Distributed Implementation and Verification of
Hybridizable Discontinuous Galerkin Methods for
Nonhydrostatic Ocean Processes

Corbin Foucart, Chris Mirabito, Patrick J. Haley, Jr., and Pierre F. J. Lermusiaux
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA
pierrel@mit.edu

Abstract—Nonhydrostatic, multiscale processes are an impor-
tant part of our understanding of ocean dynamics. However, re-
solving these dynamics with traditional computational techniques
can often be prohibitively expensive. We apply the hybridizable
discontinuous Galerkin (HDG) finite element methodology to per-
form computationally efficient, high-order, nonhydrostatic ocean
modeling by solving the Navier-Stokes equations with the Boussi-
nesq approximation. In this work, we introduce a distributed
implementation of our HDG projection method algorithm. We
provide numerical experiments to verify our methodology using
the method of manufactured solutions and provide preliminary
benchmarking for our distributed implementation that highlight
the advantages of the HDG methodology in the context of
distributed computing. Lastly, we present simulations in which
we capture nonhydrostatic internal waves that form as a result
of tidal interactions with ocean topography. First, we consider
the case of tidally-driven oscillatory flow over an abrupt, shallow
seamount, and next, the case of strongly-stratified, oscillatory flow
over a tall seamount. We analyze and compare our simulations
to other results in literature.

Index Terms—ocean modeling, ocean dynamics, distributed
computing, finite element, nonhydrostatic

I. INTRODUCTION

Accurate numerical simulation and modeling of ocean
physics is becoming increasingly important in scientific appli-
cations spanning many scales and disciplines, from path plan-
ning to global climate science. In particular, there is a need to
capture nonhydrostatic, nonlinear ocean dynamics. Two such
nonhydrostatic phenomena are observed when tidally-driven
flow encounters complex, highly variable, and often, very steep
bottom topography: internal wave rays and nonlinear internal
solitary waves [1]. Such processes have been observed close to
undersea ridges in the Luzon Strait and South China Sea [2].
Furthermore, models capable of capturing these interactions
can be extended to simulate other situations arising in the
ocean when flows encounter abrupt topography, such as that
occurring at the continental shelfbreaks, or to study biological
processes in highly productive regions such as Stellwagen
Bank in Massachusetts [3]-[5]. As such, there is a demand
for high-order methodologies that can accurately model such
flows with large gradients.

978-1-5386-4814-8/18/$31.00 ©2018 IEEE

In recent years, Discontinuous Galerkin (DG) finite ele-
ment methods have become increasingly popular for com-
putational fluid dynamics applications; DG schemes are ca-
pable of achieving high-order accuracy on multi-resolution
unstructured meshes, resolving sharp gradients in advection-
dominated flows, and are well-suited to modern computer ar-
chitectures. Despite these advantages, the spatially duplicated
degrees of freedom requisite to these schemes can become
prohibitively expensive. The development of Hybridizable
Discontinuous Galerkin (HDG) methods was motivated by a
desire to improve the computational efficiency of DG schemes
while admitting solutions in discontinuous finite element
spaces. However, for large-scale computations, hybridization
alone is often insufficient to overcome memory and time-
to-solution limitations. Our present research motivation is
to apply the HDG methodology to ocean problems in a
distributed and computationally tractable manner.

Our work focuses on HDG discretizations of projection
methods used for numerical solution of the incompressible
Navier-Stokes (INS) equations. For the HDG methodology
regarding linear convection-diffusion problems, we refer to
[6]. For parallelization of HDG methods in the context of
the nonlinear equations of compressible flow, we refer to
[7]. For matrix-free methodologies in a Continuous Galerkin
finite element context, we refer to [8]. For an alterative HDG
discretization of the nonlinear, fully-coupled INS equations,
see [9].

This paper is organized as follows. In Sec. II, we briefly de-
scribe the system of governing equations we wish to solve, and
outline the scheme described in [5]. In Sec. III, we extend the
algorithms to a distributed, parallel context. Next, in Sec. IV,
we apply the results to a variety of numerical experiments,
providing a preliminary investigation into the scalability of our
distributed algorithms, and presenting simulations capturing
nonhydrostatic ocean processes and dynamics. Finally, some
concluding remarks are made and possible future research
directions are discussed in Sec. V.

