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Abstract

For efficient progress, model properties and measurement needs can adapt to oceanic events and interactions as they occur. The combination
of models and data via data assimilation can also be adaptive. These adaptive concepts are discussed and exemplified within the context of
comprehensive real-time ocean observing and prediction systems. Novel adaptive modeling approaches based on simplified maximum likelihood
principles are developed and applied to physical and physical–biogeochemical dynamics. In the regional examples shown, they allow the joint
calibration of parameter values and model structures. Adaptable components of the Error Subspace Statistical Estimation (ESSE) system are
reviewed and illustrated. Results indicate that error estimates, ensemble sizes, error subspace ranks, covariance tapering parameters and stochastic
error models can be calibrated by such quantitative adaptation. New adaptive sampling approaches and schemes are outlined. Illustrations suggest
that these adaptive schemes can be used in real time with the potential for most efficient sampling.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Physical and biogeochemical ocean modeling; Atmospheric and weather forecasting; Stochastic processes; Data assimilation; Observation targeting;
System identification; Learning; Adaptive systems
1. Introduction

In the ocean, certain properties are more germane than others
in governing specific dynamics. Similarly, certain observations
are more relevant than others to explain specific features.
These dynamics and features are a function of time and
space, often non-homogeneous and non-stationary. For efficient
representations of the ocean, the models of the dynamics
and the sampling plans can exploit these characteristics.
They can both be adapted to the ever-changing ocean events
and interactions as they occur and so capture important
properties. To reduce uncertainties in the representations,
models and observations are combined via data assimilation.
This combination can also be adaptive for increased efficiencies
and accuracies. In the present manuscript, these concepts
of adaptive models, adaptive sampling plans and adaptive
data assimilation are developed. Novel quantitative adaptive
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approaches are outlined and exemplified, within the context
of real-time estimations with comprehensive ocean models
and real ocean data. The intent is to illustrate the feasibility
and use of real-time adaptive approaches with today’s ocean
observing and prediction systems. Results are provided for
physical and biogeochemical applications in regional ocean
domains.

Differences between oceanic and atmospheric estimations
strengthen the need for adaptive behaviors in ocean studies.
This arises because of fundamental dynamical properties,
practical reasons and societal needs. Densities are different,
which affects time and space scales as well as the number
of dynamical features that are modeled. If one divides the
dynamically active spatial volume of a model domain, L2

h L z , by
the product of horizontal scales with a vertical scale, `2

h`z , one
obtains a rough order of magnitude for the number of features
in the model domain. For example, consider the regional
modeling of oceanic mesoscales (internal weather of the sea)
versus that of atmospheric synoptic (weather) scales. These
scales are linked to the internal Rossby radius of deformation.
For today’s regional models, one obtains O(1) to O(100)
features in atmospheric domains but O(10) to O(1000) features
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in oceanic domains.1 Similar comments can be made for time
scales. Practical differences involve the larger atmospheric data
sets and the challenges to measure the ocean. For example,
in most ocean mesoscale forecasting exercises, the state of
the ocean at t0 is unknown. Historical or climatological data
can be used for model initialization but, due to seasonal and
inter-annual variability, a dedicated ocean initialization survey
is often needed to estimate the background state. Without
such a survey, uncertainties can be as large as the whole
variability. Due to our societal needs, atmospheric predictions
and measurements have been emphasized. Ocean model
parameters and parameterizations are thus less well known
than their atmospheric counterpart. Modeling, assimilating and
sampling with an adaptive component is most promising for
ocean estimation.

A fundamental motivation for adaptive modeling is the
ocean variability in time and space. For example, there
are physical regime transitions or variations of biological
assemblages. Practical reasons for model adaptation are
our limited understanding and approximations. First, an
ocean model usually focuses on a subset of spatial and
temporal scales. Models are thus approximate because certain
processes and scales are omitted and parameterizations
are utilized. Significant inaccuracies also arise in model
boundary and initial conditions. This is in part because
oceanic observations are limited, with coarser coverage than
atmospheric observations. Given all these uncertainties, several
choices of parameterizations are often acceptable a priori. By
adaptation to data, the best ones can be chosen a posteriori, in
real time.

