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Abstract—The present paper demonstrates the use of exact
equations to predict time-optimal mission plans for a marine
vehicle that visits a number of locations in a given dynamic
ocean current field. This problem bears close resemblance to
that of the classic ‘““traveling salesman’, albeit with the added
complexity that the vehicle experiences a dynamic flow field
while traversing the paths. The paths, or ‘“legs”, between all goal
waypoints are generated by numerically solving the exact time-
optimal path planning level-set differential equations. Overall,
the planning proceeds in four steps. First, current forecasts for
the planning horizon is obtained utilizing our data-driven 4-
D primitive equation ocean modeling system (Multidisciplinary
Simulation Estimation and Assimilation System; MSEAS), forced
by high-resolution tidal and real-time atmopsheric forcing fields.
Second, all tour permutations are enumerated and the minimum
number of times the time-optimal PDEs are to be solved is
established. Third, due to the spatial and temporal dynamics,
a varying start time results in different paths and durations for
each leg and requires all permutations of travel to be calculated.
To do so, the minimum required time-optimal PDEs are solved
and the optimal travel time is computed for each leg of all enu-
merated tours. Finally, the tour permutation for which travel time
is minimized is identified and the corresponding time-optimal
paths are computed by solving the backtracking equation. Even
though the method is very efficient and the optimal path can be
computed serially in real-time for common naval operations, for
additional computational speed, a high-performance computing
cluster was used to solve the level set calculations in parallel.
Our equation and software is applied to simulations of realistic
naval applications in the complex Philippines Archipelago region.
Our method calculates the global optimum and can serve two
purposes: (a) it can be used in its present form to plan multi-
waypoint missions offline in conjunction with a predictive ocean
current modeling system, or (b) it can be used as a litmus test for
approximate future solutions to the traveling salesman problem
in dynamic flow fields.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are currently
fielded world-wide by commercial companies, militaries, and
research institutions, and their use is only set to increase in the
coming years (e.g., [1]). For example, signifying the navy’s
emphasize on unmanned marine systems, the United States
Navy has publicly released its Unmanned Underwater Vehicle
(UUV) Master Plan and it’s AUV Requirements for 2025
[2], [3]. Among the various requirements, “multi-waypoint
missions” is a growing area of emphasis from a navigational
standpoint for naval operations [4]. In these missions, an AUV
visits multiple target locations during a single mission. For
such missions, optimally utilizing ocean flow forecasts for
navigation can significantly reduce operational costs.

978-1-5386-4814-8/18/$31.00 ©2018 IEEE

Recent focus of AUV path planning has been on com-
puting exact optimal paths between starting locations and
targets in strong and dynamic environments. For this purpose,
we developed partial differential equations (PDEs), efficient
numerical schemes, and computational systems to compute
exact time-optimal paths [5] and energy-optimal paths [6] in
strong and dynamic deterministic currents. We also developed
stochastic PDEs to compute stochastic time-optimal paths [7]
and risk-optimal paths [8] in uncertain ocean currents. We have
demonstrated our path planning not only in realistic ocean re-
analysis [9], [10], [11], but also in real-time with real AUVs
and gliders [12], [13], [14]. Additionally, the theory, schemes
and software were also extended for three-dimensional AUV
path planning in realistic domains [15] and for optimal ship
routing [16], [17].

In the present paper, the goal is to use our planning PDEs
to predict time-optimal mission plans for a marine vehicle
that visits multiple locations in a dynamic ocean flow field
predicted by a data-assimilative ocean modeling system. These
missions begin and end in the same location and visit a finite
number of waypoints in the minimal time; this problem bears
close resemblance to that of the classic “traveling salesman”,
albeit with the added complexity of a dynamic flow field. Our
interest is in finding an exact solution that can serve as a litmus
test for future algorithmic solutions.

Previous Progress. Traditionally, the focus of path planning
has been on robot motion planning in static environments
(e.g., [18], [19]) and recently these have been extended for
AUV path planning in dynamic environments. For example,
graph search schemes such as modified Dijkstra’s algorithm
[20], A* search [21], and Rapidly-exploring Random Trees
[22] have been used with realistic ocean flows. Other methods
such as evolutionary algorithms [23], nonlinear optimization
[24], wavefront expansions [25], fast marching methods [26],
and LCS-based methods [27] have also been employed for
AUV path planning. However, many of these methods are
either inexact or computationally expensive in dynamic en-
vironments. On the other hand, our PDE-based planning is
exact and computationally efficient for strong, dynamic and
uncertain flows. We refer the readers to [28], [14] for detailed
reviews.

