics of a distributed ESSE workflow on a medium size dedicated

cluster, examine in more detail the I/O patterns exhibited and throughputs achieved by its components as well as the overall ensemble

performance seen in practice. We then study the performance/usability challenges of employing Amazon EC2 and the Teragrid to

augment our ESSE ensembles and provide better solutions faster.

Index Terms—MTC, assimilation, data-intensive, ensemble.

Ç

1 INTRODUCTION

OUR initial motivation was speeding up the execution of
our stochastic ocean data assimilation ensembles via

distributed computations, and thereby, allowing the eva-
luation of larger ensembles by the same hard deadline we
are operating under. Our approach resulted in a clear case
of a Many Task Computing (MTC) [1] application. This
approach was extended by further augmenting ESSE
ensemble size by employing remote resources on the Grid
and the Amazon EC2 public Cloud.

Uncertainty prediction and data assimilation (the combi-
nation of observations and model results aiming for an
optimal future state estimate with an error bound) is
becoming ever more important a discipline, not only in the
ocean sciences (as well as weather forecasting/climate
prediction) but in other scientific/engineering fields where
(field) measurements can be used to enhance the fidelity and
usefulness of the computed solutions. It is clear that being
able to use a larger ensemble size within the same time

constraints can be very helpful and thus an MTC-style
parallelization of ESSE is important, especially if it can be
spread to such remote resources such as Grids and Clouds.
More closely coupled parallelization approaches (whole-
program like) to ensemble Kalman filter related techniques
have already been attempted (e.g., [2], [3], [4]) but they have
less opportunities for massive parallelism as they require a
more tightly integrated parallel platform.

In what follows, Section 2 describes the application area
of ocean data assimilation and provides details about the
timeline of real-time data assimilation and ocean-acoustic
modeling. Section 3 describes ESSE [5], [6], the data
assimilation and error estimation approach used. Section 4
describes the ESSE implementation as a MTC application
([7], [8], [9]) and the options we face in terms of optimizing
I/O issues. This is followed in Section 5 by a discussion of
the practical MTC use of ESSE on local clusters, Grids and
Amazon EC2. We discuss future work in Section 6.
Conclusions are in Section 7.

2 OCEAN DATA ASSIMILATION

Data Assimilation (DA) is a quantitative approach to
optimally combine models and observations that is con-
sistent with model and data uncertainties. Ocean DA can
extract maximum knowledge from the sparse and expen-
sive measurements of highly variable ocean dynamics. The
ultimate goal is to better understand and predict these
dynamics on multiple spatial and temporal scales. There are
many applications that involve DA or build on its results,
including: coastal, regional, seasonal, and interannual ocean
and climate dynamics; carbon and biogeochemical cycles;
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ecosystem dynamics; ocean engineering; observing-system
design; coastal management; fisheries; pollution control;
naval operations; and defense and security. These applica-
tions have different requirements that lead to variations in
the DA schemes utilized.

The ocean physics involves a multitude of phenomena
occurring on multiple scales, from molecular and turbulent
processes to decadal variations and climate dynamics. Life
takes place in the ocean, from bacteria and plankton cells to
fish and mammals. The range of space scales is from about
1 mm to 10,000 km, and of time scales, from about 1 s to
100 years and more. Features and properties in the ocean
interact over these scales but significant interactions occur
predominantly over certain ranges of scales, which are
usually referred to as scale windows [10], [11]. For
example, the internal weather of the sea, the so-called
oceanic mesoscale, mainly consists of phenomena occur-
ring over a day to months and over kilometers to hundreds
of kilometers. This is one of the most energetic scale
windows in the ocean and the present MTC study focuses
on this window of processes.

A comprehensive prediction should include the relia-
bility of estimated quantities. This allows an adequate use
of these estimates in a scientific or operational application.
In a prediction with a model integrating either in time or in
space, errors in the initial data (initial conditions), boundary
conditions and models themselves impact accuracy. Pre-
dicted uncertainties then contain the integrated effects of
the initial error and of the errors introduced continuously
during model integration. Mathematically, uncertainty can
be defined here by the probability density function (PDF) of
the error in the estimate. Since ocean fields are four-
dimensional, uncertainty representations are here also
fields, with structures in time and space.

Realistic simulations of four-dimensional ocean fields are
carried out over broad numerical domains, e.g., O(10-1,000)
km for O(10-1,000) days. The number of grid points and
thus of discretized state variables are very large, usually of
Oð105-107Þ. On the other hand, ocean data are limited in
temporal and spatial coverage. Commonly, the number of
data points for an at-sea sampling campaign is of
Oð104-105Þ. For substantial scientific advances and to reduce
uncertainties, the sources of information, the various data
and dynamical models, are combined by data assimilation
[12]. This combination is challenging and expensive to carry
out, but optimal in the sense that each type of information is
weighted in accord with its uncertainty.

2.1 Real Time Assimilation

An important clarification needs to be made regarding the
different times involved in ocean forecasting: the observation
time, forecaster time and simulation time (Fig. 1). New
observations are made available in batches (Fig. 1, first row)
during periods Tk, from the start of the experiment (T0) up to
the final time (Tf ). During the experiment, for each
prediction k (Fig. 1, zoom in middle row), the forecaster
repeats a set of tasks (from �k0 to �kf ). These tasks include the
processing of the currently available data and model (from �k0
to �i0), the computation of rþ 1 data-driven forecast simula-
tions (from ti0 to tiþrf ), and the study, selection and web
distribution of the best forecasts (from tiþrf to �kf ). Within
these forecast computations, a specific forecast simulation i

(Fig. 1), zoom in bottom row) is executed during ti0 to tif and
associated to a “simulation time.” For example, the ith
simulation starts with the assimilation and adaptive model-
ing based on observations T0, then integrates the dynamic
model with data assimilation and adaptive modeling based
on observations T1, etc., up to the last observation period Tk
which corresponds to the nowcast. After Tk, there are no new
data available and the simulation enters the forecasting
period proper, up to the last prediction time Tkþn.