Adaptive modeling here refers to a modeling approach that
allows the definition, functionals and parameters of the model
to quantitatively learn from observations and evolve with data
as they are collected. This process is an important feedback
of data assimilation, leading to better scientific understanding.
Based on model–data misfits, model properties that need to
be improved are identified and the improvements estimated.
Presently, a model property is said to be adaptive [15] if its
formulation, classically assumed constant, is estimated or made
variable as a function of data values. In general, three types
of model properties can respond to data: (i) parameter values,
(ii) model structures and (iii) computational properties (finite
difference grid resolution, numerical scheme, etc). In this paper,
model structures refer to everything that defines the model: its
functionals and parameterizations but also its state variables and
their linkages. The estimation of model errors and correction
of model biases as well as the quantitative comparison of
competing models and combination of multiple models are in
some sense also forms of adaptive modeling.

A motivation for adaptive sampling is that ocean sensors
and platforms will always be finite. At least some assets
should be adaptively deployed as the ocean changes [5,62,40].
Resources are then best utilized for a given accuracy. Adaptive
1 The ocean domain used here is 144 by 125 km. Horizontal mesoscales
in the region are around 15–35 km, which gives 15–160 features in the
thermocline volume.
sampling is here defined as predicting the types and locations of
observations that are expected to be most useful, based on given
estimation objectives and the constraints of the available assets.
Usually, it also implies carrying out the optimal sampling
plans. General references on adaptive sampling include [72,
73]. Oceanic adaptive sampling has been done heuristically
for a while: consider researchers following a coastal front,
the Gulf Stream or a warm core ring. However, quantitative
adaptive sampling is more recent [62,42]. It has been based
more on predictions of oceanic variables than on predictions
of the impacts of future data. In meteorology, a range of
metrics and approaches have been used (e.g. [59]), from
singular vectors techniques [11] to ensemble transforms [8,
9]. For recent applications, we refer for example to [69,47,
46]. Adaptive sampling in meteorology is also referred to as
observation targeting, the result being targeted observations.
Adaptive sampling differs from but is linked to optimal array
design or antenna analysis [6]. Adaptive sampling usually
progresses sequentially, as data are collected. Observations are
then optimized for a future period, from the immediate future
to the remaining duration of a sampling program. Array design
computes optimal observations over the whole estimation
period, e.g. [4,36]. It is usually carried out well in advance of
the data collection based on some linearization.

Observing and prediction systems are now employed in
various regions of the world’s ocean for diverse purposes [54,
60,23]. Many such systems utilize data assimilation (DA).
A number of DA methods are utilized in meteorology and
oceanography [6,76,48,61,63,35]. Most schemes are derived
from estimation theory, control theory or optimization theory.
Almost all schemes are linked to a minimization of an error
norm or DA criterion, such as least-squares norms and their
approximations for real-time studies. The scheme employed
here is Error Subspace Statistical Estimation (ESSE, [38,44]).
Its error norms truncate the full error space to its dominant
components. These components are forecast by a Monte Carlo
ensemble approach, using stochastic forcing to represent model
uncertainties. For a minimum error variance norm, ESSE is an
approximate Kalman filter and smoother, where the dominant
error covariance is estimated by an ensemble of nonlinear
stochastic ocean simulations.

The focus here is on new adaptive components of modeling,
sampling and DA that have been developed and used for real-
time estimations within several regions. However, for a more
unified presentation, illustrations are linked to the Autonomous
Ocean Sampling Network-II (AOSN-II, [3]) exercise which
occurred in August 2003 in the Monterey Bay and California
Current System (CCS) region, e.g. [12,26]. The goal of this
multi-institution project was to research an adaptive observing
and prediction system, with the intent to assimilate various
data types, adapt the deployment of platforms and allow the
relocation of the system to other regions. A plethora of remote
and in situ sensors and platforms were used, including gliders,
drifters, moorings, Autonomous Underwater Vehicles (AUVs),
research vessels and satellites for remote sensing. Nonlinear
uncertainty forecasts of 2–3 days duration were issued using
ESSE and the stochastic version of the Primitive Equation (PE)
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2 A larger-scale map of the data is first estimated, then data residuals are
computed and mapped into a mesoscale field which is added to the larger-scale
map, see [39].
model of the Harvard Ocean Prediction System (HOPS, [27]).
Various data types were assimilated and suggestions for
adaptive sampling and dynamical studies were provided. The
synthesis of this real-time work and detailed investigation of
dynamics in the region is not presented here.