Even though the classic traveling salesman problem and
vehicle routing problems are well studied in the field of
operations research (e.g., [29], [30]), the literature for Multi
Waypoint AUV mission planning has been limited. In ref. [31],
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Fig. 1. Schematic of the multi waypoint time-optimal mission planning
problem: For a vehicle P undertaking a mission in a dynamic flow
field v(x, t), with a start point xo and target waypoints X1 - - - Xn, the
goal is to compute the time-optimal permutation of waypoints to visit
(called a tour) and the time-optimal path for this tour. For any point
xiVi = 0---n, ¢i(x,t) = 0 is the reachability front (dashed blue
contours) starting at x; at the time P reached x;. The solid black
lines X5 (x;,t) is the time-optimal path from waypoint ¢ to its next
target waypoint. The dotted line between x2 and x,,—1 represents all
the time-optimal paths to all waypoints not explicitly shown in this
schematic.

the Fast Marching Method for Eikonal equations is applied to
solve the continuous traveling salesman problem, but not for
realistic ocean currents and vehicles.

II. THEORY AND SCHEMES

We formally state the multi waypoint mission planning
problem as follows (Fig. 1). Consider a vehicle P navigating
in a domain D indexed by the spatial variable x and time t.
Let v(x,t) be a strong, dynamic and deterministic flow field
in D. Let xo be the start point and x;, where ¢ = 1---n
be n waypoints that are to be visited by P, not necessarily
in the said order. We seek the tour (i.e., the permutation of
{x1 - -x,}) that minimizes the total travel time and the time-
optimal path of this optimal tour. Note that this travel time
may not be unique and there may exist multiple tours with
the same net optimal travel time.

A. Multi Waypoint Mission Planning

To compute the exact time-optimal tour and paths, we adopt
a four step procedure. First, we obtain the current forecast in
the region of interest at the required depth(s) for the planning
horizon by utilizing a data-driven 4-D primitive equation ocean
modeling system, forced by high-resolution tidal and real-
time atmospheric forcing fields such as our Multidisciplinary
Simulation Estimation and Assimilation System (MSEAS;
[32]). Second, we enumerate all permutations of {x; ---x,}
and generate the exhaustive list of complete tours that start and
end at x after visiting all x; waypoints. Third, for each leg of
all tours, we utilize the level-set PDEs (sec. II-B) to compute
the minimum travel time. Here, the level set equation evolves
a reachability front that tracks the set of points that can be

reached by a vehicle starting from a point at a given time.
Whenever the front reaches a waypoint, a new reachability
front is immediately started from that location. This process
continues until one set of reachability fronts has reached all
goal waypoints and has returned to the original location.
Due to the spatial and temporal dynamics, a varying start
time results in different paths and durations for each leg and
requires all permutations of travel to be calculated. Fourth,
the tour for which travel time is minimum is identified. The
time-optimal path for the optimum mission is then obtained
by solving the backtracking equation.

The above procedure is guaranteed to return the exact time-
optimal path for all flows in which the vehicle is controllable
at the start and target waypoints. This condition is sufficient
to ensure that the optimum travel time between any two
waypoints is for the vehicle that leaves the origin waypoint
at the earliest time.

B. Compendium of PDE-based Path Planning

The exact time-optimal reachability front of a vehicle P
with nominal relative speed F'(t), starting at a point x; at
time ¢; in a flow field v(x, t) is governed by reachability (zero
contour of the level-set field ¢;(x, t)) tracking Hamilton Jacobi
PDE [5],
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ot + F()|Voi(x,t)| + v(x,t) - Voi(x,t) =0, (1)

with an initial condition ¢;(x,¢;) = |x —x;| and open bound-
ary conditions. Here, the optimal arrival time at any target
xy, T*(xs;%;), is the first time ¢ for which ¢(x,t) = 0.
The exact time-optimal paths X5 (x;,t) can be computed by
solving the particle backtracking equation (when and where ¢
is differentiable),

dXp (i )
dt
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[Voi(Xp (x4, 1), 8)]
X};(Xia 7T*(vaxl)) =Xf,
(2)

= —v(Xp(xi,t),t) — F(t)

where ¢;(x,t) is available from the solution to eq. 1.

