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SUMMARY 
A basis is outlined for the first-guess spatial mapping of three-dimensional multivariate and multiscale 

geophysical fields and their dominant errors. The a priori error statistics are characterized by covariance matrices 
and the mapping obtained by solving a minimum-error-variance estimation problem. The size of the problem is 
reduced efficiently by focusing on the error subspace, here the dominant eigendecomposition of the a priori error 
covariance. The first estimate of this a priori error subspace is constructed in two parts. For the ‘observed‘ portions 
of the subspace, the covariance of the a priori missing variability is directly specified and eigendecomposed. 
For the ‘non-observed’ portions, an ensemble of adjustment dynamical integrations is utilized, building the non- 
observed covariances in statistical accord with the observed ones. This error subspace construction is exemplified 
and studied in a Middle Atlantic Bight simulation and in the eastern Mediterranean. Its use allows an accurate, 
global, multiscale and multivariate, three-dimensional analysis of primitive-equation fields and their errors, in real 
time. The a posteriori error covariance is computed and indicates complex data-variability influences. The error 
and variability subspaces obtained can also confirm or reveal the features of dominant variability, such as the 
Ierapetra Eddy in the Levantine basin. 
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1. INTRODUCTION 

Even though the computation of gridded fields for realistic meteorology and 
oceanography has been considered in a probabilistic sense for some time (e.g. Gandin 
1965), canying out the probabilistic approach is complex for several reasons. Ideally, 
based on estimation theory (Jazwinski 1970), the statistics of three-dimensional (3D) 
and multivariate fields are determined at a given time, taking into account all available 
knowledge of the geophysical system studied, including estimates of imperfections. The 
main sources of knowledge consist of data and dynamics. The main sources of uncer- 
tainties include the difficulty of comprehensive and accurate data acquisition, the chal- 
lenges of modelling complex, multiscale and multidisciplinary geophysical phenomena 
(Robinson 1996; Glimm and Sharp 1997) and the sensitivity to initial conditions (Lorenz 
1965; Houghton 1991; Molteni and Palmer 1993). In the light of these challenges, an 
issue addressed here is the rational truncation of the probability density of realistic fields 
and its subsequent estimation. 

For today’s operational methods, as for this study, a primary goal is to obtain 
a gridded estimate of the real state and its error: in other words, its probability of 
being right. Common techniques include statistical interpolation or objective analysis 
(Bretherton et al. 1976; McWilliams et al. 1986; Lorenc 1981, 1986; Daley 1991; 
Wunsch 1996), successive corrections (Cressman 1959; Barnes 1964, 1994; Lorenc 
1992), functional fitting (Wahba and Wendelberger 1980; McIntosh 1990; Brankart and 
Brasseur 1996), multi-resolution interpolation and spatial filtering (Fieguth et al. 1996), 
feature and structured data models (Lozano et al. 1996; Gangopadhyay et al. 1997), 
and time filtering or smoothing data assimilation schemes (Robinson et al. 1998a). For 
an overview of the three-dimensional variational (3D-Var) scheme of the European 
Centre for Medium-Range Weather Forecasts, presenting the specifics of different 
* Corresponding author: Harvard University, DEAS, Pierce Hall G2A, 29 Oxford Street, Cambridge, MA 02318, 
USA. 
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developments in several meteorological centres (e.g. Parrish and Derber 1992; Gauthier 
er al. 1996), we refer to (Courtier er al. 1998; Rabier et al. 1998; Anderson et al. 
1998). The majority of mapping methodologies utilize a priori weights or covariance 
fields to interpolate and extrapolate the data at hand into field estimates. These weights 
are commonly based on empirical or modelled variability properties. Even though the 
multiscale geophysical variability is observed to be 3D, non-homogeneous, anisotropic 
and multivariate, several schemes simplify these characteristics, for example to 2D or 
univariate covariances. The mapping is then reduced to a succession of uncorrelated 
estimation problems. 

Within the Bayesian framework (e.g. Jazwinski 1970; Lorenc 1986), accounting 
for the complete a priori probability or error statistics is today too expensive, mainly 
because of the cost of modelling and observing systems. Truncating the error statistics 
is thus necessary. Nonetheless, the truncation should be rational, reflecting the dominant 
properties of data and dynamics at the time of the mapping, as measured by the 
estimation criterion. The term ‘dominant’ should in fact be defined in accord with the 
error measure of this criterion (e.g. dominant in the sense of a convex metric for a convex 
error measure). The neglected statistics are then insignificant for the estimation at hand, 
and the retained dominant statistics determine the error subspace. 

Using these ideas, a basis for a first estimate of multivariate geophysical fields 
and their dominant uncertainty is outlined. The time for the estimation is fixed; for 
time evolutions we refer to Lermusiaux (1997; henceforth, LER97). The statistics of 
the dominant a priori error are assumed to be variability from the a priori state. The 
mapping therefore focuses on the significant subspace of the a priori missing variability, 
referred to hereafter as the error subspace. The possible 3D, multiscale or multivariate 
properties are not removed ab inirio; as will be shown, their dominant components 
powerfully interpolate the sparse data, simultaneously across all variables and scales that 
matter. With the premise that all knowledge is useful, the error subspace is constructed 
combining a priori data and dynamics, in accord with their respective deficiencies. For 
the variables, regions and regimes with good historical (synoptic) data, the a priori 
missing variability is specified, either directly from these data or via an analytical model 
fit to this data. These portions of the error subspace are referred to as the ‘observed’ 
portions. The most advanced nonlinear dynamical model available, possibly including a 
stochastic component, is then used to build the ‘non-observed’ portions in accord with 
the observed ones, via an ensemble of adjustment dynamical integrations. 

The remainder of the paper is organized as follows. Section 2 introduces the 
choices, issues and objectives specific to this study. Section 3 outlines the specification 
of the observed portions of the error subspace, focusing on a univariate formulation 
for convenience. Section 4 constructs the complete multivariate error subspace. The 
methodology is exemplified in an oceanographic context. The examples include the 
estimation of the mesoscale variability subspace of a realistic Levantine Sea experiment 
and of an idealized, primitive-equation (PE) simulation of the Middle Atlantic Bight 
‘shelfbreak’ front. Section 5 presents a global multivariate 3D analysis of the state and 
uncertainty of PE fields in the Levantine Sea. The results are briefly compared with 
those of the operational, univariate 2D objective analysis scheme of the Harvard Ocean 
Prediction System (HOPS, e.g. Lozano et al. 1996). Section 6 contains a summary 
and the conclusions. Wherever possible, the notation of Ide et al. (1997) is used. 
Appendix A describes specifics of the notation and outlines the machinery of the 
mapping. Appendix B outlines the algorithm employed for computing the vertical 
multivariate empirical orthogonal functions (EOFs) of a priori tracer residuals, which 
are encountered in sections 3 to 5.  
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The emphasis of the present paper is mainly methodological. We refer to a compan- 
ion paper (Lermusiaux et al. 1998; henceforth, LLA98) for more on the fundamental and 
applied possibilities raised by the global and multivariate dominant variability estimates 
briefly explored in sections 4 to 6. The sensitivity of the error subspace estimate to 
the data and dynamical model parameters, the sensitivity of the state estimate to the 
properties of the error subspace and further intercomparisons with the univariate 2D 
scheme are also presented in LLA98. 

2. SPECIFIC CHOICES, ISSUES AND OBJECTIVES 

The approach introduced in section 1 is particularized by choosing the conditional 
mean for the optimal state and by estimating its gridded values using a minimum-error- 
variance criterion. The a priori error statistics are also assumed to be described by error 
covariance matrices, denoted here by B. For consistency with the variance measure, a 
subspace is then determined by the dominant eigendecomposition of such a covariance*. 
The corresponding estimation criterion and scheme are given in appendix A. 

The main objective is thus to construct algorithms for a first guesst at the domi- 
nant eigendecomposition of error covariances (sections 3 and 4). Most 3D, multivari- 
ate covariance matrices are large, and the knowledge of geophysical covariance func- 
tions remains limited. The data available are usually not sufficient for their complete 
estimation (e.g. Dee 1995; Kaplan et al. 1997). This is especially true for biological 
or chemical fields (Flier1 and Davis, private communication). Covariance functions 
are therefore specified using simple statistical or dynamical models' fit to data (e.g. 
Thiebaux 1976; McWilliams et al. 1986; Daley 1991). Determining the dominant er- 
ror balances is also not immediately obvious; but, in analogy with the appreciation of 
dominant dynamical balances, it is important for deeper understanding. The specifica- 
tion of background errors in meteorology is usually based on the studies of Balgovind 
et al. (1983); Hollingsworth and Lonnberg (1986); Lonnberg and Hollingsworth (1986); 
Phillips (1986); Parrish and Derber (1992); Bartello and Mitchell (1992); Daley (1991, 
1992b, 1996). In oceanography some of these studies are useful, but for several reasons, 
results are often based on simplified models and progress is more limited (e.g. Jiang and 
Ghil 1993; Tsaoussi and Koblinsky 1994). For the observed portions of error covari- 
ances, the primary goal here is to illustrate the efficacy of the subspace approach based 
on known specifications, increasing complexity up to non-homogeneous and multiscale 
subspace computations. For the non-observed portions, the goal is to validate the use 
of an ensemble of adjustment dynamical integrations. The combination of both por- 
tions into complete dominant error eigendecompositions yields progress toward more 
advanced covariance formulations. 

Another objective is to illustrate these algorithms and to evaluate their performance. 
The main evaluation is carried out by examining the results of mapping applications 
(section 5 and LLA98). The error-subspace approach (i) allows a global analysis; (ii) 
estimates all fields at once, based on the 3D multivariate correlations that matter; (iii) 
directly specifies the dominant field (B) and data (R) error covariances which, as in 
3D-Var schemes, facilitates the use of nonlinear-measurement models frequently found 
with acoustic or biological data (e.g. Munk et al. 1995; Evans and Fasham 1993); and 
* In this paper, the term covariance relates to a matrix quantity unless otherwise mentioned. Of course, for the 
eigenvectors of a covariance to possibly be physically meaningful, a normalization and adequate grid (appendix A 
and section 4(b)) are necessary prior to the eigendecomposition (hrenc 1992; LER97). 

First-guess error subspaces can be improved for example, subsequent filtering or smoothing (e.g. adjoint) 
schemes would yield errors balanced in time and space, in accord with data and dynamics. The resulting error 
estimates can then be used as historical data in future error subspace computations. 
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(iv) permits the use of all data available via sequential data processing (Parrish and 
Cohn 1985). A specific goal here is to exemplify these properties ( ix iv)  of efficiently 
reducing B. Each of them can be contrasted with simplifications made in many ocean 
mappings which consist of (i) limiting the domain of influence of data, both in space and 
time, leading to a succession of so-called local analyses; (ii) estimating parts of the fields 
one at a time and zeroing certain correlations a priori; (iii) only specifying the data-to- 
data points (HBHT) and field-to-data points (BHT) covariances (appendix A), which 
is well-suited to linear-measurement models; and (iv) subsampling the observations 
in ‘data-rich’ regions to reduce the size of HBHT and thus the cost of the inversion. 
For examples of such simplifications, we refer to Carter and Robinson (1987), Watts 
et al. (1989), Carton and Hackert (1989), Mariano and Brown (1992), and Lozano 
et al. (1996). For additional evaluation, the significant components of B are compared 
to what is known about the region and regime considered (section 4(c)). The error 
subspace can in fact be used for validating its construction; if adequate, it should 
explain any significant sample of the a priori missing variability. Such global covariance 
evaluations complement the local ‘single-observation analyses’ utilized by Parrish and 
Derber (1992) and ThCpaut et al. (1996). 

Since field mapping is often used to initialize a predictive model, the last specific 
objective is a method for initialization. In real-time oceanography today, an accurate 
initial error can in fact be as valuable as an error forecast. The present error-subspace 
construction has been critical in initializing data-driven predictions and smoothings for 
sea exercises in North Atlantic Treaty Organization (NATO) operations. Such real-time 
experiments occurred for example in the Strait of Sicily, Ionian Sea and Gulf of Cadiz 
(Robinson et al. 1998b, 1999). Aspects of this first-guess field and error initialization 
are also discussed in LLA98. 