In what follows, real-time adaptive modeling for physical
and physical–biogeochemical dynamics and predictions is
first investigated and exemplified (Section 2). In Section 3,
adaptable features of the ESSE system are presented,
discussed and illustrated. Adaptive sampling is investigated
and exemplified in Section 4. Conclusions are in Section 5.
The deterministic ocean models employed and their stochastic
forcings are defined in Appendix A. The ESSE formalism and
computations are outlined in Appendix B.

2. Adaptive modeling

In ocean modeling, model tuning and calibration is often
based on experience and scientific knowledge. The comparison
of models to data can be as much an art as a rigorous scientific
method. There is a need to provide new quantitative and
computational aids to the modeler. The methodological basis
of this new adaptive modeling is the misfits among model
estimates and data. When misfits are significant, models are
adapted. Models can also be rejected when estimated to be
too inadequate. The choice among approaches [16,15] that can
be used for adaptive modeling depends on the application,
robustness requirements, data availability and costs involved.
The main cost constraints are the size of the ocean state vector,
of O(106

− 107), and large number of model parameters, of
O(10 − 102). Maximum likelihood schemes look for a single
model estimate. Pure Bayesian methods aim to use data to
sharpen a prior probability density on model estimates, leading
to a posterior density. In both cases, an a priori set of model
properties can be chosen. Adaptive modeling is an extension
of classic parameter estimation (e.g. [71,66,17,52,68]) to the
selection of model state variables, linkages, parameterizations
and/or computational characteristics. The optimization is thus
over both model structures and parameter values.

Possible issues in adaptive modeling include the robustness,
scalability and convergence of the adaptation scheme. Some
model structures and parameters can appear accurate, mainly
because of insufficient data. This degeneracy has been referred
to as equifinality (e.g., [7]). The results of [49] provide a
biogeochemical example. When such degeneracy occurs, one
can select the simplest of the models or weight and combine
fields of equifinality models into multi-model estimates. Here,
we develop new concepts in adaptive physical and adaptive
physical–biogeochemical modeling. Results are illustrated
within the context of AOSN-II [3], based on a simplified
maximum likelihood approach. A small set of deterministic
model configurations is chosen a priori and the configuration
with the best averaged skill is assumed to be the most likely.

2.1. Adaptive physical modeling by Monte Carlo “Trial and
Error” and optimization of predictive skill

For the ocean physics, fundamental equations are known,
the Navier–Stokes equations. However, approximations occur
because of equations are reduced to the scales of interest and
because observations are limited. The resulting parameteriza-
tions and parameter values, including boundary and initial con-
ditions, can thus learn from new data. There are essentially
two categories of adaptation. The first category is hypothesis
testing. A physical model with several candidate parameteri-
zations is ran multiple times with these different parameteri-
zations. Such test simulations can be carried out in parallel.
The second category is the adaptive evolution that consists of
a physical model with adaptive parameterizations. Of course,
these categories can be combined, even though their numerical
implementation differ. We present next an example of “hypoth-
esis testing” adaptation, run in real time during AOSN-II.

Prior to AOSN-II, model parameters were calibrated to
historical conditions expected to be similar to the unknown
August 2003 conditions. To do so, about 260 different
numerical simulations were carried out in the region. Four
candidate initialization data and parameter sets were selected.
Three were August climatologies, corresponding to El Nino, La
Nina and regular year conditions, respectively. The fourth was
based on an historical survey with good synoptic coverage over
the region [55]. At the beginning of AOSN-II, ocean forecasts
were started from these four initial conditions and parameters.
Once the August 2003 initialization survey was completed, the
physical ocean model was restarted from fresh initial conditions
computed from this survey and other AOSN-II synoptic data
sets. Model properties were then adapted to the new 2003 data.
Based on comments from collaborators, on our own experience
and on quick-look comparisons among model fields and
measurements, several parameters and a parameterization were
selected to be candidates for improvements. The parameters
were: (i) the initial conditions and simulation restart time; (ii)
values of empirical constants in the schemes for vertical mixing
and dissipation of atmospheric fluxes; and (iii), horizontal
viscosities. The parameterization that was allowed to vary was
the formulation of the open boundary conditions. This adaptive
modeling thus intends to optimize both over parameter values
in the interior and over model functionals at boundaries. In
particular, the use of parameter estimation in ocean modeling
to estimate values at open boundaries (e.g. [77]) is extended to
the estimation of functionals at these boundaries.