In the general case, the vehicle P may not be locally
controllable at x;, (i.e. F'(t) < v(x,t)) for a sufficiently long
period of time such that x is no longer in the reachable set
at any t > t; (i.e., ¢;(x;,t) > 0). Then, it is sometimes
possible to have time-optimal paths by starting from x; at
a time t; s > t;. Our approach can also compute the exact
optimum time-to-go ¢; s [5], which can then be used for the
present multi waypoint mission planning.

C. Numerical Schemes and Implementation

In the implementation of the multi waypoint mission plan-
ning methodology described in Sec. II-A, the first two steps
are straightforward. First, we utilize our MSEAS modeling
system to forecast the currents in for the planning horizon.
Second, we list all combinations of tours. For n waypoints
to be visited, the number of possible tours is n! and the
number of legs within each tour is n 4 1. Therefore, in the
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Fig. 2. To improve total mission computation speeds, reachability front
calculations are broken down into as many parallel jobs as possible. Any
job can start as soon as the results of its preceding job have been saved. This
figure demonstrates the job flow for a three-waypoint mission.

third step the planning algorithm has to fill an n! x (n + 1)
matrix with the individual leg times and then compute the total
time for each tour permutation. Fortunately, since a single
reachability front calculation starting from one origin can
determine the optimum travel time and paths to all other n
waypoints, n! x (n + 1) front calculations are not required. In
fact, the number of front calculations is given by the recursion,
Jn=1+nx*J,_1, where Jy = 1, as seen in Table 1.

Even though solving the level-set equation is computation-
ally efficient and the optimal path can be computed serially
in real-time for common naval operations, for additional
computational speed, a high-performance computing cluster
can be used to solve the level set calculations in parallel.
However, not all J,, computations can be completed in parallel
all at once, as some of them depend on others to determine
its start time. Therefore, the maximum number of jobs which
can be completed in parallel is equal to the number of tours,
nl. The benefits of parallel processing increase with the size
and discretization of the domain D (Fig. 1) as well as the
number of waypoints. Fig. 2 shows all the 16 reachability
front computations that are required for a 3 waypoint mission.
All horizontal rows of computations can be accomplished in
parallel, and the vertical paths from beginning to end show
all possible tours for the mission. We note that several of the
tours can be eliminated (pruned) as the computations progress
based on the remaining minimum distance, maximum vehicle
speed, and maximum ocean currents.

While the number of parallel computations can be equal
to the number of tours, there is also a practical limit of how
many computations a given computing cluster may process
in parallel. Here practical limits of I/O, memory access etc
become important. As will be shown in Sec. III, reasonable
run times were obtained for up to six waypoint missions
processing 720 tours in parallel using the available computing
resources.

III. REALISTIC UUV MISSION PLANNING IN

PHILIPPINES ARCHIPELAGO REGION

We illustrate our theory and distributed implementation by
applying it to plan several realistic simulated multi-waypoint
missions with progressively increasing waypoints in the Philip-
pines Archipelago region.

The Philippines Archipelago has complex geometry and
strong dynamic currents. There are large-scale open ocean
dynamics as well as small scale dynamics around islands,
through narrow straits, and over steep shelfbreaks [33]. Of
the several that we completed, we present two large three-
waypoint missions of durations assumed within the range of
the U.S. Navy’s proposed XLUUV concept (less than 30 days
[34]). We also show smaller five and six-waypoint missions
within an assumed duration of the U.S. Navy’s future LDUUV
(less than 5 days [34]).

The first step in our planning is to obtain the current
forecasts in the area of operation for the planning horizon.
For the present demonstration we re-use the data assimilative
multiscale reanalyses from the Philippine Straits Dynamics
Experiment 2009 [33] computed using our 2-way nested
multi-resolution MSEAS primitive equation modeling system
with a nonlinear free-surface [32]. These current fields were
also utilized for demonstrating time-optimal path planning in
ref. [10]. Here, for the purpose of demonstration, we utilize
fields from February 5, 2009. We also assume that the UUV
feels the effect of the average horizontal velocity in the top
400 m (or until the local bottom) of the ocean similar to the
yo-yo motion of the gliders that we have used in our previous
realistic demonstrations [10], [9]. When the UUV is known to
travel at a fixed depth, we can modify the currents accordingly
as we used in our real time experiments [12].