II. METHODOLOGY

A. Governing equations

Consider the non-dimensionalized unsteady incompressible
Navier-Stokes equations on a simply connected domain)
within a finite time interval [0, T):

2‘; vf Vv+Vp=-V-(vav)+f inQx[0,T],
V.-v=0 in Qx]0,T7,
viga =gp in 9Q x[0,T],
V|tmo =vp in Q,
(1)
where v = [u, v, w] is the velocity, p = p%P’ P is the

pressure, f = gp when there is only density forcing, pg is
the mean density, p is the density perturbation, gp is some
Dirichlet velocity boundary condition, and v is the velocity
initial condition. For the Boussinesq equations with density
forcing, the tracer equation for the density is:

dp 1 .

E—VReSC-Vp——V-Vp in Qx[0,T], ,
ploa = gp, in OQ x [0,T], @)
pli=o =p; in Q,

where Sc = % is the Schmidt number, gD,, p; are Dirichlet

boundary conditions and initial condition for p, respectively.
We treat the non-linear term explicitly, and group it with the
forcing term, yielding the Stokes-like system we wish to solve,

?3: V— Vv 4+ Vp=Fy in Qx][0,T],
V-v=0 in Qx][0,T], 3)
vligo =gp in 09 x [0,T],
V]t—o =vp in £,
where Fg; = —V - vv 4+ f.

B. Projection methods

The time-discretization of these equations (3) using the
rotational incremental pressure correction scheme [10], [11]
is discussed here. The time-split equations first determine the
predictor velocity v**! using p.

vkt 1 _kt1 k K, k1
aAt_Vﬂ'vv —|—V " =F" s (4)
V50" = &b,)
V|t:O = Vo, (6)
Pli=0 = Do, @)

where a is some constant associated with the time-integration
method, and F* **1 contains the explicitly calculated terms
and the right-hand-side forcing. Next, a Poisson equation is

solved for the pressure corrector op*+t!:

v . vhtl
vt = YV 8
P WAL ®)
a5 k+1

- = 0. ©)

on |y

Finally, the velocities and pressure are corrected:
vRTL = gL g AtV PPt (10)
1

PPl = pk 4 gphtl - v gkt (11)

Re
C. Equivalent first-order problem
Since HDG is a mixed finite element method, we introduce

the new variables Q = éVv and qs, = V{ép. We obtain an
equivalent first-order problem:

ReQ" ' — vehtl =, (12)
k41 B
Vv -Vv. Qk+1 + vpk _ :F]C,k-i-l7 (13)
alAt
(8) as
a5t - veprtt =0, (14)
v . \7’64'1
V.-t = 15
dop alt (15)
and (10) as
v = M —aAtqf (16)
17)
while (11) remains the same
PR = pF 4 skt LV gkt
Re
These are the time-discretized split equations, and the

starting point of the HDG weak formulation.

D. Notation

In order to state the weak form of the problem, we will
first introduce some requisite notation [5]. We let 7, = UK
be a finite collection of non-overlapping elements, K, that
discretizes the entire computational domain 2 (Fig. 1). Also,
let 07, = {0K : K € Tu} be the set of interfaces
of all elements, where 0K is the boundary of element K.
For two elements sharing an edge K and K, we define
e =0KTNOK™ as the edge between elements K+ and K.
The edges can be classified as £° and 2, the set of interior
and boundary edges, respectively, with ¢ = ¢® Ue?. K+ and
K~ have outward pointing normals n™ and fi~, respectively.
The quantities [a*, ¢*] denote the traces of [a, c] on the edge e
from the interior of K¥. The “mean” value {{e}} and “jumps”
[e] on the interior interfaces e € £° for scalar and vector
quantities are then defined as

{{al} = (@ +a7)/2,

[a-f] =at-aT +a -4,

{ch = (" +c)/2,

[eh] = cthat +c7h™.

Fig. 1. Notation for domain discretization, [5].