2.2 Ocean Acoustics

As one of the major application of underwater acoustics,
sonar performance prediction requires the modeling of the
acoustic field evolution. The parameters include the four-
dimensional ocean and seabed fields. They are complex to
predict and can have significant uncertainties. Methods and
systems that forecast the ocean, the seabed and the acoustics
in an integrated fashion have only been developed and
utilized recently. Our approach is based on coupling data-
assimilative environmental and acoustic propagation mod-
els with ensemble simulations, as developed by [13], [14].

Having an estimate of the ocean temperature and salinity
fields (along with their respective uncertainties) provides the
required background information for calculating acoustic
fields and their uncertainties. Sound-propagation studies
often focus on vertical sections. ESSE ocean physics
uncertainties are transferred to acoustical uncertainties along
such a section. Time is fixed and an acoustic broadband
transmission loss (TL) field is computed for each ocean
realization. A sound source of specific frequency, location
and depth is chosen. The coupled physical-acoustical
covariance P for the section is computed and nondimensio-
nalized. Its dominant eigenvectors (uncertainty modes) can
be used for coupled physical-acoustical assimilation of
hydrographic and TL data. ESSE has also been extended to
acoustic data assimilation. With enough compute power one
can compute the whole “acoustic climate” in a three-
dimensional region, providing TL for any source and

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

Fig. 1. Forecasting timelines. Top row: “Observation” or “ocean” time T
during which measurements are made and the real phenomena occur.
Middle row: “Forecaster” time �k during which the kth forecasting
procedure and tasks are started and finished. ;Bottom row: “ith
simulation” time ti which covers portions of the real “ocean” time for
each simulation. Multiple simulations are usually distributed on several
computers, including ensembles of forecasts for uncertainty predictions
(ESSE).



receiver locations in the region as a function of time and
frequency, by running multiple independent tasks for
different sources/frequencies/slices at different times.

3 ERROR SUBSPACE STATISTICAL ESTIMATION

3.1 Formalism

Using continuous-discrete Bayesian estimation [15] and the
notation of [16], the spatially discretized version of the
deterministic-stochastic ocean model and parameter equa-
tions are combined into a single equation for the augmented
state vector x, of large but finite dimensions. Observations
are taken at discrete instants tk � t0 and are concatenated
into a data vector y�k. The dynamics, observations and DA
criterion are then,

dx ¼Mðx; tÞ þ d�� ð1Þ
y�k ¼ Hðxk; tkÞ þ ��k ð2Þ

min
x

Jðx; y�k; d�; ��k; QðtÞ; RkÞ; ð3Þ

where M and H are the model and measurement model
operator, respectively, J the objective function, and d�
Wiener processes (Brownian motion), i.e., � � Nð0;QðtÞÞ
with Efd�ðtÞd�T ðtÞg ¼: QðtÞ dt. Note that the deterministic
ocean dynamics and parameter equations are actually forced
by noise processes correlated in time and space. State
augmentation [15], [17], [18] is used to rewrite equations in
the form of (1) which are forced by intermediary processes d�
white in time and space. Measurement model uncertainties
�k are assumed white Gaussian sequences, �k � Nð0;RkÞ.
The initial conditions have a prior PDF, pðxðt0ÞÞ, i.e., xðt0Þ ¼
bx0 þ nð0Þ with nð0Þ random.

Error Subspace Statistical Estimation, ([5], [19], [20])
intends to estimate and predict the largest uncertainties,
and combine models and data accordingly. When the DA
criterion (3) guides the definition of the largest uncertainties
or “error subspace,” the suboptimal truncation of errors in
the full space is optimal.

ESSE proceeds to generate an ensemble of model
integrations whose initial conditions are perturbed with
randomly weighted combinations of the error modes. A
central (unperturbed) forecast is also generated. The matrix
of differences between each perturbed model realization in
the ensemble and the central forecast is then generated and
an estimate of the conditional mean is produced. A singular
value decomposition (SVD) of the resulting normalized
matrix provides us with the dominant error modes (based
on a comparison of the singular values). A convergence
criterion compares error subspaces of different sizes. Hence
the dimensions of the ensemble and error subspace vary in
time in accord with data and dynamics. The whole
procedure can be seen in Fig. 2.

The main component of the ESSE scheme that is used
here is the uncertainty prediction. An initial condition for
the dominant errors is assumed computed and available,
using schemes given in [21], [22]. At tk; bxkðþÞ is perturbed
(6) using a combination of error modes EkðþÞ with random
coefficients �jkðþÞ. These coefficients are weighted by �kðþÞ
and constrained by dynamics [19]. The truncated tail of the
error spectrum is modeled by random white noise njk. For

the evolution to tkþ1, a central forecast (4) and an ensemble

of j ¼ 1; . . . ; q stochastic ocean model integrations is run (7),

starting from the perturbed states xjkðþÞ. The forcings d�ðtÞ

are defined in [5]. The ES forecast (9) is computed from the

ensemble. The matrix Mkþ1ð�Þ ¼ ½ bxkþ1
jð�Þ � bxkþ1ð�Þ � of

differences between q realizations and an estimate of the

conditional mean, e.g., bxem
kþ1ð�Þ in (5), is then computed. It is

normalized and decomposed (9) into �kþ1ð�Þ ¼: 1
q �2

kþ1ð�Þ

and Ekþ1ð�Þ of rank p � q by singular value decomposition

(the operator SVDpð�Þ selects the rank-p SVD). The ensemble

size is limited by a convergence criterion (10). The

coefficient � used here measures the similarity between

two subspaces of different sizes [23], [24]. A “previous”

estimate (E;�) of rank p and “new” estimate (eE; e�) of rank

~p � p are compared, using singular values to weight

singular vectors. The scalar limit � is chosen by the user

(1� � � � � 1). �ið�Þ selects the singular value number i and

k ¼ min ð~p; pÞ. When � is close to one, (eE; e�) is the error

forecast for tkþ1: �kþ1ð�Þ; Ekþ1ð�Þ. The dimensions of the

ensemble (q) and ES (p) hence vary with time, in accord

with data and dynamics.