In Fig. 3 we show the computational domain (within the
red bordered box) for our current forecasts and operational
areas (M1 to M4 in the black bordered boxes) for the mission
planning. The oceanography of the region is described in [33]
and a summary of the multiscale currents encountered by the
UUVs is provided in ref. [10].

Before we proceed with our realistic missions, we showcase
the evolution of all the reachability fronts to compute the two
tours of a two way point mission in a small area in the domain
away from land to avoid complicating the plots. The local
currents here are between 0 and 1 knots of varying direction.
A vehicle begins at point A and is tasked to visit points B and
C before returning to A. Points B and C are approximately
60 nautical miles and 40 nautical miles, respectively, from the
starting point. The vehicle is traveling at 3 knots.

Fig. 4 shows six snapshots in time as the computation of
reachability fronts proceeds. Fig. 4a and b show how the initial
reachability front grew from point A to points B and C. The
front reaches point C first, as shown in the first subfigure. At
this point in time, it is possible to plot the time-optimal path
between points A and C. The time-optimal path from A to C
is plotted in blue with the current along the path represented
by the arrows. The color of the path itself corresponds to



TABLE I
COMPUTATIONAL TIME REQUIRED FOR EVALUATING OPTIMAL TRAVEL TIME FOR EACH TOUR. THE TOTAL COMPUTATION TIMES SHOWN ARE BASED ON
THE AVERAGE TIME TAKEN TO COMPLETE ONE REACHABILITY FRONT COMPUTATION, Tgye = .5 HOURS (CORRESPONDING TO THE REALISTIC
APPLICATIONS (SEC. III) ON A 3 GHZ QUAD CORE COMPUTE NODE WITH 16GB OF DDR2 RAM AND RUNNING A LINUX OS.

Way- Reachability Series oco-Core 100-Core
points | Tours Front Computation Computation Computation
Calculations, Time [hrs], Time [hrs], Time [hrs],
JIn = Tseries = Too = Thioo =
n n! 14+nx*xJ,_1 Tave * JIn Tave * (n+ 1) | approzimated
1 1 2 1 1 1
2 2 5 2.5 1.5 1.5
3 6 16 8 2 2
4 24 65 32.5 2.5 2.5
5 120 326 163 3 4
6 720 1957 978.5 3.5 12.5
7 5040 13700 6850 4 71.5
Philippines Archipelago Manila Bay, USS Barbel on the Southern tip of Palawan, and
20°N || USS Cooper near the Port of Ormoc (area M1 in Fig. 3).
< ~1000 By substituting “shipwrecks” with “subsea infrastructure”, this
P -2000 could represent mission-type 5 of the RAND survey of UUV
16°N 2000 Mission, Monitoring Undersea Infrastructure [4].
R - . . .
Ny _ The targets are located at a straight-line distance of 166,
120N -4000 £ 340 and 196 nautical miles respectively from the starting
z _s000 & location. For this simulation, we utilize a constant relative
- » S0t £ speed of 3 knots to fly the UUV.
. A 77 I -6000 & . . . . .
Nl - N =l S Assuming this constant relative speed, the time-optimal tour,
X = S -7000 ABDCA, completes the mission in 18.83 days and the slowest
4,‘ s . 8000 tour, ADCBA, would take 24.6 hours or 5.4% longer.
o X 7 s - -
4°N 2\ $ ¢ I The 5% improvement itself is not impressive, but there
i - -9000 . . .
: g0 are several important points to consider about these results.
116°E 120°E  124°F 128°E 132°F A key takeaway is that the shortest-distance path is not

Fig. 3. Philippines Archipelago Region: The computational domain
in which we forecast the current in shown within the red bordered
box and the background is colored with the local bathymetry. Each
black bordered box M1 to M4 are regions where Missions 1 to 4 are
simulated and zoomed in for later figures (Fig. 5-Fig. 8).

the vehicle’s effective velocity while the color of the arrows
corresponds to local current velocity.

Fig. 4b shows the original black front continuing to grow
while the new green front begins growing from point C. This
plot captures the moment the original front reaches point B.
Fig. 4c and d continue through time with the path ACBA
shown in green and ABCA shown in red. Each plot captures
a moment in time where one of the waypoints is reached and
a time-optimal path can be shown. Fig. 4e shows the earliest
point in time that the mission can complete along the ACBA
path. Fig. 4f shows the final time that path ABCA completes.