On the set of boundary interfaces e € 2, (with outward
facing normal n on 0f2), we define these mean and jump
quantities the usual way:

{ali =a

[a-n] =a-n,

el =¢
[en] = en.
Let PP(D) denote the set of polynomials of maximum de-

gree p existing on a domain D. We introduce the discontinuous
finite element spaces:

{6 € L*(Q): 0 |xe PP(K),VK € Th}
{6 € (L*()": 6 |xe (PP(K))", VK € Th}
{© € (L2()™4: O |ke (PP(K)™ VK € Ty},
In addition, we introduce the traced finite element spaces
existing on the unique interfaces &
{6 € L*(Q) : 6. |.€ PP(e),Ve € e},
{6. € (L*(Q))?: 6. |.€ (P°(e))",Ve € e},
{©. € (L*(Q))™?: O, |.€ (PP(e))™ Ve € £} .
We also set {6. = Pgp on 9Q}, where P is the L? projection
of the boundary condition gp into the same space as 6..
Note that @, is continuous on the interface, e, shared by K+
and K, but discontinuous at the borders between different
interfaces.

Lastly, we define the inner products over continuous do-
mains D € R? and D € R4™! as

(a,b)D:/ a-bdD (c,d)D:/ eddD (18)
D D

<a’b>aD=/ a-bdoD <Cvd>6D:/
oD P

We define the additional inner product on the discontinuous
edge space:

<a» 06)5 = Z<a’ 0€>e

ece

cddoD (19)
D

(¢,0c) = Z<Cv 0c)e

ece

(20)

for vector or scalar functions a, ¢ defined on ¢.

E. HDG weak formulation

We provide an outline of the weak form of the spatial dis-
cretization and refer the interested reader to [5], in which the
derivations and choices of stability parameters are discussed
in detail.

The weak form of the velocity predictor equations (12),
(13) are listed in Fig. 2. Similarly, the corresponding pressure
corrector equations (14), (15) are given in Fig. 3. Finally, the
velocity and pressure updates (16), (18) are given in Fig. 4.

1

We choose 7 =1 and 7, = AT

element-local equations:
okt ok kil o Sk o
(Re@".0©) — (VH1.0) + (v i @), = (X i-@)

vkt ~k+1 k1 _/_xk+1
(am.e)}‘;(v-q 0) + (VL) = (X 0)

K

(V*.6) + (F*++16)

global flux conservation equations:

flux definitions:

- ;

cern AT onecued 2t

g U Q-
Pgp, on

Fig. 2. Velocity predictor ¥¥t1, weak form and flux definitions

clement-local equations:
k41 s k1 Skl oo _ [\k+1
(€ .0)k = (V1,0 4o+ (00 R 0, = (N .1»9>M

V. vkt
= (T 0) (0 = (i), - (Yo

k1 .
(v,,+ — vk R
NN AL .0
K “ K
global flux conservation equations:

<an,f fao, (dp“’ 1 Ag;‘)ﬂ , 0:>; = (gn,. 0.),

k41
)\x,,\,% =Pygp,

flux definitions:

~ k+1 °Ugd
61)“'1:{ Nsp ' one®Uel

P N TR (0, A,_Li)f\’w#l)A
Pyp,, on 20 Asp qsp p \ 0P op n

k41

Fig. 3. Pressure corrector dp! , weak form and flux definitions

element-local corrections:

R —

(H10) = (0 + *710)

gkt ki1
v altqg,

L (T90),

- i<(\’7i“—\7’"“)vﬁ.9>

oK
edge-space correction:

k 1

A= A g Arg,

Fig. 4. Velocity and pressure corrections

We remark that each of the global flux conservation equa-
tions ensures that the normal component of the flux is single-
valued on the element edge space.

F. Sequential implementation

The weak form outlined in Sec. II-E and in [5] contains two
spatial HDG solves, namely, the velocity predictor v and the
pressure corrector dp. Although the element-local equations
differ, the solution procedure is the same for each, and can
be described abstractly in terms of an unknown quantity w, its
gradient g, and the global flux variable . Algorithm 1 details
the sequential, matrix-based solution procedure.