Centralfcst :

bxcf
kþ1ð�Þ

�� dbx ¼Mðbx; tÞdt;
with bxk ¼ bxkðþÞ ð4Þ

Ens:mean :

bxem
kþ1ð�Þ ¼

: Eq
�bxjkþ1ð�Þ

�
ð5Þ

ESIn:Cond: :

bxkjðþÞ ¼ bxkðþÞ þ EkðþÞ �jkðþÞ þ njk;

j ¼ 1; . . . ; q: ð6Þ
Ens:Fcst :

bxjkþ1ð�Þ
�� dbxj ¼Mðbxj; tÞ dtþ d�

with bxjk ¼ bxkjðþÞ ð7Þ
ESFcst :

Mkþ1ð�Þ ¼
�bxkþ1

jð�Þ � bxkþ1ð�Þ
�

f�kþ1ð�Þ; Ekþ1ð�Þ j SVDpðMkþ1ð�ÞÞ ð8Þ
¼ Ekþ1ð�Þ�kþ1ð�ÞVT

kþ1ð�Þg ð9Þ
Conv:Crit: :

� ¼
Pk

i¼1 �i
�
�

1
2ET eEe�1

2

�
P~p

i¼1 �iðe�Þ
� �: ð10Þ
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Fig. 2. The ESSE algorithm.



Acoustic predictions are generated using acoustic pro-
pagation models and newly developed parallel software.
With this new parallel acoustic software, we compute the
whole “acoustic climate” in a three-dimensional region,
providing transmission loss for any source and receiver
locations in the region as a function of time and frequency.

4 ESSE WORKFLOW

The ESSE calculations require the calculation of a very large
ensemble of ocean forecasts. This imposes significant
demands on computational power and storage. ESSE
ensembles, however, differ from typical high-throughput
applications such as parameter scans in more than one way:

1. there is a hard deadline associated with the execu-
tion of the ensemble, as a forecast needs to be timely;

2. the size of the ensemble is dynamically adjusted
according to the convergence of the ESSE procedure;

3. individual ensemble members are not significant (and
their results can be ignored if unavailable)—what is
important is the statistical coverage of the ensemble;

4. the full resulting data set of the ensemble member
forecast is required, not just a small set of numbers;

5. individual forecasts within an ensemble, especially
in the case of interdisciplinary interactions and
nested meshes, can be parallel programs themselves.

Point 1. above hints toward the use of the any Advanced
Reservation capabilities available; point 2. means that the
actual computing and data requirements for the forecast are
not known beforehand and change dynamically; point 3.
suggests that failures (due to software or hardware pro-
blems) are not catastrophic and can be tolerated—moreover
runs that have not finished (or even started) by the forecast
deadline can be safely ignored provided they do not
collectively represent a systematic hole in the statistical
coverage. Point 4. means that relatively high data storage and
network bandwidth constraints will be placed on the
underlying infrastructure and point 5. means that the
computing requirements will not be insignificant either.

In the case of the ESSE approach to Data Assimilation, a
central process acts as a job shepherd for the ensemble, as
shown in Fig. 3: A loop of N ensemble members is first
calculated, each member consisting of a perturbation of the
initial conditions/parameters and a forecast. After all
members are calculated, the difference of the resulting
forecast from a central forecast is calculated in a loop,
creating a large file containing the uncertainty covariance
matrix. A Singular Value Decomposition of this matrix

ensues followed by a convergence test with the result of the
previous SVD. If convergence is not achieved, the process
loops back to increase N to N2, up to some maximal value
Nmax or until the time Tmax available for the forecast expires.
The process then restarts for the ensemble members N þ 1
to N2. This approach suffers from several bottlenecks:

1. The perturb/forecast loop needs to finish for the diff
loop to start (or the two loops can be fused (merged).
Either way there is no exposed parallelism.

2. The diff loop has a serial bottleneck (the same file is
written to). Depending on the variant of the
perturbation type employed, it may also expect to
add the perturbations to the uncertainty covariance
matrix in the order they were generated.

3. The SVD/convergence test has to wait for the diff
loop to finish.

4. The SVD and the convergence test are large
calculations requiring a lot of memory and time,
especially for large N .

4.1 Parallelized ESSE

We considered a natural transformation of the ESSE process
to address these bottlenecks and increase the amount of
exploitable parallelism, transforming the problem into one
amenable to MTC techniques—see also Fig. 4. Specifically
we dealt with bottleneck 1 above by replacing the concept of
the loop with that of a pool of ensemble calculations, of size
M � N . These calculations can be done concurrently on
different machines, as there is no actual serial dependence
in the forecasting loop. They would in effect be the MTC
element of the forecasting procedure. We then decouple the
diff loop by having it run continuously, adding new
elements to the uncertainty covariance matrix, as they
become available from the forecast ensemble calculations.
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Fig. 3. The serial ESSE implementation.

Fig. 4. The parallel ESSE implementation.



Furthermore, we relax our requirement that elements of the
covariance matrix are in the order of the perturbation
number (bottleneck 2) and instead keep track of which
perturbation is added every time for bookkeeping pur-
poses. Unfortunately we cannot easily do away with the
single file bottleneck on the diff loop and that forces us to
limit the diff calculation to a single machine with access to
lots of disk space as the covariance matrix tends to be very
large ðOðGV Þ2Þwhere G is the number of three dimensional
grid points and V the number of physical fields and
biochemical/physical tracer variables).

The SVD calculation and the convergence test are also
decoupled from the diff loop by running continuously on
their own, using the latest result available from the diff
loop. To fully decouple the loops without introducing a race
condition on the covariance matrix file between its reading
for the SVD and its writing by diff, we employ three files, a
safe one for SVD to use and a live alternating pair for diff to
write to, with the safe one being updated by the appropriate
member of the pair. The SVD calculation and the conver-
gence test proceed on its own with the requirement of fast
I/O access to the safe file and a machine with large memory
and many processors for the parallel SVD calculation on a
dense matrix (for the time being we are employing shared-
memory parallel LAPACK calls though the use of SCALA-
PACK for distributed memory clusters may become
necessary in the future if our ensembles get too large).