As an aside, while the foregoing three objectives were the forces driving the present 
research, it is the impact of the field and error mapping scheme in an operational 
oceanographic context that created the need to consider the mapping problem in detail. 

3. ERROR SUBSPACE: OBSERVED PORTIONS 

The portions of the error subspace for which sufficient data are available are spec- 
ified directly from data or via an analytical model fit to data. The presentation is or- 
dered according to complexity: the possible separability (e.g. horizonWvertical) or 
scale independence (e.g. mesoscaleflarge-scale) is used before addressing correlated 
multiscale issues. Section 3(a) deals with horizontal error covariances and briefly exem- 
plifies advantages of their truncation. Section 3(b) considers vertical error covariances. 
Section 3(c) extends these results to the estimation of the dominant decomposition of 
3D and multiscale error covariances without storing these matrices. 

(a) Horizontal error subspace 
For the horizontal error covariances that are observed, we employ statistical mod- 

els fitted to data. For practical reasons, covariance functions (denoted here by C) are 
usually simplified (e.g. Lorenc 1986): for example, they are often chosen to be sta- 
tionary, isotropic, homogeneous or partitioned assuming scale separations. Successive- 
correction techniques (Daley 199 1 ; Lorenc 1992) provide approximate iterative meth- 
ods, usually mapping one scale at a time. The horizontal analysis of HOPS makes 
such a scale-separation assumption: its two-scale version is employed here as a bench- 
mark. The non-dimensional (*) covariance function used is a scalable, negated, second 
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derivative of a Gaussian or 'Mexican hat'. The parameters are the zonal 1," and merid- 
ional 1: zero-crossings, the zonal 1; and meridional 1; e-folding decay-scales and the 
decorrelation time r .  For each scale these parameters are fitted to scale-filtered data 
residuals; and the elements of By after non-dimensionalization (appendix A), are of 
the form C*(rl, r2) = (1 - a2)  exp(-b2/2), where a2 = (rl - r2)TL;2(r1 - r2) and 

tion vectors, with r = ( x ,  y). The [2 x 21 anisotropic scaling matrices contain the local 
zero-crossings, La = diag(l,", l:), and length-scales, L, = diag(l;, 1:). The scalar Ati 
accounts for the intervals between the data times ti and the fixed estimation time to 
(appendix A). 

Today, typical horizontal grids contain 30 to 200 ZonaVmeridional nodes (e.g. 
Robinson 1996). The number of horizontal grid points t h  is thus of order lo3 to lo4. For 
such dimensions, the numerical eigendecomposition of B is feasible and the usefulness 
of the subspace truncation can be evaluated. As an example, we consider horizontal sub- 
basin-scale and mesoscale error fields in the north-western Levantine. The numerical 
domain is 500 km in the x and 520 km in the y direction, with a horizontal resolution of 
10 km. The size of B is [2073 x 20731. The results regarding efficiency (LLA98) can be 
summarized as follows: for sub-basin-scale errors (1," = 1: = 200 km, 1; = lby = 100 km 
and t = my horizontally constant for convenience), 10 eigenvectors represent 71% of 
the variance and 20 vectors 92%; for mesoscale errors (I," = 1: = 60 km, 1; = lby = 
30 km and r = m), a larger number is necessary, 20 eigenvectors represent 26% of the 
variance, 100 vectors 83% and 240 vectors 99%. A few eigenvectors corresponding to 
this mesoscale covariance are plotted in Fig. 1. One first observes that the patterns tend to 
be global, in part because of the orthogonality constraint. Secondly, the dominant vectors 
have a nearly uniform oscillatory character (e.g. panels 1-8). Thirdly the scale of the 
features explained by a given vector decreases as the vector number increases. These last 
two facts are associated with the lack of information on the recent dynamical evolution. 
In reality, every scale of motion has some memory which imposes dynamical constraints 
on the variations of an evolving field. For example, the eigenbase illustrated by Fig. 1 
allows eddies to be anywhere, but in fact they are not. Dynamic eigenvalue spectra 
tend to decay more quickly than purely statistical ones which are often built assuming 
ergodicity. Such statistical models thus usually give upper bounds on the size of the 
error subspace. For other examples with anisotropic, non-homogeneous covariances or 
correlations, and their use in real-time ocean forecasts, we refer to LER97. 

Instead of using a statistical model for the covariance function and eigendecom- 
posing the covariance, one could directly decompose the historical data into horizontal 
EOFs (e.g. Preisendorfer 1988; Thacker and Lewandowicz 1997; Kaplan etal. 1997). In 
the applications of sections 4 and 5, the horizontal resolution of the data is not sufficient 
to do so. One could also decompose a simplified dynamics fit to data into horizontal 
normal modes (e.g. Monin 1990; Lozano and Candela 1995; Miller et al. 1996), but the 
open domain and multiscale regime of the examples considered are not suited to such 
decompositions. 

b2 = (rl - r2) T L, -2 (rl - r2) + ( A t i / t ) 2  are scalars, and rl and r2 horizontal posi- 

(b)  Vertical error subspace 
In sections 4 and 5 ,  to decompose the observed vertical error covariances, either a 

vertical function is fitted to the differences between the data and an a priori state xb and 
the resulting covariance eigendecomposed, or the vertical EOFs of these a priori data 
residuals are directly computed. Since the efficacy of reducing vertical covariances to 
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Figure 1. Eigenvectors of a tracer covariance for mesoscale 2D fields. The non-dimensional covariance function 
is a Mexican hat, with 1," = 1,' = 60 km. 1; = 1: = 30 km and t = 00. The panel numbers are the vector numbers. 
The dominant 8 vectors explain 11% of the vanance, the dominant 200 vectors 98%. Higher vectors are useless in 
most computations. Scale decreases as the vector number increases, down to wavelengths of O(60 km), e.g. 
vectors 100 and above. Due to the Mercator projection, some vectors appear distorted. All vectors are non- 
dimensional; the scale values have no absolute meaning. Error covariance values are presently weighted by a 
function proportional to the quantity of mesoscale observations in the vicinity of each grid point. Within the 
data array, this function here is one, and outside of the array, it decays to zero with a Gaussian scale of 30 km. 
In multiscale mappings, such horizontal weight functions lead to 'compactly supported' correlations and non- 
homogeneous error length-scales (e.g. Bouttier 1994; LER97; Gaspari and Cohn 1999). See text for further details. 

their dominant components is established in oceanography and meteorology, it is not 
evaluated here. 

Considering two depths z1 and z2, the vertical covariance functions we have ex- 
plored are: e2/(1 + a s ) ,  e2  e x p ( - a s ) ,  c2 e x p { - m ( z ) 2 )  and 
c2 e x p ( - a ( v ) 2 } .  The dimensional variance E~ and parameter a depend on the vari- 
able considered and are fitted to data; D is a characteristic vertical length. The first 
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three functions were selected so as to increase the vertical length-scale with the average 
depth, and usually give better results than the last one. Vertical covariance functions have 
also been specified for topography-following coordinates (‘sigma’ levels). For example, 
Bennett et al. (1995) employed e2( 1 + B 1n2(%)}-l, where 0 1 ,  02 are two sigma levels 
and c2 and /3 can be fitted to data. 

Vertical EOFs are classic in geophysical estimations (e.g. von Storch and Frankig- 
noul 1998), in particular for sea surface data extension (e.g. Haney et al. 1995; Gavart 
and DeMey 1997). They are efficiently computed using the singular-value decompo- 
sition (SVD). The present multivariate vertical EOF decomposition is given in ap- 
pendix B. Another common approach is to compute the vertical normal modes of a 
simplified dynamics fit to data (Gill 1982; Monin 1990; Woodgate and Killworth 1996; 
Wunsch 1997). 

(c)  Three-dimensional error subspace 
Because of the thin-fluid properties of the ocean and atmosphere, ‘horizontal’, 

r = ( x ,  y), and ‘vertical’, z, coordinates play a special role: we denote by the value 
of a field 9 at location (r, z), with the superscripts b for a priori and t for true (see 
appendix A for the conventions). Using notation similar to McWilliams et al. (1986), 
C(rl,r2, z1, z2) is the error covariance function between (rl, z1)  and (1-2, 22): 

(1) 

The two factors in (1) contain the same field 4 only for ease of notation. Fields of 
different nature ($ and 4p) and thus cross-covariance functions C,, are considered; the 
results to follow are employed in a multivariate context in section 4(a). The dominant 
error being assumed to be variability from #b, the vertical dependence in (1) can often 
be expressed efficiently by expanding @b - #t in the form: 

C(r19 r21 21, z2) A & W b h  z1) - &r1, z 1 ) W b 0 2 ,  22) - 4Yr2, z2))l. 

03 

where the Zr(z )  terms are normalized vertical functions, determined from section 3(b). 
The Zf(z) terms are already averages, therefore substituting (2) into (1) yields: 

i ,  j=O 

where the normalization factor Ai,j = Aj,i is the horizontal average of G{&(r)4j (r )}  
and C: (rl , r2) I &{& (r l )@j (r2)}* is the non-dimensional horizontal cross-covariance 
function associated with i and j ,  and is in general non-homogeneous and anisotropic. 
The aim is to determine decompositions (2) that describe most of C(r1, r2, z1, z2) in 
(3a) with a few terms, i.e. the Ai, j decay rapidly with increasing i and j. The expansion 
(3a), in general non-separable, is then efficiently truncated to: 

I , J  
~ ( r l ,  r2, ~ 1 ,  ~ 2 )  2: Ai,jC:j(r l ,  r2)z~(zl)zf(z2). (3b) 

i ,  j=O 

To this end, other decompositions than those of section 3(b) have been considered: 
e.g. Taylor polynomial, Fourier or wavelet fits (McWilliams et al. 1986; Gamage and 
Blumen 1993). 
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In HOPS experiments, a typical number of levels (e,) is between 10 and 50. Us- 
ing the horizontal sizes l h  of section 3(a), the total number of grid points e = the , ,  
is thus of order lo4 to lo6. Because of computer time and memory constraints, the 
direct use of (3b) in a global 3D analysis is not feasible. This obstacle can be sur- 
mounted if estimates of the dominant eigendecomposition of covariances based on 
(3b) are found. To derive such estimates, section 3(c)(i) considers the mapping of 
one scale or spectral window (e.g. Nihoul and Djenidi 1998) for the special case 
where the vertical functions in (2) are associated with a common non-dimensional 
horizontal covariance in (3b). This leads to horizontalhertical separability and ex- 
act practical eigendecomposition. Section 3(c)(ii) considers the mapping of multi- 
ple scales and non-separable covariance functions; efficient decomposition schemes 
are outlined for the limit of isolated spectral windows and for the general situa- 
tion (3b). 

(i) One scale: common non-dimensional horizontal error covariancefunctions. In this 
sub-section, the Czj (rl , r2) are assumed to be independent of the vertical combination 
i, j considered. If the Wiener-Khinchine theorem applies, all CTj(rl, r2)'s  then have 
a single horizontal spectrum. This simplification has observational and theoretical sup- 
port. For some mesoscale ocean datasets (e.g. Hua er al. 1986), it has been regionally 
observed that, for small I and J, e.g. 0 < I ,  J 6 1 in (3b), the spectra of the Cz (rl, 1-2) 

do not vary significantly with i, j .  Theoretically, for the mesoscale, mid-latitude open 
ocean, a few modes dominate the vertical problem, usually the barotropic and first baro- 
clinic mode (e.g. Pedlosky 1987; Wunsch 1996, 1997). The series (3b) then contains 4 
terms. In forced open-ocean (quasi-geostrophic) turbulence close to statistical equilib- 
rium, these first two vertical modes tend to have the same horizontal spectrum (Rhines 
1977; Salmon 1980; Haidvogel 1983). The corresponding spectral window, with length 
scales of the order of the first internal Rossby radius of deformation, is usually used to 
define the mesoscale. Hence, with C:j(r l ,  r2) = R*(rl, r2) in (3b): 

C(rl, r2, ~ 1 %  zd = R*(rl, rz )Z(z l ,  z 2 ) ,  (4) 

where Z(z1, z 2 )  = C:,';==, A ; , , Z ~ ( Z ~ ) Z ~ ( Z ~ ) .  Since (4) is separable, for a suitable 
ordering of elements (LER97), the corresponding covariance B E Rex' is the Kronecker 
product' of the vertical C' E RtuXeL and non-dimensional horizontal Cr* E Reh ' l h  
covariances: 

( 5 )  

For every pair of vertical eZ and horizontal e, error eigenvectors, with eigenvalues A, 
and A,, such that CZez = AzeZ and Crier = Arer, this yields 

(6) 

B = C' €9 C'*. 