We remark that the globally coupled unknowns have sup-
port on the element interfaces only. The computation of the
elemental contributions can be computed independently of the
other elements. Similarly, the reconstruction of the solution
on each element requires only the global solution A\ applied

Algorithm 1 HDG: Sequential, matrix-based procedure

1: for K €7,

2: AKX bK + Elemental contributions from g€, u®, \K
3: end for

4: A, b <+ assemble AKX bX for all K € T,

5: A< solve AA=0>

6: for K €Ty,

7: g”, u™ « Reconstruct elemental solution with A%
8: end for

as boundary conditions and hence can also be computed
independently of the other elements.

III. EFFICIENCY CONSIDERATIONS
A. Matrix-free iterative solvers

Matrix-free iterative solvers arise when the explicit as-
sembly of the linear system A (line 4 of Alg. 1) becomes
impractical— either due to memory limitations, or in the context
of a parallel implementation where A is distributed among
several processors without shared memory. In either case, a
matrix-free solver does not assemble the complete coefficient
matrix, but in instead applies the action of A on the solution
vector \; in the context of an iterative method such as a
conjugate gradient (CG) or Generalized Minimal RESidual
(GMRES) method.

In the case of distributed problems, the elemental con-
tribution arrays AX can be explicitly formed and stored.
Alternatively, to avoid storage of elemental matrix data, the
contribution matrices can be computed “on the fly”” and applied
to the solution vector at each iteration of the linear solve.
Since the HDG methodology requires either the solution of a
dense linear system or an explicit matrix inversion in order to
compute the elemental contributions [6] (instead of Jacobian
computations, as discussed in [8]), in this work, we consider
only the former.

B. Distributed and parallel implementation

A typical distributed computing cluster often consists of
multiple compute nodes with non-shared memory and network
communication between nodes. Therefore our methodology
uses a multiple-instruction, multiple data (MIMD) technique
to achieve parallelism. Namely, the computational domain
is partitioned between N processors Fy,..., Py_1 before
simulation runtime, at which point the elements in the com-
putational domain K € 7T as well as the edges 0K € ¢
are assigned to processors, and mapping data containing the
global and process-local numberings are saved. At runtime,
each processor shares no memory with the other processors;
for data to be shared, it is explicitly passed from one processor
to another using the Message Passing Interface (MPI).

In order to solve the problem arising from the HDG dis-
cretization in a distributed manner, we aim to partition both
the interior and edge degrees of freedom in a load-balanced
manner. We use METIS [12] to perform the decomposition
of the mesh elements into partitions based on the number of

NA

Owned Edge
MPI Border {

Ghost Edge
—— =%

Fig. 5. Message passing between processors. The edge between process 0 and
process 1 is owned by process 1. Process 0 passes data from the corresponding
ghost edge to the owning process.

available processors. However, the globally-coupled unknowns
are those on the edges between elements. It is therefore
crucial that the edges be assigned to processors in a load-
balanced manner. We do so using a greedy algorithm detailed
in Alg. 2. Although the algorithm must loop through the “MPI
border” edges (edges for which K+ are owned by distinct
processes) twice, this step need only be done once upon
domain partitioning, and has the advantage of compensating
for edge imbalances that can occur as a result of the fact that
METIS partitions only the elements K € 7T. Indeed, for the
use cases in this work, we see excellent load balancing in
terms of edge computations (see Fig. 6).

Algorithm 2 Interior edge partitioning
1. for OK € {e°}

2 if K™, K~ on same process i then
3 process ¢ < 0K

4 end if

5: end for
6
7
8
9

: for OK € {€°} unassigned

: K™ on process i, K~ on process j
process with fewer edges < 0K

: end for

Although each MPI border edge is assigned to an owning
process, the non-owning process contains a ghost edge corre-
sponding to the same edge, as depicted in Fig. 5. Contributions
from the non-owning processor are passed via MPI from the
ghost edge to the owned edge, and such that the elemental
contributions to the global linear system are computed and
stored on the owning processor.

We conclude the description of our distributed algorithm
with some brief remarks pursuant to Algorithm 3, which
provides an implementation of a distributed HDG solve. Line
3, in which the elemental contributions are computed, requires
only element data from the mesh local to process n, due to
the discontinuous nature of the polynomial spaces in which
the solution is sought, and hence requires no communication

w w
o
0 -
K 300 3 150
w0
0
. 0

° 5
w
o w
o w
“ “
. .