If the convergence test succeeds, the remaining ensemble
members (queued for execution or running) are canceled,
and depending on the time constraints (for forecast time-
liness) and an associated policy, either the ensemble
calculation concludes immediately or the remaining en-
semble results already calculated are different, another SVD
calculation is performed and all available results are used.
In theory one could also spare any ensemble calculations
close to finishing (according to performance estimates for
the machines they are executing on and accumulated
runtime), to further minimize the wasted cycles at the
expense of further delays.

If the convergence test fails for a number of ensemble
members sufficiently close to M < Nmax, the ensemble pool
can be enlarged (in stages) up to Nmax (or even slightly
more) in order to ensure convergence and at the same time
make sure that there is no point during this process where
the pipeline of results drains and the SVD calculation has to
wait (aside from the startup wait).

4.2 Implementation Specifics

The ESSE workflow is implemented as a shell script in
variants targeting either Sun Grid Engine (SGE) [25] or
Condor [26]. If the shell script catches the kill signal it
proceeds to cancel all pending jobs and do some cleanup.
This master script that runs on a central machine on the home
cluster launches singleton jobs that implement the perturb/
forecast ensemble calculations (pert and pemodel executa-
bles, respectively). The differ, SVD and convergence check
calculations proceed semi-independently, either on the
same machine as the master script or on some other machine
with access to the same filesystem and lots of memory. They
wait to ascertain that a multiple of a set number of
realizations has finished and then they run. We allow for

variants where the perturb/forecast ensemble is split in
two, first all the perturbations are generated and then the
forecasts are run. This makes sense only in case that there
are very few machines with good network connections to
the storage hosting the large files that perturb needs to read
(hundreds of MBs to GBs). In that case it makes sense to
restrict the execution of pert to those machines only and
split the ensemble workflow. Dependencies are tracked
using separate (per perturbation index) files containing the
error codes of the singleton scripts (which are set on
purpose to signify success or failure). These files reside in
directories accessible directly or indirectly from all execu-
tion hosts so that state information can be readily shared.
Moreover, the perturbation index number is passed on to
each singleton either by cleverly altering the name of each
job submission to include it or by stripping it off the task
array. The latter approach is more desirable (as it places less
strain on the job scheduler) but it cannot be used if the ESSE
execution gets stopped. Any ESSE restarts that avoid
rerunning jobs have to switch to a one job per perturbation
index submission strategy.

5 ESSE as an MTC APPLICATION IN PRACTICE

In this section, we shall discuss how ESSE performs as a
MTC application in a qualitative as well as quantitative
manner: its specialized requirements, its I/O characteriza-
tion and performance in our local cluster environment, and
its performance on some of the various platforms available
in a distributed Grid and public Cloud setting.

5.1 Special ESSE Needs

ESSE and other similar ensemble-based ocean forecasting
methodologies are used several times a year in a real-time
setting during live ocean experiments lasting weeks to
months. In the past, any calculations that was more
involved than a simple serial forecast (possibly employing
objective analysis-based data assimilation which could still
be handled by a powerful on-board workstation) had to be
performed back on land. Remote computer clusters at
participating academic/commercial or military institutions
were used, connected via slow links to the ship-borne
measurement apparatus. Advances in computer system and
networking technology have now resulted in the avail-
ability of a ship-borne computing infrastructure (of a rack
or even deskside form factor) to handle pretty large basic
ensemble calculations. At the same time the constant drive
for higher resolution, better (and more usually than
not—more complex) models and comprehensive error
subspace representations have resulted in considerably
larger increases of the computational demands. In practice
this means that for the “real-time” requirements to be
satisfied, the use of land-based clusters is still required for
the more involved ESSE analyses.

This suggests that use of a dedicated home cluster
resource is definitely worthwhile as such a system is under
the complete control of the PIs and can be devoted entirely
to the needs of the real-time experiment. Such systems are
also necessary because a lot of other incubating computa-
tions are required, either to prepare such experiments and
develop new methods and software for it, or to carry out
other independent research work.
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Importantly, the local home cluster resources should be
augmented by remote machines that are not under the
direct control of the user. Such resources can be provided in

the form of batch-controlled allocations on (in the case of
the USA and depending on the sponsoring agency) NSF,
DoE, DoD, NOAA, or NASA shared compute resources or
more generally via use of cloud computing based virtual
clusters, such as Amazon’s EC2. Such systems can be
utilized on demand, as a function of the real-time needs

over limited periods.

5.2 ESSE on a Local Cluster

Our local cluster is composed of 114 dual socket Opteron
250 (2.4 GHz) nodes (1 with 16 G RAM, 2 with 8 GB and
the rest with 4 GB), 3 dual socket Opteron 285 (dual core

2.6 GHz) nodes, all with 4 GB RAM (replacement nodes),
and a dual socket Opteron 2,380 (Shanghai generation,
quad core 2.5 GHz) head node with 24 GB RAM. The dual
socket Opteron fileserver serves over 18 TB of shared
RAID6 disk (ext3 filesystem, LSI 8,888 ELP controller) over

NFS, using a 10 Gbit/s connection to a 200 Gbit/s switch
backbone. All nodes have a Gigabit Ethernet connection to
switches arranged in a star formation, feeding into the
central switch. The cluster has both SGE and Condor
installed and active (at the same time). Condor is setup to
consider nodes used by SGE as claimed by their “owner”

so the two systems can coexist (with Condor giving
precedence to SGE). All users tend to use only one of the
two systems at the time.

5.2.1 I/O Analysis Using Strace

Beyond the compute side needs of the major components of
ESSE, we have to consider the I/O stresses that they put on

our storage infrastructure. Both pert and pemodel (as well as
the other executables) employ NetCDF [27] for reasons of
portability—this, however, tends to make I/O requests
rather opaque as they are hidden under the hood of the
NetCDF library. We chose to use a tool that looks at I/O
performance without requiring recompilation or other type

of instrumentation of executables: strace_analyzer [28]
employs low level hooks in the operating system to capture
read, write and other I/O requests. In the parts that follow,
KB, MB, etc., refer to powers of 10 instead of powers of 2,
e.g., 1 KB ¼ 1;000 bytes, etc.