These selections are summarized by Eqs. (1)–(4), using
notation defined in Appendix A.1. Let us review them one by
one, starting with the initial state and time (Eq. (1)). The first
choice for initial conditions was a two-scale objective analysis2

of the ship-based initialization survey Fig. 1 and concurrent
glider measurements during Aug. 2–7, 2003. The date of the
start of the PE model, within Aug. 5–7, was chosen to be
a parameter. The other initialization choices were snapshots
in model simulations started from the climatological/historical
data sets but that had assimilated the initialization survey and
glider measurements. Vertical mixing parameters (Eqs. (2a)–
(2c), see Appendix A.1) were also estimated because forecast
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Fig. 1. Horizontal positions of the temperature and salinity profiles taken by
the R/V Point Sur during 2–6 August 2003, overlaid on bottom bathymetry.
The blue rectangle indicates the limits of the ocean model domain. More
information on AOSN-II is available from [3]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

fields appeared too geostrophic at the surface (e.g., Leslie
Rosenfeld, personal communication) and likely a bit too
warm in the upper layers, especially along the north-western
coastline of Monterey Bay. The parameters adapted are in the
definition of the vertical eddy viscosities Av and diffusivities
Kv . They were: ν0 (cm2/s, shear viscosity at zero local gradient
Richardson number), K e

v (cm2/s, eddy diffusion for tracers
within the wind-mixing depth he) and Ek (Ekman depth factor).
The horizontal viscosity on vorticity (Eq. (3)) which is modeled
by a Shapiro filter [67] was also adapted.

The parameterizations adapted were the open boundary
conditions (Eqs. (4a) and (4b)). Several new formulations were
developed and evaluated in real time. The need for such an open
boundary update arose because of (i) the limited synoptic data
offshore and (ii) the tendency of the regional ocean conditions
to relax [64], in response to weaker or reversed atmospheric
forcing and/or larger-scale buoyancy-driven forcing by the
California Current System [12,26]. Such natural relaxations
have been observed, for example after upwelling events [64].
Denoting the dynamical tracers, temperature and salinity, by T
and S, and the internal velocities by u and v, the formulations
tested were: no relaxation; relaxation at some or all open
boundaries; relaxation for T and S only; relaxation for all
(T, S, u and v); relaxation dependent on depth or not; and,
reduced relaxation at outflow points, either only for T and S,
or for all four variables. Using Ti and ui to represent the two
dynamical tracers and internal velocities at boundary i , the final
adapted formulation is given by Eqs. (4a) and (4b).

IC. State & Time T0,S0,u0, v0 t0 (1)
Vertical Mixing Param.
∂Av(ν0, Ae

v, Ek)∂uh/∂z

∂z
(2a)

∂Kv(ν0, K e
v , Ek)∂T/∂z

∂z
(2b)

∂Kv(ν0, K e
v , Ek)∂S/∂z

∂z
. (2c)

Horiz. Viscos. on Vort.

Shapiro filter param.: order, # of applic., freq. (3)

OBC functionals

(final formulation)

∂Ti

∂t
± cn

∂Ti

∂n
= −βi

(Ti − T `i (x, y, z, t))

τi (z)
(4a)

∂ui

∂t
± cn

∂ui

∂n
= −βi

(ui − u`i (x, y, z, t))

τi (z)
. (4b)

Importantly, Eqs. (4a) and (4b) were not used in each
model version. Different codes were compiled, one for each
formulation of the open boundary conditions tested. It is only
the adaptation and optimization of the boundary condition
equations that led to the final formulation ((4a) and (4b)), which
happened to encompass all formulations tested. The left-hand
side contains an Orlanksi open boundary condition [57] based
on the Sommerfeld radiation equation where cn is the phase
speed of the signal normal to and at the boundary. The right-
hand side is the new boundary relaxation towards the most
recent estimate of the larger-scale buoyancy state, denoted by
T `i (x, y, z, t) for the dynamical tracers and u`i (x, y, z, t) for
the internal velocities. These larger-scale buoyancy fields were
updated at each assimilation step as a function of the error
standard deviation of a larger-scale objective analysis of the
new data. At each open boundary i , adaptive modeling was
used to estimate the relaxation time scale τi in Eqs. (4a) and
(4b). It was selected to be a function of depth, given by:

τi (z) = τ b
i (1 − e

−
z

hi ) + τ s
i e

−
z

hi , where τ b
i and τ s

i are bottom
and surface relaxation time scales, respectively, z is depth and
hi is a vertical depth scale beyond which τi (z) → τ b

i . This
depth dependent formulation aims to allow the radiation in the
upper layers of surface intensified dynamical events and waves.
It also limits localized numerical uncertainties at depth. Finally,
the parameter βi = βi (ui , vi ) is used to reduce the relaxation
at outflow points. In the final adapted run, it was set at inflow
points to βi = 1 and at outflow points to βi = 0.25.