Fig. 6. Edge distribution for unstructured mesh with 1200 edges for 2, 4, 8,
16, processors [top to bottom, left to right].

edges
8

01234567859

101112 13 14 15

process

Algorithm 3 HDG: Distributed, matrix-free procedure
1: local processor n

2 for KT,

3: AK bK « Elemental contributions from g, u®, \K
4: send/recv border data Aﬁpi, bﬁpi to owning processor
5: end for

6: A, b+ AKX bK VK € T,", forming distributed A, b

7: A < distributed solve AX =b

8: for K €7,

9: g”, u® « Reconstruct elemental solution with A%
10: end for

between processors. On the other hand, forming the distributed
matrix-free operator A does require passing elemental contri-
butions from ghost edges to owned edges, necessitating the
message passing in line 4. Furthermore, although the advection
term is computed explicitly, the weak formulation in [ref
discretization] contains an edge integration term which may re-
quire remote data to compute the flux terms qAS{I (see Eq. (21)),
where we denote a generic unknown with ¢. Therefore, the
right hand side contributions bﬁpi also span processes.

I L

interior

edge (MPI)

The distributed solve referenced in line 7 refers to an
iterative solution procedure such as CG or GMRES. Each iter-
ation of the iterative method involves distributed matrix-vector
products, and since the operator A is distributed between
processors, each iteration of the solution)\; must update the
current solution between processors as well. Each processor
holds part of the complete solution vector as well as data
corresponding to ghost edges as depicted in Fig. 7.

IV. NUMERICAL EXPERIMENTS

A. Verification with manufactured solution

We consider a steady 3D advection-diffusion problem on
0=(-2,2)x(-2,2) x (-2, 2),

Process n — 1

— 10] —|— o—— 11 15— o— | ownedoma
Process n
§ Ghost Data
. |)
Fig. 7. Schematic of distributed solution vector A
—V - (kV@)+V-(vp)=0 on Q,
dloap = gp; (22)
N = 9N

with velocity field v = [u, v, w] such that

u = 2csin (g(x + 1)) (cos (g(y n 1)) - cos(ﬂ'z))

v = 2¢sin (g(y + 1)) <cos(7rz) — cos (g(y + 1))) (23)
w = esin(nz) (cos (g(a: +1)) — cos (g(y +1))

and with ¢ = 0.1, The source term f and mixed Dirichlet and
Neumann boundary conditions gp, gy are chosen such that
we have the exact solution as follows:

o= (3o 1) o (5] o (300 +21) 2

We present the error and order of convergence in the L2-
norm in Figure 8 and Table I, respectively. Both ¢ and q (table
not shown) converge at the optimal rate [13] of p + 1.

\

S
o
~ 107

<
o

~ —e—p=1

—s—p = 2

p=3

—B—p=4

107! 10° 10!

Resolution (h)

Fig. 8. Convergence of ¢, measured in the L? norm

B. Preliminary scalability investigation

We verify our numerical software with a manufactured so-
lution, and perform a preliminary investigation into scalability
of the algorithm with a swirl test case similar to that described
in [14]. We consider a non-dimensional, time-dependent, 2D

TABLE I
HISTORY OF CONVERGENCE ORDER IN THE L2 NORM FOR THE
ADVECTION-DIFFUSION TEST CASE

Mesh Degree (p)

N 1 2 3 4

4 - - - -

8 2.098 3.049 4.027 5.038
12 2.065 3.034 4.014 5.015
16 2.042 3.021 4.008 5.005
32 2.029 3.014 4.005 4.972

advection-diffusion problem on Q = (-1, 1) x (-1, 1),
99

ot (kV@) = -V -(vp) in Qx][0,T],
Ploo =gp in 0Q x [0,T], (25)
Glit=o = ¢ in Q,

where diffusion constant is small, on the order of 10~%, and
with the alternating swirl velocity field

U= s (%t) B sin(27y) Sinz(ﬂx)}
v=—sin (%t) [; sin(27z) Sin2(7ry)] (26

0.5

-0.5

Fig. 9. Swirl flow test case

Since each step of the projection method is a Poisson-
like system, and message passing is required for the explicit
computation of the advection term (fluxes), this problem is a
good prototype for a scalability investigation.