5.2.2 I/O Needs of the Perturbation Generators

When pert is run on the local filesystem I/O time is about

27 percent of the total time. As can be seen in Table 1,
there are a great many I/O calls of a small size.

The total number of bytes written was 4.5 MB in 546
total calls. The average (mean) bytes per write call were
8,197 bytes, with a standard deviation of 649 bytes. The
median bytes per call were 2 pages (8,192 bytes).

The total number of bytes read was 435.5 MB, in 53,072
total calls. The average (mean) bytes per read call was
8,206 bytes, with a standard deviation of 373 bytes. The
median bytes per call were as before 2 pages.

A total of 4,363,806 bytes were read from the central
forecast file, 426,639,520 were read from the error subspace
matrix and 4,494,987 bytes were read from with 4,472,832
written to the perturbed ICs.

Looking at a breakdown in time of the I/O requests in
Fig. 5 we see that there is a continuous set of reads
throughout the run in two sizes (8 & 16 KB); a write happens
at the very beginning and the rest at the end.

Looking at a breakdown in throughput of the I/O requests
in Fig. 6 we see that there is a wide spread of read bandwidth
as seen by the application (i.e., including filesystem cache
effects) throughout the run. Similarly for the writes at the end
of the run, one sees a range of performance values.

Overall we can state that pert is partly I/O bound (but
finishes quickly on local disk)—the main I/O involves
reading part of the error subspace matrix. The individual I/
O calls by the NetCDF library are both numerous and small:
The calls at a granularity that is smaller than a page are
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TABLE 1
Pert Write/Read Sizes

Fig. 5. Read/write I/O request sizes for pert as a function of time.

Fig. 6. Read/write I/O throughput (in MB/s) for pert as a function of

time—filesystem cache is enabled.



insignificant but such a pattern is not well suited for large

parallel filesystems (such as PVFS2 [29]) which are tuned

for large streaming stores. Moreover, the internal structure

of the NetCDF files appears to necessitate a lot of reading

and then writing of the output file which in many cases can

cause trouble with NFS.

5.2.3 I/O Needs of the Ocean Model

When pemodel is run on the local filesystem I/O time is only

about 0.24 percent of the total time (ie. the code, as currently

setup is not I/O limited). As can be seen in Table 2, there

are a great many I/O calls of a small size.
The total number of bytes written was 492 MB in 61,699

total calls. The average (mean) bytes per write call were

7,976 bytes, with a standard deviation of 1,584 bytes. The

median bytes per call were again 2 pages (8,192 bytes)
The total number of bytes read was 679 MB, in 82,952

total calls. The average (mean) bytes per read call was 8,187

bytes, with a standard deviation of 2,121 bytes. The median

bytes per call were as before 2 pages.
A total of 173,283,024 bytes were read from the forcing

file, 8,541,726 were read from the IC and 480,431,123 were

read from, with 490,541,996 being written to the main output

file—another 468,564/721,57 bytes are read from/written to

a secondary output file, while 12.4 MB and 3.9 MB are read

from the pressure bias and shapiro filter input files,

respectively.
Looking at a breakdown in time of the I/O requests in

Fig. 7 we see that there is a flurry of activity at the very

beginning and end of the run; reads continue in two main

sizes for the first 3rd of the run or so. Writes are very small

and spread throughout.

Looking at a breakdown in throughput of the I/O

requests in Fig. 8, we see that there is a wide spread of

bandwidth as seen by the application (ie. including

filesystem cache effects) throughout the run. A range of

low to high performance is seen at the beginning and the

end; the small writes in the rest of the run cannot achieve

high performance.
Overall we can state that pemodel is not I/O bound when

working out of local disk—most of the I/O involves reading

the forcing and reading/writing the output files. As before

the nature of NetCDF necessitates a lot of rereading of the

output file.

5.2.4 Performance Implications over NFS

If we are to look at the performance of a single pert with

input/output files stored over NFS (Gigabit Ethernet high

performance network used by the Steele Cluster at Purdue

University), we discover that the total runtime can increase

by a very large amount—from a few seconds to 2.5 minutes

or more (274þ secs in Fig. 9. In fact in the past, over more

constrained LANs (100Mbit mix of switches and hubs), we

have seen times as high as 700þ seconds, making pert very

expensive.
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TABLE 2
Pemodel Write/Read Sizes

Fig. 7. Read/write I/O request sizes for pemodel as a function of time.

Fig. 8. Read/write throughput (in MB/s) for pemodel as a function of

time—filesystem cache is enabled.

Fig. 9. Read/write throughput (in MB/s) for pert over NFS as a function of
time—filesystem cache is enabled.



The performance drop may not show in the percentage
of time spent doing I/O, indeed that may decrease, as the
extra time appears simply as wallclock time—the process
idles as the kernel waits on NFS activity. Thus the
individual bandwidth figures in Fig. 9 appear to cover a
decent range of values—it is the total wallclock time that
suffers. If this is a problem with a single pert reading/
writing over NFS—multiple ones (as would be the case in a
production ensemble of hundreds or thousands) can only
make the problem worse. The load on the NFS server
increases to very high values and the fileserver may become
unresponsive. This suggests that use of diskless clusters is
not well suited to this application.

5.2.5 The Multicore Picture

In the case of a multicore (or even older unicore)/
multisocket node of N processor cores (the expected norm
for most systems nowadays) the resulting read/write
activity as seen at the local filesystem level would be that
of N superimposed copies of Figs. 5 and 7, respectively,
slightly shifted in time (allowing for varied start times due
to the queue/OS scheduler) as well as stretched in time
(due to contention issues). The basic picture, however, does
not change unless the shifting becomes very regular and the
result is a more uniform pattern (which would a very high
core count).

If one were to try and devise a better suited distributed
filesystem for ESSE workloads one should consider a
filesystem that:

1. adaptively (or based on hints) propagates replicas of
large files (especially those larger than the filesystem
cache) that everyone is reading to more locations to
spread the load

2. has a distributed metadata server mechanism (or no
metadata server at all as in the case of GlusterFS [30])
to be able to handle the large number of concurrent
metadata operations.