Next, we consider four realistic mission scenarios with
progressively increasing number of waypoints to be visited
by our UUV. For each mission we complete the remaining
three steps of our planning and report the results.

1) Mission 1: Three Waypoint Shipwreck Inspection from a
Central Position: In Mission 1, a vehicle starts from a central
position and visits the shipwreck sites of USS PC-1129 near

necessarily the fastest. If the optimum order path is run in
reverse (ACDBA), the mission would take 22.2 hours (4.9%)
longer and is the second slowest time.

Fig. 5 shows it is also important to consider that the overall
geography may weigh into path selection. The second fastest
path, ACBDA, takes a drastically different route, geographi-
cally, avoiding the narrow, complex route between D and C.
It may be worth the additional 3.6 hours to avoid this area
completely. Additionally, if there is an operational need to
avoid the long Northern (B-C) or North-Western (B-D) paths,
our planning would reveal the trade-offs in time associated
with avoiding those areas.

It should also be pointed out that this mission plan assumes
that the underlying current model is accurate. Realistically,
lower confidence should be given to the model at times past
its predictability limit, and missions this long are most likely
beyond what a real-world current model can predict with high
accuracy. A vehicle will most likely need to receive updates
throughout a mission this long in order to keep on a true
optimal path. Finally, a 5% difference between best and worse-
case paths means that other factors should be weighed more
heavily than just waypoint-order when planning this mission.
However, once the waypoint order is decided, there is no
reason that these time-optimal paths should not be used.
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velocity. The paths are overlaid by the local currents encountered along the path.
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Duration beyond % of
Path  (Days) optimum Optimum* -
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ABCDA 19.40 13.70 103.0% 120
* Value obtained by dividing tour
duration by the minimum tour duration 20
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Fig. 5. Mission 1: Three Waypoint Shipwreck Inspection. (a) Optimal paths of all tours are shown colored by the tour order shown in b. (b)
Duration, hours beyond optimum and travel time of each tour as a percentage of the time-optimal tour. (¢) The time optimal path of the
optimum tour colored by the effective vehicle speed and overlaid by vectors representing the flow encountered along the path.

2) Mission 2: Three Waypoint Shipwreck Inspection from
Port of Ormoc: In Mission 2, a vehicle leaves the port of
Ormoc and visits the shipwreck sites of USS Ommaney Bay
lying West of Panay Island, USS Samuel B. Roberts lying
East of the Semirara Islands, and USS Princeton lying east
of Lamon Bay (area M2 in Fig. 3). The targets are located
at a straight line distance of 200, 110, and 285 nautical miles
respectively from the starting location. Assuming a constant, 3
knots, the time-optimal path, ABCDA, completes the mission
in 15.80 days and the slowest path, ACBDA, would take 2.35

days (15%) longer.

Fig. 6 shows that the complex geography of the islands
forced tight constraints on the vehicle paths. The area where
current can be seen to play the biggest role is the divergence
of paths from C to D in the Western area. It is also interesting
to notice that, depending on the time which the vehicle would
pass the small crescent island in the South-Western area
(Homonhon Island) the vehicle either went to the East or West
of the island.
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Fig. 6. Mission 2: Three Waypoint Constrained Route Shipwreck Inspection. Same as Fig. 5, but for Mission 2.

3) Mission 3: Five Waypoint Harbor Inspection Mission
with Varying Start Times: For higher waypoint missions,
we focus on LDUUV-type mission scenarios representing
mission-type 3 of the RAND survey of UUV missions, near-
land and harbor monitoring [4]. Here, we operate in area
M3 in Fig. 3 and a UUV is launched from a surface ship
(marked with a circle) and inspects five locations within a
harbor (marked with stars) as shown in Fig. 7a. The inspection
points were laid out in a perfect square with one point in
the center, so that there were multiple tours with an identical
straight-line distance. By varying the mission start times over
the course of a few days, the same mission requires varying
optimal paths as shown in Fig. 7.

A five-waypoint mission produces 120 tours, requiring 326
reachability front calculations (Table I) which took a total of
11 minutes to compute on our high performance cluster.