The results show near-perfect strong scaling in the compu-
tation of the element local contributions and reconstruction,
as well as the speedups in conjugate gradient iteration of
the global linear solve. for the cases of 2, 4, 8, and 24

2D HDG solve: time of linear system assembly

=% serial
=®= 2 proc
=®= 4 proc 'fx
2
10?2 o= gproc .”
. Y]
24 proc . %0
. - -
- e” _s”
- o - -®
- - . .
101 o> P A A
- - . .
- -
—‘ ’ f— .‘
A - - -
. - -
R - »" .
P .” .” .’
100 AP AP g
.” - e” L
» Pe ‘g -
“ - " —ﬂ
- - - -
.” —"4" %
. - -
101 * T e .
- -
e’ " o
*e” .-
.
o

1.0e+03 1.0e+04 1.0e+05 1.0e+06

Fig. 10. Average wallclock time of system assembly (s) vs. problem size
(edge space degrees of freedom) for different numbers of processors.

100 2D HDG solve: average time per CG iteration

. x
=% serial A
== 2 proc o
. V]
=®= 4 proc P by
=e= 8 proc 'X AR
.
24 proc . . e s
100 o . o Ao
. e ,% .
. %, 2.
x* .8
RSP
PN a” _+%
PR e
PR
? . -,
¢ - ‘d.
X o
101 S S
¥ L
o g
P St}
[
'/‘"
}‘g\{ -
e
102 "

103

1.0e+03 1.0e+04 1.0e+05 1.0e+06

Fig. 11. Average wallclock time per conjugate gradient iteration (s) vs.
problem size (edge space degrees of freedom) for different numbers of
processors.

processors, compared to a single processor. We can see that
for the case of 24 processors, the message passing overhead
provides substantially worse performance for small problems,
but achieves the best speedup as problem size grows.

C. Internal wave formation

Our next numerical experiment is a benchmark test case
used in Vitousek and Fringer [1] and is set-up here to demon-
strate the ability of our high-order HDG code to simulate non-
hydrostatic physics. In this example, tidally-driven, oscillatory
flow with variable density encounters a single isolated, shal-
low, but abrupt seamount; the surrounding sea bed is flat, and
the height of the seamount is only 2% of the total depth.

The domain considered here is [—L, L] x [—H, 0], where
L = 1500 m and H = 1000 — 20 exp(—2?2/1800) m; that is,
the seamount is represented as a Gaussian sill. As in Vitousek
and Fringer [1], the viscosity v = 1076 m?s~!, the mean

density pp = 1000 kgm~3, and the Brunt—Viisili frequency
N = 0.007 s~ . The Coriolis force is neglected here. The flow
starts from rest, with a linear stratification given by % =
—0.005 kgm~*. A no-slip boundary condition is imposed on
the velocity along the sea bed, and a free-slip condition is
imposed at the surface. On the left and right (open) boundaries,
oscillatory flow is forced: up = 0.01sin(wt) ms™!, where
w = 0.0056 s~ 1. Homogeneous Neumann BCs are imposed on
the density perturbation everywhere. The domain is discretized
into 788 elements in the x-direction and 414 in the z-
direction, and second-degree polynomials are used to represent
all variables (that is, the scheme is third-order accurate in
space). A first-order IMEX-RK time stepping scheme is used,
with 500 time steps per tidal cycle.

Fig. 12 shows the vertical velocity after 17.75 tidal cycles.
Non-hydrostatic internal wave rays have fully developed, ema-
nating from the seamount, reflecting off the surface and bottom
until being damped at the open boundaries by our numerical
sponge layer. The sign of w changes with the tide (not shown).
For our choice of tidal and buoyancy frequency, the theoretical
non-hydrostatic IW ray angle [1], [15] with respect to a flat
bottom is given by

Ounhs = tan™ " (/w2 /(N2 — w?)) =~ 53.1°,
whereas the theoretical hydrostatic IW ray angle is
Ons = tan"*(w/N) ~ 38.7°.

These angles are shown in fig. 12 by green and red lines for
the non-hydrostatic and hydrostatic cases, respectively. Our
results are in very good agreement with the theoretical non-
hydrostatic ray angle, and are also in agreement with the
results presented in previous studies [1].