Be, €9 e, = A,A,e, €9 e, .  

The dominant eigendecomposition of B can be computed easily from those of C z ,  
EiIlzEzTT, and Cr*, Er*nr*ErtT, obtained in sections 3(a) and 3(b). Using (6), one sorts 
the products &A,., truncates for significant variance to the largest p eigenvalues, and 
only evaluates the corresponding eigenvectors e, €9 e,. These eigenvalues and eigen- 
vectors, constituting the diagonal of ll and columns of E, determine the dominant 
subspace of B. Figure 2 outlines the procedure. The result is the dominant rank-p 

A @ B E RrmX"' (Graham 1981). 
The Kroncckcr product or tensor product of matrices A E Rrx '  and B E R"Ixn defines a block matrix C = 
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Expansion 
\Qs. (2-3) 

I - - -r- - - -. / ./- One Scale: -- 
/ Common Non-dimensional 
‘,Horizontal Covariance Functions, 

\ 

. 
. . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/‘ 

Eigendecomposition 

1 
\ ,/ 

(’ Truncate top Dominant ‘, 
e.g. 99% of Variance / 

‘k. - - - - - - - - A ’  
I 

Lh - l  Construct p Dominant 

p Dominant ez e, E 

Bp = EnET 

Key 

Operation 
c- < =Fie’d ~ -> Assumption I 

Figure 2. Flow diagram for constructing the rank-p eigendecomposition of a 3D error covariance or error 
subspace, for the assumptions of section 3(c)(i) of the text. The equation numbers refer to those in the text, 

which also gives definitions of variables. 
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eigendecomposition BP (see appendix A for notation), under the assumptions of this 
sub-section, 

BP = EIIE~ .  (7) 

(ii) Multiple scales of multiple horizontal error covariances. In multiscale realistic 
flows, a common C{ (rl , 1-2) is often not adequate. Nonetheless, considering the terms 
in (3b) one at a time gives, Clj(rI, r2)Ai,jZf(z1)ZJ(z2) = C{j(rl, r2)Zi,j(zi, z2), 
which is separable. Hence, using (4) and (5) for each term, (3b) becomes: 

1.J  1 . J  

where each Bi, j C f  . @ Cr,;. is symmetric and positive semi-definite by construction 

Bi,j is feasible, using ( 5 )  and (6). Based on these facts, two schemes for the dominant 
decomposition of B in (8) are developed. 

A practical iterative approach invokes independence of scales: the vertical compo- 
nents of distinct Cr j  are hypothesized to be uncorrelated. Using the Wiener-Khinchine 
theorem, this amounts to separated spectral peaks. Within an isolated spectral window 
containing a given peak, the Cr j  are identical. The scheme (4) to (6) of section 3(c)(i) 
then holds within each of these windows, indexed here by w ;  in practice with a small 
number of windows or scales: 

‘ * J  
T ( C .  :J . -  - C:,J . . and Cr:, = C$T). Estimating the dominant eigendecompositions of each 

B = C B ~  = C C; 8 C$ (9) 
W W 

The successive-correction mapping technique is then attractive; because of the lack of 
correlation between scales, the B, in (9) and scale-filtered data y t  (appendix B) are 
used successively to correct the corresponding scale in xb. Reducing each term to its 
subs pace, 

W W 

The cost of the corrections is thus reduced by using successively the dominant eigende- 
composition BE of each B, (appendix A, (A.2a) to (A.2c)). For each w, E, and II, 
are estimated following Fig. 2, as for (7). The extension of (10) to multivariate fields 
(section 4(a)) is exemplified in section 5 ,  in a two-scale analysis. 

A scheme for the general case (3b) of correlated vertical components with multiple 
horizontal covariances is now outlined. Considering the eigendecompositions of each 
B ~ , J ,  the covariance B in (8) is a sum of outer-products of eigenvectors multiplied by 
their eigenvalues. The number of such outer-products, n(Z + 1)(J + l),  is much larger 
than the size, n, of B. For efficiency, each Bi,j  in (8) is first truncated to its dominant 
eigendecomposition, Ei,, IIi,,Efj, using (5) and (6). The resulting approximation of B 
is the outer-product LLT = cr’i l,J=O Ei,j IIi, jEfj where 
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with the semi-colon indicating a side-by-side concatenation. This approximation is dom- 
inant since it accounts for most of the variance of B; the fraction of tr[B] explained by 
LLT is the sum of the tr[IIj,j] divided by tr[B], which is close to one by constructiont. 
Following section 2, B 2: LLT is further optimally approximated by its dominant rank-p 
decomposition. This is efficiently obtained by SVD of L, 

(12) 

where the operator SVD,(-) selects the dominant rank-p SVD. The flow diagram of 
Fig. 3 summarizes the procedure: a series of decomposition problems of type (4) to (7) 
shown in Fig. 2 are solved and, using (8), concatenated into (1 1). The rank-p SVD of L 
(1  1) estimates the multiscale a priori error subspace (12). It can then be used in a global 
analysis (appendix A, (A.2a) to (A.2c)) to compute the gridded fields and a posteriori 
error covariance. The main advantage of (1 1) and (1  2) over the ‘window’ approximation 
(9) and (10) is that (1  1) and (12) keep all multiscale interactions, up to these associated 
with the vertical vectors of number I and J. For efficiency (L of few columns), the 
key, of course, is to determine decompositions of type (3b) which explain most of the 
multiscale C(r1, r2, z1, z2) for small numbers I and J. This scheme (1 1) and (12) is 
not exemplified in sections 4 and 5 .  

SVD,(L) = E X V T ,  II = X2 and BP = E I I E T ,  

4. ERROR SUBSPACE: COMPLETE MULTIVARIATE FORMULATION 

The dominant decomposition of multivariate 3D error covariances will now be 
completed. In the spirit of sections 1 and 2, to estimate their non-observed portions 
in accord with the observed ones (section 3), the most complete dynamics available are 
utilized. The genesis is first described, then particularized to ‘oceanic’ PE dynamics in 
sections 4(a) and 4(b), and exemplified in 4(c). The PE model utilized is that of HOPS. 
The state vector x = @, ?, T, S, p) E R” contains values of the 3D (dynamical) tracers, 
the temperature T and salinity S, of the 3D zonal Zand meridional Sinternal baroclinic 
velocities, and of the 2D barotropic transport stream function tc/ (p in vector form). 

An a priori state estimate xb is assumed to be known. For any pair of fields (@, q), 
the multivariate error covariance function C,, = C$,(rl, r2, z1, z2) depends on this a 
priori state: for example, if xb is large-scale, c,, is the covariance function of the vari- 
ability from this scale and so on. Non-homogeneous C,, are considered: e.g. C,, may 
account for shelf and deep ocean processes, boundary layers or biological patchiness. 
Since the time is fixed, non-stationarity (e.g. seasonal forcing) is addressed by modifying 
the C,,. The error covariance B is large, n - 0 ( lo5 to lo7). Its eigendecomposition is 
challenging, in part because of the multivariate character. 

Assuming for a moment that data are sufficient to use section 3(c) for each pair 
(4, q), the functions C,, can be decomposed similarly to (3b). Under section 3(c)(i), 
C,, is separable in the horizontalhertical (4). Under section 3(c)(ii), it is equal to a 
sum of such functions. Restricting the discussion to a single term (multiple terms can be 
treated as in section 3(c)(ii), and lead to the same general conclusion), the assumption 
is: 

(13) C,q(rl, r2, z1, z2) = R;,(rl, r2)Z,,(z1, z2). 

If I I ,  j accounts for fraction 6i, j of the tr[Bi, j ] ,  LLT accounts for fraction C$=, 6i, jtr[Bi, j ] / t r [ B ]  of the tr[B]. 
If all 6i . j  are equal to 6 (e.g. 0.99), this sum is always 6, regardless of the properties of the B ~ J .  In practice, a 
constant S i , ,  cannot be exactly achieved but, since the Bi, ,  are very large and have rapidly decaying eigenvalues, 
it can be very close. 
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Figure 3. As Fig. 2, but for the assumptions of section 3(c)(ii). 
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For a suitable ordering of its elements, the multivariate B constructed from (13) is 
formed of submatrices B++, associated with a pair (9, q )  which can be decomposed 
as in (5): e.g. B;IT = C& 8 C&. However, for most dynamical models, the non- 
dimensional horizontal covariances in these submatrices are all different. For example, 
the dominant, mid-latitude geophysical flows are usually close to geostrophic balance, 
which involves horizontal gradients of pressure; e.g. C&, G, C& or C'I.;, are 
thus different. This prevents the direct decomposition of B using Kronecker product 
properties as in sections 3(c)(i) and 3(c)(ii). 

Nonetheless, the dominant eigendecompositions of the observed portions of B, a few 
submatrices B4v, can be obtained from sections 3(c)(i) and 3(c)(ii). The remaining non- 
observed portions of B can then be built in dynamical accord with the observed ones, 
via an ensemble of adjustment dynamical integrations. To initialize such an integration, 
the dominant eigendecompositions of the observed B4q are used to perturb the corre- 
sponding variables (4,  (p) in the a priori state xb. The dynamical equations governing 
the other variables (corresponding to the non-observed portions of B) are then inte- 
grated forward in time from the perturbed xb, keeping the perturbed fields (9, (p) fixed. 
Stationary stochastic and external forcings can be used to account for model uncertain- 
ties and boundary effects, respectively. The integration is usually continued until the 
volume-average kinetic andor potential energy stabilize around a plateau, without rapid 
time-rate-of-change. The final state is said to be dynamically adjusted. The ensemble 
of differences between the dynamically adjusted states and the unperturbed state, xb, 
are samples of a priori missing variability from xb. They are normalized, organized by 
SVDs and the ensemble integrations ultimately stopped when a convergence criterion 
is satisfied. The variability amplitudes can then be scaled to appropriate a priori error 
values by scalar multiplications (section 4(b)). 

This approach has several properties. (i) The portions of the error covariance directly 
specified from data (section 3) account for the properties of the real variability (e.g. non- 
homogeneous or multiscale). (ii) The ensemble of adjustment integrations constructs 
the non-observed portions of B by dynamical cross-covariances with the dominant 
decompositions of the observed portions. (iii) The nonlinearities and possible forcings 
excite strict auto-covariances among the non-observed portions of B, by dynamical 
interactions in the range of scales of interest; the uncontrolled components of this non- 
observed, but dynamically adjusted, variability are in fact pure uncertainties. (iv) The 
resulting error subspace estimate is in accord with the complexities of the historical data 
and dynamical model. 

( a )  Dominant decomposition of the observed portions of the error subspace 
In oceanography, hydrographic data (T and S) are the most common and the ob- 

served portions of B are thus assumed here to be the tracer covariances. For fair com- 
parisons with the multiscale univariate 2D scheme of HOPS, the successive-correction 
approach (9) and (10) of section 3(c)(ii) is used instead of the general one (1 1) and (12). 
For both T and S the assumptions are therefore: a series of independent scales and, 
for each scale, vertical eigenvectors in (2) of common non-dimensional horizontal error 
covariance functions (the normalization factor is the horizontally averaged variance for 
this scale). For ease of notation, we consider only one scale or spectral window w at 
a time, i.e. one term B, in (9) and (lo), so that we can omit for now the summation 
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c& = c,, r* = c;, = cZc, 

where the subscript trc stands for tracers and Cgc E Rehxch. Using (14) and (15) and 
section 3(c) for each scale, the 3D tracer covariance BmC E R21X2! is, for a suitable 
ordering of its elements, the Kronecker product: 

(16) 

where Cic E R2Cux2eu. For each scale w, the vertical and horizontal eigendecomposi- 
tions are obtained from sections 3(a) and (b), respectively: 

(1 7a) 

Btrc = Cic 8 C g ,  

T 
CiC = Eic n icEic ,  

The dominant eigendecomposition of (16) then simply follows from relations as (6) and 
(7): 

The sum over w of decompositions (1 6) to (1 8) extends (9) and (10) to the multivariate 
case. It is illustrated in section 4(c) and employed for a two-scale (i.e. w = 1, 2) 3D 
mapping in section 5 .  In passing, if (14a) to (14c) but not (15) hold for each scale w, the 
submatrices BTT, BTS, Bss can be expressed first, using (4) and (5) ,  as CZ,, 8 C&, 
CZ,, 8 C& and Cis 8 C& respectively. The dominant eigendecompositions of these 
matrices can then be computed and employed to perturb xb, to create an ensemble of 
initial conditions for adjustment dynamical integrations (section 4(b)). The hypothesis 
(1 5) is only used here in order to compare with the univariate 2D scheme. 