The real-time adaptation proceeded as follows. Each
parameter and parameterizations were first modified one at a
time. Additional simulations with more than one modification
were then also ran. In total, a set of 49 simulations was carried
out in real time, in parallel batches. These simulations started
either from August 5 or 7. All assimilated the same temperature
and salinity data up to August 15 and issued ocean forecasts
for August 16, 17 and 18. They were forced at the ocean
surface by COAMPS atmospheric fluxes (J. Doyle, personal
communication): these fluxes were analyses up to August 16
and forecasts beyond.
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Table 1
Parameters and parameterization before and after adaptation

IC/Re-start date ν0 K e
v Ek Boundary relaxation

Non-adapted OA on Aug. 7 of Aug. 2–7 data 50.0 5.0 0.15 None

Adapted ” ” 6.0 0.22 Bnd i y/n τb
i τ s

i hi
West 1 1.5 4.5 50
South 1 1.0 2.0 50
East 0 – – –
North 1 1.0 2.0 50

Units: ν0 (cm2/s), K e
v (cm2/s), Ek (non-dimensionalized), τb

i and τ s
i (days), and hi (m) (see also Appendix A.1).
The results of each simulation were compared to data
qualitatively and quantitatively, daily up to August 18.
The data used were T and S profiles from two sets of
gliders (R. Davis and D. Fratantoni, personal communication).
Model fields were compared both to measurements at
data points and to objective analyses of the data at
model points. The quantitative comparisons were done
using horizontal mean estimates of the bias, Root Mean
Square Error (RMSE) and Pattern Correlation Coefficient
(PCC), for each model configuration. The bias and RMSE
estimates are defined by 〈T f (x, y, z, t) − T o(x, y, z, t)〉h and√

〈(T f (x, y, z, t)− T o(x, y, z, t))2〉h , where 〈·〉h denotes an
horizontal average and, T f and T o are the forecast at data point
and the observed value, respectively. Choosing a background
mean estimate to be a large-scale field T ` and defining 1T f

=

T f (x, y, z, t) − T `(x, y, z, t) and 1T o
= T o(x, y, z, t) −

T `(x, y, z, t), the mesoscale PCC is 〈1T f 1T o
〉h√

〈1T f 2
〉h

√
〈1T o2

〉h

. The

ultimate choice among the different model configurations was
made by comparing the depth and time average of these three
numbers. Depth averages were computed for each of the three
forecast days (August 16, 17 and 18), for both T and S. These
numbers were then non-dimensionalized and summed. In that
sum, to reduce the effect of atmospheric forecast uncertainties,
the August 16, 17 and 18 values were given a weight of
1, 0.8 and 0.5, respectively, based on a time decorrelation.
Salinity values were also given two third of the weight of
the corresponding temperature values because of the larger
uncertainties of salinity sensors.

The adaptive modeling scheme used here is a simplified
maximum likelihood. The model configuration with the best
averaged skill is assumed to be the most likely model. The
prior and posterior set of parameters and parameterization
are given in Table 1. The initial conditions, parameter ν0
and horizontal viscosity remained unchanged (changing them
made things worse or had no significant impact). The vertical
mixing in the wind-mixing surface layer and the depth of
this layer were increased by 20% and 30%, respectively.
The penetration of atmospheric effects is then increased and
geostrophic tendencies reduced. A boundary relaxation scheme
was combined with the radiation condition (Eqs. (4a) and (4b)),
with a time dependent relaxation time scale. The relaxation is
stronger in the alongshore direction (north and south boundary),
in accord with the mean direction of the flow, with alongshore
inflows from the north at the surface and from the south at
depth. The relaxation is also weaker in the upper layers, so
as to allow active surface dynamics (e.g. upwelling plume) to
radiate out of, or exit, the domain. Of course, in the present
adaptation, only 49 model configurations were run and the true
optimum is likely not attained. To account for all uncertainties,
a small ensemble of simulations should also be run out for each
configuration. This ensemble statistics is here approximated
by averaging over time. Our goal is simply to show benefits
of sub-optimal but real-time and quantitative adaptation of a
comprehensive ocean dynamical model.