IN \\ / ’ 0.01
/
N N , X
N N /. R 0.005
S, N 4 ‘/
S~ N g - 0
A N // 7
Y, /A -0.005
NN /77
‘Se -0.01

Fig. 12. Vertical velocity (ms~1) at ¢ = 17.75 tidal cycles, along with
theoretical non-hydrostatic (green) and hydrostatic (red) beam angles. The
flow is from right to left.

D. Internal solitary waves

In this experiment, (non-hydrostatic) internal solitary wave
trains are simulated, which are generated when a strongly-
stratified, oscillatory flow encounters and passes over a tall
seamount. Such non-hydrostatic processes are of great interest
to oceanographers, and have been observed close to undersea
ridges in the Luzon Strait and the South China Sea [2]. Unlike
the previous example, the height of the seamount here is 87%
of the total depth.

Once again, the domain considered is [—L, L] x [— H, 0], but
L =2x10° mand H = 3000—2600 exp(—2?/2.88x10%). To

6
%1073

Fig. 13. Normalized density perturbation p’/pg after 1.25 tide cycles. The
ISW train is captured (top) when a 3rd order accurate HDG scheme is used,
but is not resolved (bottom) when a 2nd order accurate HDG scheme is used.
Only the top 20% of the domain is shown.

better emulate realistic ocean conditions, anisotropic diffusion
is used, with v, = 100m?s~! and v, = 107*m?s~ 1,
while the mean density is taken as py = 1024.75 kgm~3.
The flow again starts from rest, but is nonlinearly stratified
according to the profile given in Vitousek and Fringer [1]. The
boundary conditions are the same as in sec. IV-C, except that
up = 0.134sin(wt) ms™! on the open boundaries, where w =
1.41 x 10~* s~ (this is the approximate M2 tidal frequency).
The domain is discretized into 218 elements in x-direction and
100 in the z-direction; this grid is four times coarser in the z-
direction than that used in Vitousek and Fringer [1]. However,
second-degree polynomial approximations to our solution are
used, effectively doubling our resolution in both the z- and
z-directions while retaining low computational cost. A first-
order IMEX-RK time stepping scheme is again used, with
approximately 8912 time steps per tidal cycle.

The resulting normalized density perturbation p’/pg after
1.25 tide cycles is shown in fig. 13. Consider first the high-
order HDG case (top of fig. 13). After about one tide cycle,
a leftward-propagating nonlinear internal solitary wave forms,
developing into a wave train by 1.25 cycles. These wave trains
propagate away from the seamount, until they are damped
out when they enter our numerical sponge layer imposed
near the open boundaries. Additional solitons and wave trains
develop every half-cycle, and propagate in alternating di-
rections according to the phase of the tide. This result is
in qualitative agreement with the expected non-hydrostatic
behavior. Crucially, however, the ISW train is captured only
when the higher-order HDG scheme is used. In the low-
order HDG case, a leftward-propagating bore forms after 1.25
cycles and does not develop into a wave train; additional
bores form every half-cycle thereafter. This behavior is very
similar to that predicted by hydrostatic models [1]. In short,
the result demonstrates the necessity of using higher-order
HDG methods to capture non-hydrostatic dynamics and other
complex ocean processes.

V. CONCLUSION

We provided a preliminary distributed implementation of
our HDG projection method algorithm. We discussed strate-
gies for partitioning the element edge space in a load balanced

manner and for handling message passing between different
processors with no shared memory. We verified our software
with a manufactured solution and obtained the optimal order
of convergence without post-processing. We benchmarked our
parallel algorithm and demonstrated the advantages of the
HDG algorithm due to the steps of the algorithm that are
embarassingly parallelizable. Furthermore, we benchmarked
the parallel performance of the globally coupled portion of
the HDG algorithm, and demonstrated the speedups therein.
Finally, we provided simulations of ocean flows encountering
steep topography which capture nonhydrostatic internal wave
effects.