(b )  Ensemble of adjustment P E  integrations for the complete error subspace 
For most ocean phenomena, the dominant physical variability involves velocities. 

Under these circumstances, an ensemble of adjustment momentum integrations can 
construct the non-observed velocity variability in accord with the sum over w of 
dominant tracer decompositions (18). For ease of notation, as in section 4(a), only 
one scale w is considered. The first step is to sample the observed tracer portions. An 
ensemble of perturbed tracer fields, x g ,  whose covariance from *c tends to (18) is 
defined by: 

where uj E RP is a realization of the random vector u E RP of zero mean, identity 
covariance I,, and, most often, Gaussian distribution. To cover extreme cases with a 
limited number of realizations, one can replace the uJ's by the q = p base vectors 
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ej multiplied by I&, d u j T  =I,. For flows with possibly strong 
nonlinearities, the q = 2 p  vectors uj = k a e j  may also be an advantageous choice. 
In these last two cases, the ensemble tracer covariance is exactly (18); if the uj are 
random, the ensemble covariance converges towards (1 8) with a standard-deviation error 
decay of 0 ( 1 / & ) .  Our experience suggests that uj = &ej and random uj are often 
the most appropriate choices for use in linear and nonlinear models, respectively. Using 
(19), the resulting unbalanced a priori state vectors are: 

so that 

where & = (Tb’ ; Sb’) is given by (19) and the vectors $’, ?’ and pb define the total 
velocity fields of xb. The states 9’ (20)  are brought to statistical PE equilibrium by 
adjustment dynamical integrations. Keeping xrc fixed, the nonlinear (and stochastic) PE 
momentum equations are integrated forward, usually until the volume-averaged kinetic 
energy stabilizes around a plateau, without rapid time-rates-of-change. The resulting 
final total velocities @ , v , pbi) are dynamically adjusted to the perturbed tracers 
xg. Denoting the corresponding q adjusted states by xb’, the matrix Sb whose columns 
are samples of the error subspace is computed: 

(21) 

In (21), the rows of Sb corresponding to the differences w’ - $’, ?’J - ?’, pb’ - pb) 
are the non-observed portions of these samples. The matrix Sb is then normalized and 
the SVDt of Sb* evaluated. The left singular vectors E estimate the a priori error 
subspace eigenbase. New integrations are carried out in parallel and columns added 
to Sb (increasing q) ,  until the added value of new samples is determined to be small 
enough. In the examples (section 4(c)), the convergence criterion used is (LER97): 

j + j  

b - b’ s = [x - xb; . . . ; Xb4 - Xb]. 

where a is a chosen convergence limit (1 - E < a <J); a i ( . )  selects the singular 
value number i ;  and (E*, II = i Z 2 )  of rank p and (E*,  5 = +%*) of rank F <  p 
correspond to the ‘new’ and ‘previous’ estimate of BP, respectively. When such a 
criterion is satisfied (i.e. p is close enough to one), the significant SVD,(Sb) = E Z V T ,  
where p < q,  yields the first-guess estimate of the error subspace covariance of the 3D 
multivariate xb: 

BP = T E I I E T T T .  (23)  
In (23) ,  r is a block diagonal matrix, scaling the variability variances of each PE field 
to appropriate error variances. In practice, we estimate r from past experience or from 
the misfits between xb and the synoptic data. We have also adapted r in real time, 
such that forecast-error variances are in accord with the variances of the misfits between 
new data and the state forecast (LER97). In all regions of the Mediterranean and North 

For multivariate matrices, the SVDs are carried out on normalized matrices S* such that S = NS* = NE*BVT 
and E = NE*, where the normalization matrix N E Rnxn is diagonal. For each field, the associated diagonal 
element of N is the volume and sample averaged variance. In general, SVD,(.) denotes the operator that carries 
out this normalization, selects the dominant rank-p SVD and renormalizes the output, to yidd EZVT. 
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Atlantic investigated, we have found that the estimated elements of I' are O(1). Note 
that in section 3, which mainly considered univariate fields, this matrix multiplication 
was a scalar multiplication and, for ease of notation, it was omitted. The flow diagram 
of Fig. 4 summarizes the steps involved in the (parallel) computation of (23). 

In a context frequent in oceanography, velocity covariances are built from the ob- 
served tracer covariances, in accord with the complete PE dynamics and parametriza- 
tions (boundary layers, Reynolds stresses, etc.). With stochastic forcings, the statistical 
effects of model errors or stochastically modelled processes are accounted for. During 
such momentum integrations, for most tracer perturbations, at first-order and away from 
boundaries, the velocities usually tend to thermal-wind equilibrium while their vertical 
average undergoes an adjustment as in Gill (1982). After an ensemble of integrations, 
the significant decomposition of the normalized differences of PE adjusted fields (21) 
to (23) reflect these properties. In particular, the 3D tracer-variability subspace (18) is 
usually reorganized. Even though the adjustments include a joint effect of baroclinic- 
ity and relief (e.g. Cane et al. 1998), it is not a search for steady states. The aim is 
to obtain statistics of time-rates-of-change corresponding to PE dynamics, in a high- 
Reynolds-number regime. This procedure for generating the dominant decomposition 
of global error covariances for large, nonlinear and stochastic numerical models extends 
the direct geostrophic and thermal-wind balance approach. Such reduced-physics hy- 
potheses have, for example, been used in meteorology by Daley (1991, 1992a,b,c) and 
by Jiang and Ghil (1993) to determine model error covariances, and in oceanography 
by McWilliams et al. (1986) for objective analysis of the POLYMODE data. In meteor- 
ology, these hypotheses were recently extended for use in global 3D-Var algorithms 
by applying the linear balance equation or a Rossby-Hough expansion (Daley 1991). 
However, these two global constraints appear incorrect in the Tropics and, for a remedy, 
Daley (1996) derived a procedure based on the SVD of their matrix representations. 

(c)  Examples of multivariate error (a priori missing variability) subspace 

(i) Middle Atlantic Bight shelflreakfront. To exemplify the construction (14) to (23) 
summarized in Fig. 4, the case of the mesoscale error subspace of an idealized feature 
model of Sloan (1996) for the Middle Atlantic Bight shelfbreak front is employed. 
Figure 5 portrays this construction. The main feature at the shelfbreak is a tilted 
temperature and salinity front, separating the cold and fresh shelf water from the warm 
and salty slope water. In the idealized model, the background tracers xkc consist of a 
zonally uniform front. The shelf water is to the north, the slope water to the south. The 
geometry is a periodic channel. The topography is also zonally uniform, with a constant 
slope of sign opposite to that of the front. The PE background state xb is in thermal-wind 
balance; the flow is east-west, with zero velocity at the bottom. The dynamics is that 
of the f-plane PEs. The mesoscale 3D tracer covariance (sections 3(c)(i) and 4(a)) is 
specified, based on statistical models, for both the horizontal and vertical components. 
Panel (a) of Fig. 5 shows the corresponding normalized cumulative variance of T as 
a function of the 3D eigenvalue number. The horizontal covariance function was a 
Mexican hat, with zero-crossings 1," = 1; = 27 km, and anisotropic decay-scales 1; = 
7 km, lby = 5 km (section 3(a)). The non-dimensional vertical covariance function was 
e x p { - m ( s ) 2 ) ,  with a! = 4 (section 3(b)). These horizontal and vertical parameters 
were fitted to real and simulated data. Panel (b) is a cross-section in the 3D non- 
dimensional T eigenvector number 100, computed using (5) and (6). Panel (c) is the 
horizontal map of the $ response, dynamically adjusted to T and S perturbations of 
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Figure 4. Flow diagram for constructing the rank-p eigendecomposition BP (23) of 3D PE multivariate error 
covariances B. The equation numbers refer to those in the text. The construction consists of two main stages 
(sections 4(a) and 4(b) in the text). The first stage (top) specifies the observed portions of B: the dominant 
eigendecomposition of the tracer (T, S) 3D error covariance, B& = EmcIImE& (18), is constructed. The second 
stage is the ensemble of (nonlinear and stochastic) adjustment PE integraaons to compute the non-observed 
portions of B based on the knowledge of BL: the result is an estimate of BP. Parallel computation is utilized 

in this second stage. See text for additional details. 
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Figure 5 .  Construction of a mesoscale error subspace for an idealized feature model (Sloan 1996) of the Middle 
Atlantic Bight shelfbreak front. (a) The normalized cumulative variance as a function of the eigenvalue number for 
the 3D temperature mesoscale variability covariance [17794 x 177941 estimate. The dominant 100 eigenvectors 
explain 83.4% of the variance. (b) A vertical north-south cross-section (north is left) in the 3D non-dimensional 
T eigenvector number 100. (c) The horizontal map (north at the top) of the non-dimensional barotropic transport 
stream function response dynamically adjusted to a T and S perturbation of shape shown on (b). The response 
agrees with the tracers, f-plane and topography, as is for instance shown by its north-south varying intensity. (d) 
The eigenvalue spectrum of the normalized PE error covariance, i.e. diagonal of ll in Eq. (23). obtained after 210 
adjustment dynamical integrations. The normalization divides all 3D error fields by their respective sample and 

volume averaged variance. See text for further details. 

shape shown in panel (b). The ensemble of adjustment PE integrations (section 4(b)) 
for every T and S eigenvector built the matrix (21). As (21) grew in size, SVDp’s were 
evaluated and, using the criterion (22) with a = 0.97, the adjustments were stopped after 
210 integrations to yield (23). The eigenvalue spectrum, diagonal of II in (23), is shown 
in panel (d). Notice the span of three orders of magnitude. The dominant 1 0 0  vectors 
explain more than 90% of the variance explained by the 210 vectors. The matrices E 
and II can then be used for PE-based mapping (appendix A, (A.l) and (A.2)). 
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(ii) Levantine basin. The second illustration computes the dominant decomposition of 
a mesoscale PE variability covariance in the north-west, open-ocean Levantine Sea, and 
briefly evaluates the results with respect to what was previously known about the region. 
We refer to Fig. 2(b) of Robinson and Golnaraghi (1993) and section 5(a) hereafter for 
the name and location of common upper thermocline features in the region. 

Presently, the a priori state xb is a field estimate for 16 March 1995 (not shown). The 
observed, a priori missing, mesoscale 3D tracer covariance (sections 3(c)(i) and 4(a)) is 
specified based on EOF computations in the vertical and on a statistical model in the 
horizontal. Vertically (section 3(b) and appendix B), the EOFs of the tracer residuals 
are computed based on a dataset of 289 CTD (conductivity-temperature-depth) profiles 
gathered by the Physical Oceanography of the Eastern Mediterranean (POEM) group 
between 10 February and 16 April 1995 (Malanotte-Rizzoli et al. 1996). Horizontally 
(section 3(a)), the covariance function is a Mexican hat, with zero-crossings 1," = Zi = 
60 km and decay-scales Z i  = Z i  = 30 km, fitted to the residuals of the CTD data. These 
vertical (17a) and horizontal (17b) decompositions are combined using (16) and, by 
truncation, yield the dominant 3D tracer covariance (1 8). The complete error subspace 
is then obtained by nonlinear adjustment PE integrations (19) to (23), in the present case, 
with the choice uj = &eJ in (19). Each nonlinear adjustment lasted for 2 model days 
(for model parameters see LER97). The ensemble of runs was stopped after q = 400 
parallel integrations, based on the criterion (22) with lf = 360, which led to p = 0.935. 
The aim was to capture 93% of the error variance. 