Figs. 2–4 illustrate the results of the adaptation. The
unadapted and adapted physical ocean model are compared
to the T and S data collected on Aug 16, 17 and 18, 2003,
as a function of depth and time. Quantitative comparisons
at data points are illustrated by Fig. 2. The horizontally
averaged bias estimate (Fig. 2(a)), Root Mean Square Error
(RMSE) estimate (Fig. 2(b)) and mesoscale pattern correlation
coefficient estimate (Fig. 2(c)) were computed at 20 depths,
from 2 m to the largest data depth of 400 m. In these estimates,
data values are assumed to represent truth. On Fig. 2(a–c), only
values for the first 100 m are shown for visibility (the other
depths 125, 150, 175, 200, 250, 300, 350 and 400 m are not
plotted).

On average, the biases (Fig. 2(a)) for the unadapted and
adapted forecasts are similar on Aug 16 and Aug 17. However,
the adapted model has smaller biases on Aug 18, for both T and
S. Note that bias profiles change shape and sign from day to
day, in part due to limited data coverage (Fig. 3). However, bias
amplitudes remain small and similar with time. Considering
RMSE values (Fig. 2(a)), the adaptation has substantially
reduced the RMSEs of the T forecasts, on each day and with
averaged improvements of 20%–40%. For S, they are similar
for the first two days but much smaller for the third. Note the
shape of the RMSE profiles, similar to that of the variability.
With adaptation, the mesoscale PCC values (Fig. 2(c)) of the
T forecasts are much closer to one, every day and with an
averaged PCC increase of 40%–60%. For S, adapted PCCs
are better for Aug 16 and 18, by about 10%–20%, but slightly
worse for Aug 17 (this may be due to sensor biofouling). In
conclusion, the bias, RMSE and PCC estimates confirm that the
adaptive scheme led to significant quantitative improvements of
model forecast fields.

These improvements are illustrated on Fig. 3 by differences
between the objectively analyzed (OAed) T data and the
real-time T forecasts using the unadapted (left column) and
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Fig. 2. Comparison between real-time unadapted (blue lines with a plus at each data point) and real-time adapted (green lines with filled circles) physical ocean
model. (a) Bias estimate (Model - OAed data) for temperature and salinity, as a function of depth (m) and time (day). (b) As (a), but for the Root Mean Square Error
(RMSE) estimate. (c) As (a), but for the mesoscale pattern correlation coefficient estimate. Note the overall decay of the PCC with the duration of the forecasts. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
adapted (right column) model. The depth of 30 m was selected
because it is characteristic of the pycnocline. The forecasts and
OAed data are estimates for noon GMT (4 a.m. local time).
Differences are plotted only where the expected, mesoscale
error standard deviation of the OAed data is less than 30%
(in non-dimensional form). This also shows the limited data
coverage, especially offshore. This offshore region is where the
adapted model has enhanced the non-adapted model the most,
for the 3 days. The effect of the adaptation is smaller near
Monterey Bay. This is because data density was higher there
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Fig. 2. (continued)
since the start of the experiment on Aug 2, which reduces the
impacts of different model configurations.

The full temperature fields at 30 m are shown on Fig. 4. The
effects of model updates are significant. The sustained warmer
temperature at 30 m along the western open boundary is due
to: (i) the increased Ekman depth factor and stronger eddy
diffusion, which lead to a deeper mixing of warmer surface
waters; and (ii), the boundary relaxation towards the data-driven
larger-scale field. At 30 m, updates along the coastline and
in Monterey Bay are smaller around data locations but still
significant elsewhere (even though less visible on Fig. 4 due
to the larger T gradient between offshore and shelf waters).
Several structures in the flow and tracer fields have been
modified by the adaptation. Our real-time example is based on
a relatively small ensemble of simulations, but it indicates the
potential of adaptive physical modeling.