Multiple extensions of the research presented in this work
are possible. Multi-threading on each processor could yield
improved time-to-solution [8] and an added layer of paral-
lelism. Element-local computations could be efficiently sped
up with use of graphics processors [16]. Alternatively, instead
of traditional computing clusters, a cloud-based computing
system could better fit scientists’ needs for large-scale, mas-
sively parallel ocean simulations.

ACKNOWLEDGMENTS

We are grateful to the members of our MSEAS group
for useful discussions, as well as to Arkopal Dutt and Jing
Lin for advice and feedback. We are grateful to the Office
of Naval Research for support under grant N00014-15-1-
2626 (FLEAT), and the National Oceanographic Partnership
Program (NOPP) for support under grant N0O0014-15-1-2597
(Seamless Multiscale Forecasting), each to the Massachusetts
Institute of Technology.

REFERENCES

[1] S. Vitousek and O. B. Fringer, “A nonhydrostatic, isopycnal-coordinate
ocean model for internal waves,” Ocean Modelling, vol. 83, pp. 118—
144, 2014.

[2] M. Buijsman, Y. Kanarska, and J. McWilliams, “On the generation and
evolution of nonlinear internal waves in the South China Sea,” Journal
of Geophysical Research: Oceans, vol. 115, no. C2, 2010.

[3] M. P. Ueckermann and P. F. J. Lermusiaux, “High order schemes for
2D unsteady biogeochemical ocean models,” Ocean Dynamics, vol. 60,
no. 6, pp. 1415-1445, Dec. 2010.

[4] M. P. Ueckermann, “High order hybrid discontinuous Galerkin regional
ocean modeling,” PhD thesis, Massachusetts Institute of Technology,
Department of Mechanical Engineering, Cambridge, MA, Feb. 2014.

[5] M. P. Ueckermann and P. F. J. Lermusiaux, “Hybridizable discontin-
uous Galerkin projection methods for Navier—Stokes and Boussinesq
equations,” Journal of Computational Physics, vol. 306, pp. 390421,
2016.

[6] N. C. Nguyen, J. Peraire, and B. Cockburn, “An implicit high-order hy-
bridizable discontinuous galerkin method for linear convection—diffusion
equations,” Journal of Computational Physics, vol. 228, no. 9, pp. 3232—
3254, 20009.

[71 X. Roca, C. Nguyen, and J. Peraire, “Scalable parallelization of the
hybridized discontinuous galerkin method for compressible flow,” in 215t
AIAA Computational Fluid Dynamics Conference, 2013, p. 2939.

[8] M. Kronbichler and K. Kormann, “A generic interface for parallel cell-
based finite element operator application,” Computers & Fluids, vol. 63,
pp. 135-147, 2012.

[9]1 N. C. Nguyen, J. Peraire, and B. Cockburn, “An implicit high-order hy-
bridizable discontinuous galerkin method for the incompressible navier—
stokes equations,” Journal of Computational Physics, vol. 230, no. 4, pp.
1147-1170, 2011.

[10] L. Timmermans, P. Minev, and F. Van De Vosse, “An approximate
projection scheme for incompressible flow using spectral elements,”
International journal for numerical methods in fluids, vol. 22, no. 7,
pp. 673-688, 1996.

[11] J. Aoussou, J. Lin, and P. F. J. Lermusiaux, “Iterated pressure-correction
projection methods for the unsteady incompressible Navier—Stokes equa-
tions,” Journal of Computational Physics, vol. 373, pp. 940-974, Nov.
2018.

[12] G. Karypis and V. Kumar, “Metis—unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” 1995.

[13] B. Cockburn, J. Gopalakrishnan, and F.-J. Sayas, “A projection-based
error analysis of hdg methods,” Mathematics of Computation, vol. 79,
no. 271, pp. 1351-1367, 2010.

[14] D. R. Durran, Numerical methods for wave equations in geophysical
fluid dynamics. Springer Science & Business Media, 2013, vol. 32.

[15] P. Kundu and L. Cohen, “Fluid mechanics, 638 pp,” Academic, Calif,
1990.

[16] A. Klockner, T. Warburton, J. Bridge, and J. S. Hesthaven, “Nodal
discontinuous galerkin methods on graphics processors,” Journal of
Computational Physics, vol. 228, no. 21, pp. 7863-7882, 2009.