3. allows local disk to be used in a unified namespace
for output (similar to what GlusterFS calls NUFA—
nonuniform file access).

5.2.6 Timings

For the timings discussed below about 210 of the 240 cores
were available—the rest were in use by other users. We
tested two scenarios: one that uses NFS for the large input
files and another that prestages (to every local disk) all
input files so that all input is local. We did not test the case
where both input and output files live on the NFS server for
the duration of the execution of the singletons as it places
too much stress on the NFS server and is disruptive to other
users. Therefore, in all cases the useful output files are
copied back to the NFS server at the end of their job. In all
cases the differencing, SVD and convergence check calcula-
tions were happening on the master node.

This I/O optimization made more of a difference for the
perturbation part of the algorithm, where CPU utilization
jumped from 	20% to 	100%. The initial conditions
generated thus and used for the ensemble model runs are
stored on the local directory anyway, and therefore, this
(more expensive) part of the ESSE procedure does not offer

as much of a performance boost. 600 ensemble members
pass through the ESSE workflow in 	77 mins in the all local
I/O case and in 	86 mins in the mixed locality case. As all
nodes were equally close to the fileserver we did not deem
it necessary to test the ESSE variant where the perturbation
calculation is done in a separate job submission from that of
the PE model. For both SGE and Condor we used job arrays
to lessen the load on the scheduler.

Timings under Condor were between 10-20 percent
slower. Essentially the difference could be seen in the time
it took for the queuing system to reassign a new job to a node
that just finished one. In the case of SGE the transition was
immediate—Condor appeared to want to wait. We tweaked
the configuration files to diminish this difference in through-
put which is probably due to the effort put in Condor to
function as a very successful cycle harvester and the resulting
care it takes not to disrupt everyday desktop usage.

The ESSE calculation was followed by more than 6,000
ocean acoustics realizations—each of which executed for
approximately 3 minutes—in this case no job arrays were
used and the system handled all 6000þ jobs without any
problem whatsoever.

5.3 ESSE on the Grid

The task at hand is to augment the ESSE ensemble size by
employing remote resources (usually but not always Grid-
enabled). That could be either a departmental cluster within
the same overall organization, a partner institution Grid or
the large-scale national and international Grid infrastruc-
tures such as the Teragrid, Open Science Grid, EGEE, etc.

The disadvantage of dealing with Grid resources is that
they come with a wide variety of rather heavyweight
middleware (such as Globus, gLite, Unicore5/6, OMII-UK,
ARC, GRIA) that are not very easy to install and require
maintenance over time. In this manner they represent an
additional burden on both the users and the administrators.

5.3.1 Scheduling Ensembles

The easiest (while at the same time least flexible) way to add
Grid resources for the execution of our ensembles was
remote submission/cancellation of jobs (using (gsi)ssh þ
the local job manager commands) either individually or as a
job array. Essentially a small part of the ESSE master script
dealing with job submission/cancellation is replicated on
the remote resource. singleton scripts particular to the
remote system in question are submitted and no compli-
cated logic is needed to make them work as they are not
generic. The directories that keep track of job submissions/
completions, etc., on the home cluster are either mounted on
the remote system using XUFS [31], SSHFS [32] etc., or they
are updated using passwordless SCP connections (to avoid
requiring setting up Globus or other Grid infrastructure
servers on the home cluster end. This approach gives no easy
way for the user to monitor the progress of one’s jobs (other
than to try to monitor the contents of the submission/
completion directories). One needs to take care to assign a
clearly separated block of ensemble members to these
external Grid execution hosts to avoid overlaps.

A different path is offered by the wide availability of the
Condor software. The existing Condor implementation of
ESSE needs to be slightly adjusted to allow for use of remote
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clusters either via flocking, Condor-C or Condor-Glidein.
Unfortunately all of these approaches entail modification of
the configuration of the home Condor cluster and sometimes
even of the remote cluster—something we are able to do
locally but in general a non-privileged user cannot do.
Further issues (which can be avoided with careful config-
uration choices) can arise when other users’ jobs (also
submitted to the local Condor queues) end up on remote
Grid resources they cannot be executed on. The remaining
alternative, Condor-G, on the other hand is not as capable of
handling so many jobs as we are envisioning.

One other possibility (which circumvents these problems)
is the use of Personal Condor (in which case all local
configuration files are owned by the user), connecting via
Condor-Glidein to both the local Condor pool and the remote
clusters. A related effort which we plan to investigate further
is the use of the MyCluster [33] software that makes a
collection of remote and local resources appear as one large
Condor or SGE controlled cluster. This way we are not limited
to Condor but we can use our SGE-based setup instead.

5.3.2 I/O Issues

There are significant I/O issues that need to be addressed
when considering the use of remote resources for ESSE
ensembles. As a minimum requirement the shared input
files can be read remotely from OpenDAP servers at the
home institution (using the NetCDF-OpenDAP library)
allowing the immediate opportunistic use of a remote
resource that is discovered to be idling. The performance
implications of such an approach, however, (hundreds of
requests to a central OpenDAP server make it a less
desirable solution). Therefore, one is more likely to employ
manual prestaging of the input files—use of shared
filesystems over a WAN can help speed up such operations
(e.g., one copy from home to gpfs-wan and then a fast
distribution from gpfs-wan to local fast disks. Use of data
staging engines such as Stork are another possibility,
provided they work with our scheduler.

When it comes to the output files, one has the choice of
either a push model (from the remote execution hosts back
to the home cluster) or a pull model (a pull-agent on the home
cluster fetching files from a central repository for each of the
remote clusters). The former method is the simplest one
requiring the least book-keeping—at the same time it
requires nodes that can talk to the outside world and the
batch nature of the runs results in a very large number of
concurrent remote transfer attempts followed by no net-
work activity whatsoever. This can seriously slow down the
gateway nodes of the home cluster. The pull model requires
more work (a separate agent, notifications that files have
been copied so they can be safely deleted, etc.) but can pace
the file transfers so that they happen more or less
continuously and perform much better. A third alternative
introduces a two-stage put strategy—with nodes storing
their output on a shared filesystem and an independent
agent transferring them over to the home cluster.