(iii) Levantine covariance eigenvectors. Figure 6 shows the first and second non- 
dimensional singular vectors, columns of E* in (23). They are the 3D features associated 
with the dominant nonlinear, mesoscale PE variability during the early spring of 1995. 
Interestingly, they mainly explain variations of the anticyclonic Ierapetra Eddy (centre 
near 34"N, 27"E), a feature not always observed in the area during recent years (Robin- 
son and Malanotte-Rizzoli (Eds.) 1993). The two vectors explain 1.49% and 1.18%, 
respectively, of the total variance explained by the 400 vectors. The first vector identi- 
fies the main structure of the vortex (panels (la) and (lb)). The variability variance in- 
duced by squeezing/shallowing, stretching/deepening, tilting, horizontal displacements 
and internal variations of the vortex are, on average, best explained by this PE pattern. 
The barotropic transport (+) component (panel (1 a)) is slightly asymmetric, because 
of relief, density, diffusion and nonlinear effects. It is, for example, larger where the 
topography is deeper (see Fig. 8(a) hereafter) and has a shape which follows that of the 
local tracer fields (see Figs. 9 and 10 hereafter). The T structure is surface intensified 
(panel (lb)), with an uniform extremum from 50 to 250 m and a significant extension 
down to about 600 m. The S structure (panel (lb)), however, has a strong subsurface 
extremum within 250 m to 340 m depths, and one significant zero-crossing around 
80 m. Near 1000 m the sign of T and S reverses, but the amplitudes below 1000 m 
are quite small (one tenth to one thirtieth the size of the upper-thermocline values). 
Where they are both large (panel (1 b)), T and S are in phase, compensating each other 
in density. Horizontally (panel (la)), when significant, both structures are almost ax- 
isymetric, with horizontal scales near 30 km and shapes close to Mexican hats. This is 
what they should be by construction, even though only 400 PE vectors are employed. 
Caution should nonetheless be exercised regarding the effects of this truncation, which 
are mainly limited to the smallest amplitudes. For example, consider the S component at 
5 m (panel (la)), which is relatively small (less than 15% of the S extrema). Logically, 
the largest amplitudes are near the vortex, but there are also lobes far from the vortex. 
These lobes are in part spurious, and have very low significance since their amplitudes 
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are at about 7% or less than the S extrema (1.7 x and the aim is 93% of the 
variance. The horizontal structure of the $component is shown at 5 m in panel (la) and 
cross-sections in the $ and ? components are given in panel (lb). If the vortex was a 
perfect cone or cylinder, if thermal-wind balance held and if the topography was flat, 
the horizontal structures of the internal velocities $ and ? would be lobes antisymmet- 
ric with respect to the x and y axes, respectively (e.g. Daley 1991). However, because 
of inertia (e.g. centrifugal force in the gradient-wind balance), vertical and horizontal 
viscosities, bottom stress and regional topography, this does not hold exactly, and the 
internal velocity patterns at 5 m are non-classic and tilted. For the Ierapetra Eddy, the 
local Rossby number Ro is in fact about 0.22 f 0.1 (LLA98). Two nonlinear effects 
on the vectors of Fig. 6 are the tightening of the horizontal velocity gradients and the 
dissipation of the internal oscillations by mixing. Vertically (panel (1 b)) $ and ?reverse 
sign at about 400 m. From 11/ (panel (la)), a vertical minimum in total velocity amplitude 
is expected near 600 m, below this reversal. The second vector (panels (2a) and (2b)) 
relates to eastward-westward displacements of the vortex (with the plotted, arbitrary 
sign, it is an eastward displacement). In the vertical (panel (2b)), the tracer and internal 
velocity patterns have similar properties to those of the first vector (surface intensified 
T, mid-depth S extrema, T and S in phase where they are both important, T and S 
changing sign near 1000 m and of small amplitudes below 1000 m, and $and ?surface 
intensified, with zero-crossings near 400 m). The 11/ component (panel (la)) is again 
slightly asymmetric. It also contains a small-amplitude radiation pattern, in accord with 
the properties of moving vortices (e.g. Cushman-Roisin 1994). This radiation pattern 
has corresponding structures in the T, S, $ and $components (panels (2a) and (2b)). At 
the surface (e.g. 5 m) the prevailing horizontal shapes of $ and ?are, nonetheless, close 
to these given by thermal-wind balance: a pattern in '45 degree shamrock' dominates for 
Z, and a triple lobe, meridionally oriented pattern dominates for ? (not shown at 5 m). 

Overall, the above properties agree with what is commonly observed about the 
vertical locations of the Modified Atlantic Water and Levantine Intermediate Water. 
They also show that warm and salty anticyclonic eddies in the eastern Mediterranean 
(Brenner 1993) can have properties (LER97) similar to those of Gulf Stream warm 
core rings (e.g. Robinson 1983). Finally, as exemplified above, even though the inertial, 
nonlinear and diffusion terms are smaller overall than the Coriolis and pressure gradient 
terms, they do matter, at least locally (presently, eddy viscosities only matter in coastal 
and bottom boundary layers, and for scales smaller than 20 km). For instance, if the 
nonlinear terms are turned off in the adjustment momentum integrations (LLA98), the 
resulting two dominant vectors differ from the present ones: they correspond to the 
deeper and much wider Rhodes Gyre (centre near 35.5"N, 28.5"E, above the Rhodes 
basin, see Fig. 8(a)), impinging on the Cretan-Rhodes Ridge, and thus radiating and 
interacting with topographic wave patterns along the northern escarpment (e.g. Smith 
1983). Within the other vectors (LER97), several groups correspond to the Rhodes Gyre 
and again to the Ierapetra but also to the eastward Mid-Mediterranean Jet (meandering 
between 32"N and 34"N), westward Asia Minor Current (along the northern coastline), 
Mersa Matruh Gyre (centre near 32"N, 27.5"E) and West Cyprus Gyre (centre near 
35.5"N, 31.5"E). The 50 dominant vectors explain 38.4% of the variance explained by 
the 400 vectors; the 100 dominant vectors 62.7%. 

(iv) Levantine covariance Jirnctions. An estimate of 3D error covariance functions 
is illustrated by Fig. 7, considering a row of BP (23), with r =I. The mesoscale 
variability covariance between the 5 m temperature at (33.8"N, 27.85"E) and the other 
state variables is shown. Looking at the tracer auto-covariances (panels (a) to (b)), the 
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Figure 6. Multivariate eigenvectors of a mesoscale error covariance for 16 March 1995, in the northwest 
Levantine, as estimated by singular-value decomposition (SVD) of a normalized ensemble of PE adjusted 
variability samples. The panel number is the eigenvector number, with index (a) for the surface ( 5  m) level, and 
(b) for a vertical cross-section parallel to the Cretan Arc, above the Cretan-Rhodes Ridge (the section position is 
drawn on panel (a)). The estimation is based on Eqs. (14)-(23), as summarized by the flow diagram of Fig. 4. The 
size of the covariance is [218943 x 2189431. The grid has a horizontal spacing of 10 km and 20 vertical levels. 

For further discussion see the text. 

horizontal Mexican hat and vertical EOF structures are well represented. As expected 
for the region and period, the surface T is positively correlated to deeper T and to 
S, with partially compensating effects in density (panel (b)). Magnitudes are almost 
constant with depth in the shallow mixed layer (0 to 30 m), the T-S cross-covariance 
has a subsurface extremum at about 300 m, and significant correlations exist down to 
about 400 to 600 m. Deeper, T-T and T-S decay and have a zero-crossing near 1200 m. 
Beyond this depth, their horizontal patterns are negative Mexican hats, but of amplitudes 
smaller than 5% of the volume extrema. The T-JI cross-covariance (panel (a)) is also 
close to a Mexican hat, even though the rank of BP is more than 500 times smaller 



1408 P. F. J .  LERMUSIAUX ef al. 

Figure 7. Estimate of the dimensional mesoscale PE covariance function between the 5 m temperature at 
(33.80°N, 27.85'E) and the other state variables (shown beneath each frame). Panel (a) shows values at 5 m, 
and panel (b) cross-sections along 33.80"N. Elements of a row of BP for 16 March 1995 are shown. See text for 

further details. 
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Figure 8. Panel (a) shows the geography and etopo5 bathymetry. The Arabic numbers indicate: 1, Crete; 2, 
Karpathos; 3, modes; 4, Turkey; 5, Cypms; 6, Egypt; and 7, Libya. The letters indicate: a, the Cretan Sea; b, 
Aegean Sea; c, Kasos Strait; d, Karpathos Strait; e, modes Strait; and f, the Cretan Passage to the Ionian Sea. The 
Roman numbers indicate the sea topography: i, the Strabo Trench; ii, Cretan-Rhodes Ridge; iii. Rhodes basin; 
iv, Finike Trough; v, Anaximander Seamounts; vi, Antalya basin; vii, Nile cone; viii, Herodotus Abyssal Plain; 
and ix, Mid-Mediterranean Ridge. Panel (b) shows the coordinates of the 247 CTD (conductivity-temperature- 
depth) profiles collected during March 19-April 16, 236 of which are in the numerical domain and form y" 
(appendix A) in the mesoscale multivariate three-dimensional (3D) analysis of section 5.  Panel (c) shows the 
surface (5 m) values of the a posteriori mesoscale error variance of the corresponding temperature field, as 
estimated by the univariate 2D scheme. The values are normalized (0-1) and computed using a Mexican hat 
form covariance function, with 1; = 1,' = 60 km and 1; = lby = 30 km, and an apriori mesoscale error variance of 

uniform amplitude equal to 1. 

than that of B. It is, however, slightly asymmetric: it is elongated in the north-east 
direction, presents radiative patterns of small amplitudes, and has an enhanced cyclonic 
correlation at the location of the Ierapetra (near 34"N, 27"E). These facts are in accord 
with the regional topography, density field and Mid-Mediterranean Jet which locally is 
a relatively broad flow to the north-east. The horizontal T-Z and T-Gcross-covariances 
(panels (a) and (b)) also differ from the classic double-lobe structures, antisymmetric 
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with respect to the x and y axis, respectively. One reason is that the inertial terms at 
(33.80°N, 27.85"E) locally matter in the surface layers, tilting the classic structures (see 
LLA98). Another is the nonlinear effects which tighten the horizontal gradients of the 
T -velocity cross-covariances. They also locally extend these cross-covariances to the 
Ierapetra and lead to small but non-negligible radiative lobes (see panels (a) and (b)). In 
the vertical (panel (b)) T-z and T-c have a zero-crossing within 500 to 600 m. Using 
the T-$ pattern (panel (a)) the total velocity variability near (33.8OoN, 27.85"E) thus 
has a vertical minimum at about 700 m. Below the zero-crossings (panel (b)), the T - z  
and T - 5  structures are opposite to these of the surface layers, but have much smaller 
amplitudes with extrema of, at most, 10% of the surface ones. 

In relation to mapping, in particular to surface data extension (e.g. Rienecker and 
Ademec 1995; Stammer 1997), a 5 m observation of T at (33.80°N, 27.85"E) would 
influence the 3D fields of T, S, $, Z and G according to the structures of Fig. 7. Such 
structures would be on the left-hand-side of the gain KP (appendix A), extrapolating 
the data residuals onto xb. It is important to note that even though the eigenvectors 
are global (e.g. Figs. 1, 5 ,  6), if their number is sufficient, the spurious effects of the 
truncation, which could be manifest as remote influences of the local data, are by 
construction insignificant. The multivariate 3D covariance functions computed from BP 
(23) propagate the significant data information over limited distances. For example, in 
Fig. 7 the possibly undesired remote effects of T data at 5 m (e.g. see panel (a) for 
T - $ and T -Z, and panel (b) for effects at greater depths) would have covariance 
amplitudes that are less than about 7% of the horizontal covariance extrema. This result 
agrees with the 'more than 93%' convergence criterion (22) used. 