2.2. Towards adaptive physical–biogeochemical modeling

Fundamental biological equations remain relatively un-
known. Even though much progress has been made recently
in biogeochemical understanding and modeling e.g. [37,28],
model uncertainties remain relatively larger than in physical
modeling. One challenge is the countless types of biological or-
ganisms and animals, which evolve and go through various life
stages. Many biological processes, interactions and behaviors
are possible and new ones continue to be discovered. Physical
and chemical variables such as light, temperature, currents and
dissolved nutrients also impact biological processes and param-
eters (e.g., growth rates, grazing and predation rates). For effi-
cient modeling, biological quantities are first aggregated into a
possibly large but limited number of model state variables. The
interactions among these aggregated variables including bio-
logical behaviors and forcing functions are then parameterized.
Currently, several formulations are based more on empirical re-
lationships than on underlying ecological or physiological pro-
cesses. A variety of parameterizations have been utilized and
there are few standards. All of these fundamental model uncer-
tainties compound with classic ocean simplifications such as
model reductions to the scales of interest and limited data (Sec-
tion 1). Adaptive modeling can then be used to select adequate
biological model properties and so reduce these uncertainties.
A corollary is to use adaptive modeling for automated biologi-
cal aggregations or simplifications, by comparing complex and
simple models with data.

Adaptive modeling is also useful for ecosystems simply
because biological states evolve and go through transitions,
and because interactions vary with time and space [50]. For
efficiency, predictive models can have the same behavior and
adapt to the ever-changing dynamics. For example, consider
the variations of biological assemblages with time and space,
with respect to both size classes and functional phytoplankton
and zooplankton groupings. As the plankton community and
nutrient composition shift over the course of a bloom, efficient
models can adapt accordingly. Biogeochemical parameters
(rates, ratios, etc) and model structures can adapt in such
circumstances.

As for the physical case, there are essentially two basic
categories of biological–physical adaptation (Fig. 5). The
first (Fig. 5, left) is a physical model that drives multiple
competing biological models (biological hypothesis testing).
The second (Fig. 5, right) consists of a single adaptive
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Fig. 3. Differences between the objectively analyzed (OAed) temperature data and the real-time unadapted (left column) and real-time adapted (right column)
temperature forecasts at 30 m, for Aug 16 (top), 17 (middle) and 18 (bottom), 2003. Differences are shown only where the expected mesoscale error standard
deviation of the OAed data is less then 30% (this standard deviation is the non-dimensional form of the square root of the a posteriori error variance of the mesoscale
OA map). The region plotted varies from day to day, following glider motions.
interdisciplinary model: an adaptive physical and adaptive
biological model proceed in parallel, with some independent
adaptation. As shown on Fig. 5, physical and biological
adaptations do not need to be computationally concurrent,
but they must be dynamically compatible. Of course, there
are several intermediate cases not sketched on Fig. 5. For
the first category, the physical model could be adaptive while
competing biological models are evaluated. A single physical
model could also be coupled to a set of competing biological
models whose unknown parameters are adapted. Finally, the
combination of the two categories defines the general case of
running competing adaptive interdisciplinary models. Note that
many aspects of such new biological adaptive modeling are
computationally challenging [45]. Due to the smaller physical
uncertainties, physical model selection should likely precede
biogeochemical model selection.

To carry out biological adaptive modeling and allow
automated dynamic switching of biogeochemical parameters
and structures, new generalized biogeochemical computational
models are needed. A version of such a flexible model
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Fig. 4. Real-time unadapted (left column) and real-time adapted (right column) temperature forecasts at 30 m overlaid with horizontal velocity arrow vectors at that
depth, for Aug 16 (top), 17 (middle) and 18 (bottom), 2003. Arrow vectors are only plotted every three grid points and the velocity scale (bottom right) is 50 cm/s.
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Fig. 5. Sketch illustrating adaptive coupled physical–biological modeling. Left: a set of biological models are coupled to the same physical model. Right: a physical
and a biological model evolve during the simulation as a function of data.

Fig. 6. Generalized biological model [70]. N : Nutrients; P: Phytoplankton; Z : Zooplankton; D: biogenic Detritus; DOM: Dissolved Organic Matter; B: Bacteria;
A: Auxiliary variables. nn, np, nz, nd, ns and na: adaptable numbers of state variables for each functional group.
has been developed [70]. It was constructed based on
a study of functional groups and parameterizations for
coastal ecosystems. A general set of state variables and of
mathematical structures representing their interactions was
selected, based on importance, completeness and accuracy. As
illustrated on Fig. 6, this led to a generalized model with
the following generic functional groups of state variables:
nutrients (Ni ), phytoplankton (Pi ), zooplankton (Zi ), detritus
(Di ), dissolved organic matter (DOMi ), bacteria (Bi ) and
auxiliary variables (Ai ). Within each functional group, the
number of state variables can vary and the parameterizations
of their interactions can be selected. With such flexibility,
this new model can adapt to different ecosystems, scientific
objectives and available measurements. Details of its properties
and implementation are given in [70].