5.3.3 Computational Issues

An idea of the speeds of Teragrid hosts running pemodel and
pert versus the speeds seen on our local home cluster is
shown in Table 3.

As one can see speeds vary appreciably. The slow pert
performance for ORNL appears to be mainly related to the
PVFS2 filesystem used—the Purdue runs employ a local
fast filesystem. In practice this means that the more
dissimilar the hosts used to augment the local compute
facilities, the more uneven the progress of the various
remote clusters will be and perturbation 900 may very well
finish well before number 700.

5.3.4 Evaluating ESSE on the Grid

There are many advantages of using the Grid to augment
local compute resources for ESSE:

. There are a great many computational resources
available on the Grid. Teragrid’s Condor pool is
claimed to be almost 27,000 cores but at the time of
the writing of this paper only about 1,828 appeared
to be available for use, with around 100 at a time free
to run a user job.

. Many Grid-enabled systems have been designed
with massive I/O requirements in mind, allowing
for fast access from many nodes to a shared
filesystem. Unfortunately the tuning of such parallel
filesystems is usually generic (or targeted towards
specific grand-challenge workloads) and the numer-
ous small size requests that our ESSE workload
generates can prove to be a bad fit.

. Similarly large shared Grid-enabled systems usually
have excellent connectivity to the fastest Internet
backbone and allow for fast file transfers to and from
the home system.

At the same time there are significant disadvantages of
using the Grid:

1. Each remote resource is slightly to very different in
hardware, software (O/S, compilers and libraries)
and filesystem configuration. This means that the
user is faced not only with having to rebuilt and
redeploy the code binaries every time but also with
modifying variables in the singleton execution scripts
to match the particulars of the filesystem/operating
system setup at hand.

2. Due to the shared nature of resources on large
external centers one cannot be sure that there will
be enough nodes on a single resource to reach the
capacity needed. In the absence of advance reserva-
tion the jobs submitted may very well end up
running on the following day (or in any case
outside the useful time window for ocean forecasts
to be issued). So many different Grid resources at
the same time would have to be employed (with
the resulting increase in complexity).

3. A careful estimate of the duration of the jobs can
help in case backfilling is employed on the queuing
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system of the Grid resource but even in that case
commonly used limitations of active jobs (irrespec-
tive of total core count) per user can throttle back
performance expectations.

4. Moreover, in many cases the queuing system
scheduler has been tuned to prioritize large core
count parallel jobs and thereby penalize massive
task parallelism workloads. In that case one needs to
refractor singleton jobs to batches of singletons
packaged as a single job (with all the extra trouble
this refractoring can introduce).

Advance reservations (which are not yet widely avail-
able if at all possible) will be necessary to ensure that a
sufficient number of cpu power will be available. Experi-
ments are planned ahead of time to allow for such
reservations to be made but their daily time boundaries
cannot be very tight.

Another issue with the MPP platforms available on the
Grid that offer massive numbers of processors for high
throughput/massive task parallelism type of workloads is
that their I/O configuration and support for running scripts
can be limited. Case in point are the IBM Blue Gene/L
systems (like NCAR’s Frost on the Teragrid) which share
one I/O node for a number of compute nodes and does not
offer a complete O/S environment on the compute node to
support running a script. Full support for running shell
scripts on MPP compute nodes unfortunately may go
against the general philosophy of having them run a
minimized O/S in order to better perform when running
closely coupled parallel codes.

5.4 ESSE in the Cloud

The emerging Cloud Computing infrastructure offers us a
different avenue we can pursue to augment the ESSE
ensemble size. Given our needs we are interested in the IaaS
(Infrastructure as a Service) form of Cloud Computing
services. In particular we have experimented with what is
currently the most easy to use IaaS system, Amazon’s EC2.

5.4.1 Scheduling Ensembles

EC2 offers a set of tools that allow the provisioning and
booting of various Linux, Solaris and Windows Xen virtual
machine images (called AMIs) and allows the remote user
to login to them as an administrator and control them
accordingly. There is also control over which ports each live
instance has open to the internal EC2 network as well as the
outside world. This level of complete control allows us a
wide variety of options on how to use EC2 provisioned
nodes for ESSE calculations:

. Creation of an independent on-demand cluster, with
its own master node and queuing system and remote
submission of jobs in the same way as for a generic
remote cluster/Grid environment.

. Addition of the EC2 nodes to the home cluster as
extra compute nodes. This has already been demon-
strated for GridEngine and we have been able to
replicate it. Condor also offers the ability to launch
jobs on Amazon EC2 nodes but the way that they are
provisioned (essentially as a job) and controlled is
too restrictive for our needs.

. Creation of a personal (Condor or SGE) private cluster
using MyCluster mixing local and EC2 resources.

. Dynamic addition of EC2 nodes to an existing
cluster-offered in product form by Univa (UniCloud)
and Sun (Cloud Adapter in Hedeby/SDM).

This last option automates the booting/termination of EC2
nodes based on queuing system demand, further minimiz-
ing costs. Most of the options allow for minimal changes to
the generic SGE setup.

5.4.2 I/O and Computational Issues

The I/O issues of the Amazon EC2 option are similar to the
Grid ones but compounded by the fact that neither the
networking nor the disk hardware are geared towards high
performance computing. Similar solutions can be adopted,
with an emphasis on avoiding issues resulting from the
relatively low network bandwidth of EC2 to the outside
world. Any common staging areas can be provided either
via NFS exporting a persistent EBS volume or populating an
on-demand created parallel filesystem with data from EBS.
In the latter case extra work needs to be made to ensure that
the AMIs can function as clients for the parallel filesystem.
Given the issues with NFS performance discussed in
Section 5, NFS staging areas should not be (ab)used for
massive concurrent I/O from remote nodes, however,
appealing the simplicity of such an approach may appear.