As mentioned in section 2, the above examples briefly show that the decomposition 
of the variability is useful for verifying or exploring the dominant features and processes 
of a given region (e.g. Lermusiaux 1999a,b). The adequacy of error subspace estimates 
and corresponding covariance functions must, in fact, be established. Two verification 
approaches have been illustrated here: the global evaluation of the dominant error 
eigendecompositions (Figs. 5 and 6), and the local assessments of covariance function 
fields (Fig. 7), analogous to a 'single-observation analysis'. In our real-time ocean 
operations (e.g. Robinson et al. 1998b) both approaches are employed on a regular 
basis, as well as techniques similar to these of Wahba and Wendelberger (1980). 
Such sensitivity computations are also useful to estimate the dimension of the error 
subspace that is adequate for specific purposes. In practice, pre-exercise validation 
experiments can test the feasibility of an error subspace approach, design Observation 
System Simulation Experiments, and improve the error weights of cheaper, less-optimal 
estimation of methods (LER97, LLA98). 

5.  THREE-DIMENSIONAL MULTIVARIATE ANALYSIS 

The algorithms for a first estimate of the a priori error subspace (sections 3 and 4) 
are now employed for a global, multiscale and multivariate 3D mapping (appendix A, 
(A.2a) and (A.2c)). Results are compared to those of the univariate 2D scheme of HOPS 
(section 3(a)). The example is a sub-basin-scale to mesoscale analysis of PE fields in 
the Levantine Sea (eastern Mediterranean). For this region, sensitivity and geophysical 
studies based on the algorithms of Figs. 2 to 4 are carried out in LLA98, and process 
studies in Roether et al. (1996), Malanotte-Rizzoli et al. (1996) and LER97. The model 
domain and topography are shown on Fig. 8(a). The data yo (appendix A, (A. 1 b)) are 236 
CTD profiles gathered during 19 March and 16 April by the POEM group (Fig. 8(b)). 
The univariate 2D scheme assumes that two independent scales are present. For each 
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scale it carries out horizontal analyses of the T and S data, and computes total velocity 
fields in geostrophic balance with the gridded tracers, assuming a level of no motion at 
600 m. When compared to other levels, this choice led to the smallest horizontal and 
vertical adjustments in subsequent forecasts, in accord with results in section 4(c) and 
previous studies (e.g. Robinson and Golnaraghi 1993). To ensure fair comparisons with 
this analysis, the present multivariate 3D scheme follows Fig. 4, using the successive- 
correction approach (sections 4(a) and (b)), with two scales (w  = 1, 2). 

(a )  Fields 
For each scheme, the sub-basin-scale (w = 1) PE fields are first estimated for 16 

March. The data yo utilized in this first-stage are 512 gridded data of the MODB 
(Med5) winter climatology for the region (Brankart, personal communication), and 49 
CTD and 96 salted AXBT (aircraft-deployed expendable bathythermograph) profiles 
which originated from the in situ CTD and AXBT measurements gathered during 10- 
18 February and 15 March 1995, respectively. The resulting two sets of sub-basin-scale 
PE estimates (not shown) constitute the a priori fields xb for the subsequent univariate 
2D and multivariate 3D mesoscale analyses (w = 2), respectively. 

The 236 profiles to be gridded during this mesoscale stage lead to 9440 T, S 
scalar observations on hybrid levels, i.e. the number of data-points (dimension of yo). 
In the univariate 2D scheme, the a priori T and S covariances were specified using 
a Mexican-hat fit on basin average to zero-crossings 1," = 1: = 60 km, and decay- 
scales 1; = lby = 30 km (section 3(a)). The data error covariance at data points was 
assumed to be diagonal, with horizontally uniform non-dimensional variance r* = 0.03. 
The corresponding estimate of the surface (5  m) mesoscale coverage is shown on 
Fig. 8(c). In the multivariate 3D scheme, the construction of the a priori error covariance 
decomposition for this stage w = 2 was presented in section 4(c). For the mesoscale 
vertical tracer EOFs, it employed all 289 CTD profiles gathered during Feb. 10 and 
April 16; for the horizontal tracer covariance, the zero-crossings and decay-scales of 
the univariate 2D scheme; and, for the non-observed velocity portions, an ensemble of 
nonlinear adjustment PE integrations. Based on (22), p = 400 eigenvectors sufficed for 
93% of the error variance, with r = I. The results of the two schemes are compared in 
Figs. 9 to 12, variable by variable. 

(i) TracerJields. Figure 9 shows the T and S mesoscale univariate 2D analyses 
at four horizontal levels. Figure 10 shows the same fields, but corresponding to the 
T, S components of xa obtained by multivariate 3D analysis (appendix A (A.2a) to 
(A.2c)). For the large mesoscales to the sub-basin-scales, the two schemes yield tracer 
fields that are very similar, with differences within data error bounds. Without another 
intertwined data array, the better of the two estimates cannot be determined at those 
scales. The largest discrepancies are in the sub-mesoscales to small mesoscales. This 
is especially true within and just below the surface mixed layer, where the late winter 
atmospheric forcings and internal instabilities lead to an increase of small-scale potential 
and kinetic energies (see Figs. 9 and 10, at 5 and 105 m, e.g. near the Asia Minor 
Current, Ierapetra and Mersa Matruh Gyre). There are two main technical reasons for 
these discrepancies. First, for most of the domain, the data (Fig. 8(b)) do not resolve 
these small scales. The multivariate 3D scheme (Fig. lo), which takes into account 
possible vertical correlations as well as correlations between the T and S fields, is shown 
to be less sensitive to such data noise than the univariate 2D scheme (Fig. 9). Second, 
this property is accentuated because, even though the dominant 400 PE eigenvectors 
were estimated to explain 93% of the normalized PE error variance (section 4(c)), the 



1412 P. F. J .  LERMUSIAUX ef a/. 

Figure 9. Harvard Ocean Prediction System (HOPS) mesoscale (second-stage) univariate two-dimensional 
temperature and salinity analyses, at 5, 105, 225 and 500 metres. The first-stage fields were sub-basin-scale 

univariate two-dimensional analyses. 
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Figure 10. Mesoscale T and S fields resulting from the PE multivariate 3D analysis. The dominant 400 vectors 
of B P  in equation (23) are used. The levels shown and all scalings are as on Fig. 9. The first-stage fields resulted 

from a sub-basin-scale multivariate 3D analysis. 
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Figure 1 1. Mesoscale barotropic transport stream-function estimates (+ in Sv). (a) The result of the univariate 
two-dimensional (2D) scheme, computing + by vertically averaging the total velocities in geostrophic balance 
with the horizontal T and S analyses illustrated by Fig. 9, assuming a level of no motion at 600 m. (b) The 
result of the multivariate 3D analysis, globally estimating + from the T and S data (Fig. 8(b)), in accord with the 
dominant SVD of the PE adjusted perturbations. The dominant 400 vectors of BP in equation (23) are used. See 

text for details. 

corresponding 400 tracer eigenvectors used in the adjustment PE integrations ( 1  9) to 
(22) only explained 72% of the normalized 3D tracer variancet, tr[nwc] in (18). Hence, 
using an E of 400 columns (appendix A, (A.2a) to (A.2c)) eliminates about 21% of 
the tracer variance, here associated with the sub-mesoscales to small mesoscales of the 
T and S data. For an example where the two reasons stated above apply, consider the 
Ierapetra, where the surface temperature signal is stronger on Fig. 9 than on Fig. 10 
because the salinity signal is strong at all depths. Similar remarks hold for other features, 
e.g. small mesoscale processes near the surface mixed layer. 

(ii) Transportpelds. Figure 1 1 compares the barotropic transport stream functions. 
Panel (a) shows the result of the univariate 2D scheme which computes $ by vertically 
averaging the total velocities in thermal-wind balance with the horizontal analyses of 
the tracer fields (Fig. 9), assuming a level of no motion at 600 m. Panel (b) shows 
the $ component of xa obtained using appendix A, (A.2a) to (A.2c). In Fig. Il(b) 
one directly distinguishes the sampled lobe of the anticyclonic Mersa Matruh Gyre 
(near 32'N, 27.5"E), the anticyclonic gyre forming at the centre of the Mersa Matruh- 
Shikmona Gyre complex (near 34"N, 29S0E), the Mid-Mediterranean Jet meandering 
around these gyres and flowing east, the cyclonic Rhodes Gyre and its multiple centres, 
the weak cyclonic West Cyprus Gyre and the Asia Minor Current flowing west along 
the northern coastline. The flat level of reference computation (Fig. 1 l(a)) overestimates 
the barotropic transport of the Ierapetra, while it weakens most of the West Cyprus 
Gyre, Mersa Matruh Gyre and gyre of the Mersa Matruh-Shikmona Gyre complex. The 
horizontal transport is, in fact, difficult to estimate (e.g. Wunsch 1996). The simplest is 
to guess a reference velocity (e.g. level of no motion). Other approaches are the beta- 
spiral (Schott and Stommel 1978), box inverse (Wunsch 1978) and Bernouilli (Killworth 

PE convergence in (23) can occur without complete tracer convergence. This is accentuated here because 
numerical errors in the PE model utilized lead to overestimation of the covariances involving total velocities, 
and because the criterion (22) gives an upper bound of the true percentage of variance explained. 
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1986) methods. Killworth and Bigg (1988) compared the merits of these schemes using 
simulated data. Presently, it is the a priori missing PE variability and the properties of 
yo (Fig. 8(b)) which determine what + is and what 1(1 uncertainty remains a posteriori 
(section 5(b)). 

(iii) Internal velocity $fields. Figure 12 compares the surface internal velocities. 
Panel (a) shows the results of the univariate 2D scheme which estimates ii' and G 
by computing the zero vertical-average velocities in thermal-wind balance with the 
horizontal analyses of the tracer fields (Fig. 9). Panel (b) shows the surface $ and G 
components of xa obtained using appendix A, (A.2a) to (A.2c). Panels (a) and (b) differ, 
mainly because of the differences between the T and S fields of Figs. 9 and 10 and 
because of ageostrophic motions. At scales larger than the small mesoscales, the T 
and S fields of Figs. 9 and 10 are almost identical, and the geostrophically balanced 
velocities of Fig. 12(a) are, for several features, similar to the globally adjusted velocities 
of Fig. 12(b), especially for the zonal component. However, even at these scales, there 
are regions for which geostrophy is not adequate because of (i) surface, bottom and 
coastal non-adiabatic boundary layer processes; (ii) translating mesoscale meanders 
and waves; (iii) jets locally strongly anisotropic, for which inertia (mixing, stirring, 
etc.) becomes important; and (iv) sustained geostrophic adjustments. For example, 
comparing panels (a) and (b), the Asia Minor Current and its density front involve 
processes (i), (iii) and (iv); above the Anaximander Seamounts (about 35.5"N, 30.25"E), 
it is mainly (i) and (iv) that occur; and along the paths of the Mid-Mediterranean 
Jet around the Mersa Matruh-Shikmona Gyre complex, it is (ii) and (iii), e.g. see 
the G pattern. At sub-mesoscales and small mesoscales, nonlinear terms are important 
(Cushman-Roisin 1994): at the Ierapetra, the gradient-wind equation is necessary to 
explain surface velocities within 60 to 90 cm s-', as in panel (b). At these smaller 
scales, such effects and the differences in T and S of Fig. 9 and Fig. 10, explain the 
discrepancies between panels (a) and (b). 