4) Mission 4: Six Waypoint Mine Clearance Mission: The
traditional search for mines consists of driving “lawn-mower”
patterns, scanning the bottom with active sonar, which is
uniquely well accomplished by UUVs as recommended by the
RAND survey. There is little for time-optimal path planning
to contribute to this lawn-mower process since maintaining
straight-line paths supports data collection. However, after
processing of the sonar data, and identifying a number of
mine-like objects, a follow up mission is normally required
for closer inspection and/or neutralization at each location of
interest. Mission 4 illustrates a UUV traveling to six randomly
placed objects near the Balabac Strait (area M4 in Fig. 3) as
shown in Fig. 8 along with the optimal paths. For this mission,
the UUV starts its mission from a surface ship (marked by a
black circle) approximately 50 nautical miles from the centroid
of these objects. All six waypoints (marked by black stars)
were randomly placed within a 40 nautical miles by 40 nautical
miles square.

There are 720 unique tours possible for a six waypoint
mission (Table. I). The total durations of these tours are plotted
in Fig. 9. As is expected with many-city traveling salesman
problems, there are a few tours which are close to being
optimum and a wide range of tour which are nowhere near
optimum. The fastest tour duration is 2.26 days while the

a Optimum path starting at b Optimum path starting at
0Z Feb 9, 2009: ABFCEDA 12Z Feb 12, 2009: ADFECBA
1 | i — — — — -
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d Optimum path starting at
0Z Feb 14, 2009: ABCEFDA
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12Z Feb 13, 2009: ADFCEBA
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Fig. 7. Mission 3: Five Waypoint Harbor Inspection Mission with
Varying Start Times. Each path is colored by the effective vehicle
speed and overlaid by the currents encountered along the path. (a)-
(d) shows four different optimum tours and paths corresponding to
the start time at point A.

slowest is 1.38 days (61%) longer. The fastest four tours are
highlighted with red stars. The time-optimal paths of these
four tours are shown in Fig. 8.

All four of these tours result in almost the same duration.
The best tour may be the one that investigates a more important
area first; the optimal paths for the tour AFGDCBEA (Fig. 8a)
would clear the northern shipping route first while the tour
AFDCBEGA (Fig. 8c) would leave point G until later in the
mission. The best tour may also avoid an enemy sensor or
ship, e.g., the optimal path for the tour AGEBCDFA (Fig. 8b)
would stay furthest from the island to the South-East, whereas
that for tour AFDCGBEA (Fig. 8d) would go very close to
this island.
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Fig. 9. Mission 4: Optimal travel times for 720 tours. The four tours
highlighted with red star markers are shown in Fig. 8.

To compute the 720 tour durations, we processed 1957
reachability front calculations in parallel (Table I), and the total
processing time was 1 hour and 7 minutes on our computer
cluster. This computation time is much smaller than the actual
mission durations of 2-3 days. Of course, with more and faster
computers, processing speeds for larger real-world mission can
be further reduced.

IV. CONCLUSION

We demonstrated a novel application of exact time-optimal
planning PDEs to complete multi-wayploint mission planning
in strong and dynamic ocean flows. We laid out the problem
statement, theory, and numerical schemes to solve the problem
exactly. We then applied our equations and software to com-
pute time-optimal plans for realistic multi-waypoint missions
in the complex Philippines Archipelago region. Among the
various missions we completed, we highlighted four in the
present paper. First, we considered a three waypoint shipwreck
inspection from a central position and in the second we
completed a similar mission but from the port of Ormoc. These
two were longer duration missions with optimal completion
times of 18.83 and 15.8 days respectively. The optimal paths
avoids the islands in the complex archipelago region and
completes their missions by intelligently utilizing the currents
to reduce travel times. In the third mission, we considered
a five waypoint harbor inspection mission with varying start
times. Here we showed that the optimal tours differ with
different start times as the dynamic nature of the ocean
currents affects the optimal paths between the waypoints.
In the fourth mission, we considered a six way point mine
clearance mission resulting in 720 tours among which four
optimal tours with similar arrival times were selected and
presented. Overall, the computational times for all missions
were much shorter compared to their mission times. Moreover,
the software completes reachability computations in parallel
and with more computers, the computational time can be
further reduced.

Since our approach calculates the global optimum, it serves
two purposes. It can be either used in its present form to
plan multi-waypoint missions offline in conjunction with a
predictive ocean current modeling system, or it can be used as
a litmus test for future algorithmic solutions to the traveling
salesman problem in dynamic flow fields.

In the future, service time at the waypoints can also be
considered, and time-optimal mission plans can be generated.
Also, approximate solutions that utilize heuristics to reduce
computational time can be developed. Additionally, this work
could be integrated with 3D path planning to account for depth
control of the vehicle.
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