An idea of the times of several EC2 instances running
pemodel and pert for various instance types is shown in Table 4.
As of the last few months of 2009 the new Amazon
datacenters have introduced new varieties of actual hard-
ware for the various EC2 instance types—hence the m1.small
(standard) instance can be either AMD Opteron—2.0 GHz or
2.6 GHz dual core (DC) based—or Intel (Core2) Xeon 54xx
series (Penryn generation) quad core (QC) based. The latter
type of hardware can offer even better performance that the
one shown in Table 4. Amazon recently introduced Intel
Nehalem-based instance types with increased memory
capacity, effectively allowing all of the ESSE calculations to
be conducted in the Cloud, even for very large ensemble sizes
as the nodes have enough memory to handle the SVD of
extremely large matrices.

In all the cases shown the instance type was fully
utilized (ie. 8 copies of pert/pemodel were run concurrently
on a c1.xlarge instance). The m1.small instance appears as a
1 core but is in fact limited to a maximum of 50 percent (or
even 40 percent for newer cpu types) cpu utilization, hence
appearing as a half-core. The executables (and software
environment) were identical to those on the home cluster. In
each case the worst time of the batch is being reported.
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Despite the faster Nehalem generation processors available
on the m2 series instances, the most cost-effective approach
balancing price and performance appears to be c1.medium
(or c1.xlarge if one wants to maximize the number of
execution cores for a given number of instances).

Cost-wise for example an ESSE calculation with 1.5 GB
input data, 960 ensemble members each sending back 11 MB
(for a total of 6.6 GB) would cost: 1:5ðGBÞ 
 0:1þ
10:56ðGBÞ 
 0:17þ 2ðhrÞ � 20 � 0:68 ¼ $29:15 Use of reserved
or spot instances would drop pricing for the cpu usage by a
bit less than a factor of 3.

5.4.3 Evaluating ESSE on EC2

There are quite a few clear advantages of using EC2 for
larger ESSE ensembles:

. For all intents and purposes the response is
immediate. EC2’s capacity is large enough that a
request for a virtual EC2 cluster gets satisfied on-
demand, without having to worry about queue times
and backfill slots.

. The use of virtual machines allows for deploying the
same environment as the home cluster. This provides
for a very clean integration of the two clusters.

. Having the same software environment also results
in no need to rebuild (and in most cases having to
revalidate) executables. This means that last minute
changes (because of model build-time parameter
tuning) can be used ASAP instead of having to go
through a build-test-deploy cycle on each remote
platform. As the executables are copied over to the
EC2 cluster (a cheap operation) there is no associated
cost of rebundling virtual images.

. EC2 allows our virtual clusters to scale at will: There
is a default 20 instance limit (which correspond to a
maximum configuration of 160 cores) but if needed
it can be increased upon request.

. Since the remote machines are under our complete
control, scheduling software and policies, etc., can be
tuned exactly to our needs.

At the same time use of EC2 is not without its problems:

. Unlike the case of shared state or national resources
that come out of research grant related allocations,
EC2 usage needs to be directly paid to Amazon.

. Amazon charges by the hour—much like cell-phone
charges usage of 1 hour 1 second counts as 2 hours.
Moreover, Amazon charges for data movement in
and out of EC2.

. The performance of virtual machines is less than that
of “bare metal,” the difference being more pro-
nounced when it comes to I/O.

. Unlike purpose-build parallel clusters, EC2 does not
offer a persistent large parallel filesystem. One can
be constructed on demand (just like the virtual
clusters) but the Gigabit Ethernet connectivity used
throughout Amazon EC2 alongside the randomiza-
tion of instance placement mean that parallel
performance of the filesystem is not up to par.

. Moreover, unlike national and state supercomputing
facilities, Amazon’s connections to the home cluster are
bound to be slower and result in file transfer delays.

The substandard (single port Gigabit Ethernet based)
interconnect that an EC2 virtual cluster provides should not
be so much of an issue for future ESSE ensembles
employing nested calculations: Two-way nesting would
be run on 2-core instances (or two to four of them could be
“packed” on 4/8-core instances), utilizing shared memory
for fast communications between the nested models. Even
the far less commonly used three-way nesting could run
faster on oversubscribed 2-core instances than spread over
multiple nodes.

6 FUTURE WORK

We plan to fine tune our ESSE workflows for production
using the Teragrid as well as test them on the Open Science
Grid. We would like to investigate the efficacy of a data
scheduler such as Stork to help us with prestaging input
data. We also plan to test the feasibility of a mixed local/
Grid/EC2 run employing MyCluster. Future more involved
experiments are expected to scale from 1,000 to 10,000 or
more ESSE ensemble members (and even more acoustic
calculations). We are interested in seeing how queuing
systems and resource managers handle such a workload in
a short time interval. Furthermore more realistic model
setups are expected to require the use of the new nested and
unstructured MSEAS calculations [34], [35] which are
executed in parallel—thereby introducing the concept of
massive ensembles of small (2-3 task) MPI jobs. We plan to
simplify the use of such setups via the use of an XML
driven validating graphical user interface [36].

Another area where MTC would be most valuable is the
intelligent coordination of autonomous ocean sampling
networks. To achieve optimal and adaptive sampling [37],
[38], [39], [40], [41], large-dimensional nonlinear stochastic
optimizations, artificial intelligence and advance Marko-
vian estimation systems can be required. Such complex
systems are prime examples of MTC problems that can be
combined with our uncertainty estimations [42] and feature
model initialization [43].

7 CONCLUSION

We described a new type of Many-Task Computing
application that is very relevant to Earth and Environmental
Science applications (and prototypical of a general class of
ensemble-based forecasting and estimation methods). We
introduced the concept of ocean data assimilation, discussed
the ESSE algorithm and described its MTC implementation
(and its variations along with their justification). Results on a
local cluster were presented along with a discussion of the
challenges of scaling out and solutions for doing so employ-
ing Grids and Clouds. I/O locality issues are among our
main concern. We believe that this type of ensemble based
forecast workflows can in the future represent an important
new class of MTC applications.
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