(b) Errors 

(i) A priori errors. For conciseness, the discussion is limited to the stage w = 2. 
The univariate 2D scheme only provides error variance fields (see Fig. 8(c)). For the 
multivariate 3D scheme, the a priori error amplitude is that of the mesoscale variability, 
i.e. r = I in (23). The eigenvectors (Fig. 6) and a row (Fig. 7) of the corresponding 
BP were already shown in section 4(c). The a priori error variance is the diagonal 
of BP. By construction, for the tracers, error amplitudes are horizontally uniform in 
the data domain: for example, at 5 m, the T ( S )  error standard deviation is 0.41 degC 
(0.083 PSU), while at 500 m, it is 0.19 degC (0.042 PSU). For the total velocities, 
amplitudes are non-homogeneous. At the surface, the largest error standard deviations 
are: near the Ierapetra, with a @ error of 0.9 Sv and an internal velocity error of 
23 cm s-' ; near the Mersa Matruh Gyre and inflow of the Mid-Mediterranean Jet, where 
the maxima of the + and ii', Gerrors are 0.84 Sv and 18 cm s-'; and above the Rhodes 
basin, around which the largest 1(1 and ii', Gerrors are 0.9 Sv and 16 cm s-', respectively. 
The average surface error of the internal velocity is 14 cm s-' . For 1(1, the average error 
is 0.7 Sv. At 500 m depths, the largest $, Gerrors are at the Kasos and Karpathos Straits 
(1.8 cm s-' ), above the Rhodes basin (1.5 cm s- ' ), and at the deep levels of the Ierapetra 
and anticyclonic gyre of the Mersa Matruh-Shikmona Gyre complex (1 .O cm s-I). The 
500 m average is 0.7 cm s-' . These results agree with previous studies ( e g  Robinson 
and Malanotte-Rizzoli 1993). 
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Figure 12. Mesoscale, zero-vertical mean, internal velocity estimates @, 5) at 5 m. Panel (a) shows the result 
of the univariate 2D scheme, computing g, 5 in geostrophic balance with the horizontal 2D T and S analyses 
illustrated by Fig. 9. Panel (b) shows the result of the multivariate 3D analysis, globally estimating g, i7 from the 
T and S data (Fig. 8(b)), in accord with the dominant SVD of the PE adjusted perturbations. The dominant 400 

vectors of BP in equation (23) are used. See text for details. 

(ii) A posteriori errors. Figures 13 and 14 illustrate the a posteriori mesoscale error 
covariance (appendix A, (A.2b) and (A.2c)). The error standard deviations (Fig. 13) 
associate an uncertainty to each feature of the gridded PE fields shown in Fig. 10, 
Fig. ll(b) and Fig. 12(b). In the north-east comer where there is no data influence 
(Fig. 8(b)), a posteriori values are as a priori: this holds for all depths and variables. 
The only information in this corner is of sub-basin-scales. At the surface (panel (a)), 
the a posteriori T and S errors are overall similar in shape to Fig. 8(c). This confirms 
that, for error variance estimates, a few eigenvectors sufficet. Nonetheless, there are 

Here, 400 eigenvectors were used. For practical purposes, if an efficient error variance estimate (diagonal of 
EanaEaT) had been our only desire, around 50 eigenvectors would have sufficed. 
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Figure. 13. Multivariate standard deviation of the a posteriori mesoscale error covariance. The square root of the 
diagonal of EallaEaT is illustrated. (a) Surface (5 m) root-mean-square error (r.m.s.e.) values of four PE fields. 
(b) The $ r.m.s.e., the i7r.m.s.e. at 410 m, and the ;and i7r.m.s.e. at 1500 m. Note that the a priori error was 

weighted as in Fig. 1. Further discussions are in the text. 
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some differences. These are due to the a priori correlations between T and S (e.g. 
Figs. 6 and 7); to the influence of sub-surface data which is non-uniform, in part because 
profiles have different lengths; and to the depth-dependent variance of the a priori T and 
S errors. The surface a posteriori errors of the internal velocities (panel (a)) are not 
similar to Fig. 8(c), for several reasons. First, the a priori covariance functions involving 
velocity fields are non-homogeneous. Second, the PE velocities are connected to T and 
S via gradients of density. This property enters BP (23), the gain KP and thus EaIIaEaT 
(appendix A). Presently, for the internal velocities orthogonal to ship tracks, along which 
the data resolution is usually a 1/4 of a degree (Fig. 8(b)), the uncertainty is low and 
almost uniform, mainly because: (i) the higher data-resolution along tracks leads to a 
good estimate of mesoscale density gradients, hence velocities, across tracks; (ii) the 
often longer correlations of velocity components along their direction compensate for 
the lower data-resolution across tracks. For 5, these conditions clearly hold east of 28"E, 
where errors are almost uniform and the $ field is thus well constrained. For G, they hold 
west of 27.5"E, between 33"N and 34.5"N. At the Ierapetra, mixing leads to an almost 
uniform surface a posteriori ii' error of about 6 cm sec-' (total velocity error at 5 m is 
there about 9 cm sec-I). For velocities along tracks, in several locations I /2 of a degree 
apart (Fig. 8(b)), the opposite conditions occur (low data-resolution across tracks, longer 
velocity correlations along tracks): the velocity errors are thus low in between tracks, 
but high on the tracks, where they are still close to their a priori values. For the $errors, 
this occurs west of 27.5"E, between 33"N and 34.5"N. For the G errors, it holds east of 
28"E. 

Panel (b) of Fig. 13 shows the a posteriori error standard deviations of @, of G at 
410 m, and of ii' and 5 at 1500 m. The @ field is connected to T and S via the vertical 
integration of buoyancy. Because of this proportionality (vs. gradients for ii' and 3, 
the pattern of the @ error is somewhat similar to that of the tracer errors (panel (a)). 
A multivariate result is that 400 vectors here suffice to ensure this expected fact. The 
main reasons for differences include the non-uniform a priori II, errors (see above), 
the varying lengths of the data profiles and, in a lesser role, the multivariate T and S 
correlations. The first two effects are observed at several locations. The uncertainty of 
the Mid-Mediterranean Jet inflow (west of 27"E) is high over a large area because it was 
already so a priori, and because all profiles south of 34.5"N and west of 27"E are only 
about 1000 m in length, even though the average depth there is around 2500 m. The deep 
flow is not constrained, hence the @ uncertainty. For the Mid-Mediterranean Jet outflow, 
in the south-east comer, the data-resolution is too low (1/2 degree). In the north-east 
comer, data are lacking altogether and the II, errors near the Asia Minor Current inflow 
(Fig. 1 l(b)) are as a priori. 

The i7 a posteriori errors at 4 10 m (panel (b)) clearly show the influence of the non- 
uniform and 3D properties of the a priori missing PE variability. At the Ierapetra (Fig. 6), 
4 10 m is near the depth of minimum internal velocity ( 6 4  cm sec-l , see LLA98), where 
thermal-wind balance does not dominate. Errors are thus small and of different shapes 
than at 5 m (panel (a)). In the region of the Mersa Matruh-Shikmona Gyre complex 
(south of 34S0N, east of 28"E), 410 m is near the local bottom of the main thermocline. 
The dominant mesoscale variabilities, hence the error pattern, thus also differ from that 
in the surface. Along the Asia Minor Current such variability effects, as well as boundary 
layer processes, influence the error. In the south-east corner, the higher errors are due 
to lack of data and open boundary condition uncertainties. At 1500 m (panel (b)), most 
internal velocities are opposite to their surface values by constraint, but of much smaller 
amplitudes (e.g. Fig. 6). These properties are reflected in the C and G errors: e.g. even 
though several profiles are shallower than 1500 m, the zero vertical-average constraint 
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Figure 14. Multivariate eigenvectors of the a posteriori mesoscale error covariance. The panel number is the 
eigenvector number, with index (a) for the surface (5 m) level, and (b) for a vertical cross-section along an axis 
of large amplitudes (30.50"E for vector 1.29"E for vector 2). The size of the covariance is [218943 x 2189431. 

Further discussions are in the text. 

allows Z' and S to be relatively well estimated at depth. The T and S error maps near 
1500 m are similar overall to those at 5 m (panel (a)), except for the influences of the 
varying length of the profiles and of the multivariate correlations, non-uniform in the 
vertical. 

Figure 14 shows the first and second non-dimensional a posteriori error singular 
vectors, columns of Ea*. The first vector accounts for 4.25% of the a posteriori error 
variance; the second for 4.05%. By comparison with the a priori vectors (Fig. 6), the 
data yo has reorganized the variance in the error subspace, leading to very different 
dominant a posteriori vectors. The first vector (panels l(a) and (b)) is associated with 
the lack of data in the north-east corner (north of 35.5"N, east of 29.5"E) and low data- 
resolution along 30.75"E (Fig. 8(b)). In the no-data corner, errors are as a priori; they 
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correspond to unknown mesoscale variability. This is confirmed, for example, by the 
intensified surface patterns in T, subsurface maxima in S and first baroclinic 2 and $ 
on panel (l(b)). South of that, in the vicinity of 30.75"E, the large mesoscales have 
been corrected and the dominant errors are at small mesoscales. In the open ocean 
(panels l(a) and (b)), the I) pattern is in phase with those of the tracers, the 2 and T 
patterns are often close to phase quadrature (thermal-wind balance), etc., in agreement 
with PE-adjusted variability. However, except for these facts, the first vector has no 3D 
dynamical meaning since a detailed study of its structures (LLA98) shows that they 
are due to data. The second vector (panels 2(a) and (b)) correspond to the low data- 
resolution patches centred on 29"E. Its properties are similar to these of the first vector. 
In summary, the locations and depths of the profiles dictate the overall shape of the 
patterns, and non-homogeneous, small mesoscale variability dictates the relationships 
between these patterns. Similar facts hold for the other vectors, some of which also 
account for smaller-scale patterns. The 50 dominant a posteriori vectors explain 7 1.5% 
of the error variance explained by the 400 vectors; the 100 dominant vectors 84.5%. 

A posteriori errors are not uniform in oceanography: they are not everywhere in 
geostrophic balance, they depend on the complexities of the variability and are strongly 
influenced by the non-homogeneous data types and coverages. The a posteriori error 
covariances are useful for sampling-design. For example, in mapping a buoyancy 
controlled jet (e.g. Mid-Mediterranean Jet, Asia Minor Current) using hydrographic 
data, high-resolution across and low-resolution along the jet is best. For the Mid- 
Mediterranean Jet, this was applied at the inflow (west of 27.5"E, from 33"N to 35.5"N), 
but less so near the outflow (east of 28"E and south of 35"N) where the tracks are mainly 
suited to meridional flows. In practice this is difficult to do, since the flow is locally 
variable and adaptive sampling is required (e.g. Lermusiaux 1999b). 

(c)  Computational cost 
The elapsed times of the two mappings were comparable. For the mesoscale PE field 

analysis, the univariate 2D scheme took 4.02 h on a Sun Ultra. With the same single 
CPU, the multivariate 3D scheme would have taken 69.5 h for the computation of the 
error subspace (tracer eigendecomposition, 40 min; ensemble dynamical adjustments, 
66.6 h; and SVDs, 1.4 h) but only 50 min for the 3D analysis. The actual computation 
which used a network of workstations in parallel, equivalent to 16 Sun Ultras, took 
7.06 h (40 min + 66.6/ 16 h + 1.4 h + 50 min). After several simulations, it was noticed 
that further reductions were possible. For example, the time step in the adjustment 
runs could have been increased by a factor of 15 while still satisfying the Courant- 
Friedrichs-Lewy conditions. In general, the number of operations involved in (A.2a) to 
(A.2c) of appendix A grows quadratically with the size of the a priori error subspace and, 
for sequential data processing, linearly with the number of data points. In comparison 
with other practical schemes (e.g. the univariate 2D scheme which specifies HBHT and 
BHT), the larger the size of the multivariate state space and the larger the number of 
data points, the more attractive the present mapping becomes. If interest lies only in the 
a posteriori state (no error estimate is desired) or if the number of data points is small 
(e.g. smaller than the size of the error subspace), the Method of Representers (Bennett 
1992), possibly reduced to their subspace (LER97), is more efficient. In another limit, 
for small enough states (GO ( lo4), e.g. horizontal grid-mapping) and number of data 
points (GO( lo3)), the full error covariance scheme is feasible today. The error subspace 
concepts are then mainly useful to estimate, understand, and so perhaps to improve, the 
error structure. 



MAPPING MULTIVARIATE GEOPHYSICAL FIELDS 1421 

6. SUMMARY AND CONCLUSIONS 

Efficient methods were described and exemplified for the first-guess mapping of 3D 
multivariate geophysical fields and their dominant errors. The search for the Bayesian 
conditional mean estimate was approximated by algorithms adopting the minimum- 
error-variance criterion. With these choices, error subspaces are specified by the domi- 
nant eigendecomposition of error covariances. 

For the first objective stated in section 2, algorithms for the estimation of a priori 
error subspaces were outlined. As for the fields themselves (appendix A, (A.la) and 
(A. 1 b)) the data and models are combined, in accordance with their respective limita- 
tions. The 3D multivariate structures of the dominant a priori errors are hypothesized 
to be those of the covariance of the variability from the a priori state. The observed 
portions of the error subspace are formulated based on vertical expansions and non- 
homogeneous, non-separable, and anisotropic covariance functions (section 3). The 
non-observed portions of the error subspace are built in statistical accord with the ob- 
served ones via an ensemble of adjustment dynamical integrations (section 4). An en- 
semble of perturbed a priori states is first created based on the observed variability. The 
nonlinear and stochastic dynamical equations governing the lesser sampled variables, 
regions and regimes are then integrated numerically so as to construct the non-observed 
variability by cross-covariance with the observed one and by auto-covariance with itself. 

For the second objective, the algorithms obtained were illustrated and evaluated in 
the Levantine Sea and in a Middle Atlantic Bight shelfbreak front simulation. Tracer 
data were utilized to specify the observed variability and a PE model to build the non- 
observed flow variability. The estimates of dominant error covariances were studied and 
compared to what is known about these regions and regime. For example, the description 
of vectors corresponding to the Ierapetra (section 4(c)) illustrated the use of variability 
subspaces for the understanding of geophysical features. For the main evaluation, a 
global, multiscale and multivariate, 3D analysis of PE fields and errors in the Levantine 
Sea was carried out and its results compared to these of a ‘benchmark’, the univariate 2D 
scheme of HOPS (section 5). Even though the multivariate 3D approach was simplified 
for fair comparisons, the outcomes are encouraging. For example, total velocity fields 
and their error covariances were computed accurately in real time from the tracer data. 

For the third objective, an algorithm for the first-guess initialization of fields and 
errors was obtained. Such estimates can be used to start iterative initialization schemes 
based on adjoint models (e.g. Talagrand and Courtier 1987; Farrell and Moore 1992; 
Mureau et al. 1993; Molteni et al. 1996) or be directly employed in statistical estimation 
methods evolving the error subspace (LER97). After smoothing, the fields and associ- 
ated error subspace are in accord with all available data and dynamical information. 
In LER97, Lermusiaux (1999b) and LLA98, field and error forecasts issued from the 
present analyses are compared with future in situ and sea surface temperature data. 

The present approach applies to any geophysical system as long as multiscale, 
multivariate correlations exist and the number of degrees of freedom necessary to 
describe most of the variability is limited (Lermusiaux and Robinson 1999). If the 
correlations between the measured variables and some of the fields to be mapped is 
weak, the a posteriori values of these fields and their errors remain close to what they 
were a priori. The filtering of the environmental noise (i.e. errors of representativeness) 
is facilitated by the use of the dominant, 3D and multivariate error eigenvectors. In 
some cases, such efficient removal of scales is desirable (e.g. Pinardi and Navarra 
1993). Another advantage is the estimation and decomposition of the a posteriori error 
covariance matrix in real time, which is not often available (e.g. Courtier et al. 1998; 
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Barkmeijer et al. 1998). The integration of the complete set of model equations during 
the dynamical adjustments can also address a few recent issues, including the proper 
coupling of the mass and wind fields in the Tropics (Andersson et al. 1998), the 
proper covariances between humidity and other fields (Courtier et al. 1998) and, in 
oceanography, tidal rectification and boundary layer effects. Of course, a challenge is the 
need for a calibrated model to build the non-observed variability. The parametrization 
of Reynolds stresses, boundary conditions and external forcings must be adequate. With 
the geostrophic model there are no such parameters to estimate and the code is also 
much less complex. 

The a priori error decomposition algorithm is subject to several variations andor 
improvements. The oceanic emphasis led to a vertical expansion in the specification 
of the observed variability, considering the Cartesian, terrain-following and hybrid 
coordinate systems (Lozano et al. 1994). For specific cases pressure or potential density 
coordinates, and spherical harmonics or Bessel function expansions, may be more 
efficient. In general, the observednon-observed portions of the missing variability are 
problem-dependent. For example, variability observations could be sea surface winds, 
temperature and height for a general circulation model simulation of the Pacific ocean, 
or surface temperature, wind and pressure for a PE simulation of the European weather. 
The data to be mapped (e.g. current meter) can likewise be of a different type from 
the (historical) data used in the construction of the error subspace (e.g. hydrographic 
data). One should also remember that the present scheme only gives a first-guess 
error subspace. This guess can be computed in advance, e.g. before the start of a 
real-time forecast experiment. During the experiment dynamical forecasts of the error 
subspace then lead to ‘educated guesses’ (e.g. Lermusiaux 1999b). These forecasts can 
be employed to improve the statistical models fitted to past data or to provide sample 
error estimates. The method of Parrish and Derber (1992) is a sub-optimal version of the 
latter, using the differences between forecasts of varied durations as approximate error 
samples. Finally, the scheme can be iterated. Dynamics can be a weak constraint on the 
‘observed’ portions of B. Similarly, if a few data are available for the ‘non-observed’ 
portions, the adjustment integrations can be constrained by these data. Computing BP is 
a data-assimilation problem in itself. Schemes for learning (Brockett 1990) the dominant 
errors have in fact been derived and utilized (Dee 1995; Blanchet et al. 1997; LER97). 

The variability of most observed natural processes has a scale-dependent and struc- 
tured organization. Techniques that take advantage of these properties should continue 
to prove fruitful in geophysical applications. 
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APPENDIX A 

Notation and multivariate 3 0  error subspace mapping 
The main notation and definitions are first reviewed. Wherever possible, the notation 

of Ide et al. (1997) is used. The framework is that of continuous-discrete estimation 
(Jazwinski 1970). The true state vector X' E R" is assumed subject to the stochastic 
dynamical and measurement models, respectively, 

dx' = M(x', t )  dt + dq'(t), 
yo = 3p{x'(to)) + €, 

(A. 1 a) 
(A.lb) 

where M is the dynamics operator, q' is a Wiener process of zero mean and covariance 
matrix Q, yo E Rm is the data vector, 3p is the measurement operator and c is a Wiener 
process of zero mean and covariance matrix R. The time to for the estimation is fixed. 
In (A. lb), for direct comparisons with the univariate 2D scheme of HOPS, the explicitly 
time-dependent measurement model of Ide et al. (1997), yp = %i{x'(ti)) + €i, where 
each ti denotes the time of an observation, is concatenated. The vector yo and operator 
3p are the end-to-end concatenation of the yp and 3 t i  terms, respectively (rn = xi mi). 

The vector c is the end-to-end concatenation of the ei's multiplied by exp{ (Ati/t)2/2) 
to model, as in HOPS, the error increase with the interval Ati between the data time ti 
and estimation time to, t being a decorrelation time uniform in space. Details on (A. la  
and b) are in LLA98. 

An unbiased estimate of x'(t0) is denoted by x E R". The state error covariance is 
defined by P I G[{x - x'(to)){x -  to))^] E RnX", where GI.) is the statistical mean 
operator. An estimate of P is denoted by B. The adjectives apriori (b) and aposteriori (a) 
refer to quantities at time to before and after mapping, respectively. Quantities marked 
with asterisks are normalized. Sample error or residual matrices are denoted by the 
symbol S. Their columns are field samples, the size of S depending on the context. The 
number of horizontal, vertical and total grid points are denoted by Ch, C, and C A &C,, 
respectively. 

To be consistent with the error measure of the present minimum-error-variance 
criterion (section 2), the covariances are optimally approximated, for an error subspace 
of dimension p, by their dominant rank-p eigendecomposition. A subspace is the 
portion of R" of dimension p which is spanned by the eigenvectors corresponding 
to the dominant p eigenvalues of a covariance. The appropriate dimension p can be 
determined by a quantitative criterion, e.g. (22) in the main text. The classic, fixed-time, 
minimum-error-variance estimate (Gelb 1974) is thus reduced to: 

[x 1 min tr[P"'], knowing [yo, R] and [xb, Pbp]] , (A.lc) 

in which x'(t0) is subject to (A. la) and (A. lb). The superscript (P) on a matrix indicates 
a rank-p error subspace approximation. The a posteriori principal covariance Pap is 
the rank-p eigendecomposition of Pa, Pap EaIIaEaT. The ordered diagonal matrix 
IIa contains the largest p eigenvalues. The corresponding eigenvectors, columns of Ea, 
span the a posteriori error subspace. Similar statements apply to Pbp = EIIET, but in 
general with different rank and eigendecomposition. In this paper, the superscript (b) on 
the a priori error eigenvalues and eigenvectors is omitted. 

The extremum of (A. lc) yields xa, Ea and IIa. This could be solved for either by a 
descent algorithm (e.g. quasi-Newton) in the error subspace or by direct inversion. The 
latter approach is used here. To do so, (A. 1 b) is linearized in the vicinity of xb, as in the 
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incremental 3D-Var (Courtier et al. 1998). For xa hypothesized to be a linear function of 
xb and yo - 3e(xb), each of which is assumed to be unbiased, the extremum is (LER97): 

Xa = Xb + E I I H P ~ ( H Q I H ~ ~  + R)-'{~O - ayxb)}, (A.2a) 

(A.2b) 
Ea = EU, (A.2c) 

where H is the linearization of 3e in the vicinity of xb, HP A HE, the columns of U 
are ordered orthonormal eigenvectors of ga and na is diagonal. In (A.2a) to (A.2c), the 
gain KP is PbPHT[HPbPHT + R]-' and the rank of Pap given by (A.2b) and (A.2c) 
is assumed equal to that of Pbp. The data residuals corresponding to a state in the 
complement of the error subspace are neglected. The differences between the Kalman 
update (e.g. Gelb 1974) and estimate (A.2a) as a function of the properties of (A.lb) are 
further discussed in LLA98. 

unauT = Tia A n - I I H ~ ~ ( H P I I H ~ ~  + R ) - ~ H P ~ ,  

APPENDIX B 
EOF decomposition of tracer vertical covariances C& 

The algorithm for estimating the dominant decomposition of Cic from the vertical 
EOFs of the a priori data residuals (section 3(b)) is outlined. Usually, the vertical 
resolution of hydrographic profiles is high and, if the number of profiles is significant, 
such estimates of Cic are good. The assumptions are as in section 4(a). For each scale 
w, the regional historical (synoptic) profiles i = 1, . . . , q are first vertically interpolated 
onto the l,, dynamical-model surfaces, here by vertical box-averaging. The intersections 
between the profiles and model surfaces are the data points in this context. The vertically 
interpolated profiles are the yp terms (in this appendix, yp is in fact a scale-restricted 
yyw, but w is omitted for ease of notation). The differences between the yp terms and 
the tracer fields x k  of the previous scale-correction are then evaluated at data points, 
leading to the a priori data residuals, 

(B.1) 

The operators Xi in (B.l) interpolate xLc onto the data points. They consist here of 
bilinear interpolators along horizontal (level) PE surfaces. The horizontal averages & of 
the residuals di (B.l) are then removed and the resulting zero-mean residuals normalized 
by their sample and volume average, 

di = yp - 3ei (xb). 

- 
d: = Ni' (di - di). 

S(., = [a';; . . . ; df], 

(B.2) 

The normalization matrix Nd in (B.2) is block-diagonal. Forming the matrix S(., of 
normalized sample tracer residuals, 

03.3) 

the sample covariance S(.,S2T/q is obtained. Its dominant rank-pd eigendecomposition 
is sought and efficiently computed from, SVDPd(S(.,) = EZC,*Vf, where pd  < 2L, and 
SVD, (.) denotes the operator selecting the rank-pd SVD. For each scale, this yields the 
vertical EOFs and coefficients of the di (B.l), E& = NdE(., and IIic = X , * * / q ,  which 
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specify the dominant decomposition of Cic, 

(B.4) 
The generalization of (B.l) to (B.4) to a weighted SVD approach (e.g. Thacker 1996; 
Wunsch 1996), accounting for varied error sources (e.g. in our case the error increase 
due to the time decorrelation, e~p{(Ati / t )~/2},  see appendix A), is left as an exercise 
for the interested reader. 

z -EZ n Z  EZT 
ct rc  - trc trc trc- 
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