We now illustrate the use of this new model in two
configurations for the Monterey Bay region. The first
configuration is a simple NPZ model with two nutrients. It
has four state variables: phytoplankton, zooplankton and two
nutrients (NH+

4 and NO−

3 ). Chlorophyll is simply estimated
from a scalar Chl : P ratio. The second configuration (Fig. 7)
is what we refer to as an a priori model. As in classic Bayesian
estimation, it is selected based on previous knowledge of the
ocean region of interest and on the synoptic data available.
In the present case, this a priori set-up has two nutrients
(NH+

4 and NO−

3 ), two phytoplankton (small and large), two
zooplankton (micro and meso), two detritus types (small
suspended and large sinking detritus), one DOM (dissolved
organic nitrogen), one bacterial pool and four auxiliary state
variables (prokaryotic, eukaryotic and total chlorophyll and
bioluminescence). Another a priori configuration uses two
additional nutrients, PO4 and Si(OH)4, but it is not used
here. The units of biological variables are: m mol of nitrogen
per meter cube (m M N m−3). For more details on each
configuration, we refer to [70].

These two biological set-ups were coupled to a physical re-
analysis by the PE model of HOPS which assimilates physical
AOSN-II data collected during August 2003 (Section 1).
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Fig. 7. A priori model configuration, for the Monterey Bay region: two nutrients (NH+

4 and NO−

3 ), two phytoplankton (small and large), two zooplankton (micro
and meso), two detritus sizes (small and large), one DOM (DON), one bacterial pool and four auxiliary state variables (small, large and total chlorophyll and
bioluminescence).
Biological initial conditions and parameters were selected
based on historical data and the literature. A simulation for
each set-up is illustrated on Fig. 8, by surface fields during
an upwelling event. The surface Chl of the two set-ups
are logically different, with the NPZ configuration having a
stronger tendency to overestimate production offshore (when
compared to sea surface color images, not shown). There are
several reasons for this. One of them is the use of one instead
of two classes of phytoplankton (illustrated by Chl fields on
Fig. 8). The NPZ set-up (Fig. 8, bottom) simulates an aggregate
of phytoplankton with unique growth and mortality rates. In
the a priori set-up (Fig. 8, top), the larger phytoplankton
requires more nutrients, light, etc, for optimal growth, hence
the weaker total growth offshore. Comparisons of biological
fields with the available fluorometer data further indicates the
better adequacy of the a priori model. However, quantitative
comparisons also show that other improvements are necessary,
including an overall slower biological production, a higher or
more rapid mortality offshore and possibly higher biological
grid resolution. Some of this may be achieved by using four
nutrients (see above). Ultimately, more biological data are
needed. The new generalized model with adaptive behavior
could then select model properties in an automated quantitative
fashion.

3. Adaptive ESSE parameters and data assimilation

Most DA schemes used for realistic studies approximate
fundamental principles for combining various sources of
information. One of these principles is Bayes rule [34,16].
In part because of these approximations, the schemes involve
several parameters, options and heuristic algorithms whose
specifics impact the DA results. In the ESSE system, such
specifics can vary with each application and with users inputs.
They are also modified with time, as a function of the regional
dynamics, available data or other considerations. In what
follows, such adaptable features are reviewed and illustrated for
the first time, for each computational components of the system.
We refer to [10] for the related investigation of adaptive Kalman
Filters and to [51] for covariance matching.

The main ESSE components are: (i) uncertainty initializa-
tion (see also [53]); (ii) deterministic–stochastic ensemble and
error subspace forecasts; (iii) adaptive sampling; (iv) data pro-
cessing and measurement model; (v) data assimilation; (vi)
adaptive error learning; and, (vii) smoothing. These algorithms
are outlined in Appendix B, excepted for adaptive sampling
(Section 4) and stochastic forcing (Appendix A.2). For the un-
certainty initialization [43], the properties that can vary include
the number of initial error scales utilized, the type and param-
eters of the horizontal error covariances for each scale, and the
factors setting the amplitude of the prior initial error conditions
based on historical data or variability estimates. For the ensem-
ble and error subspace forecast, they include the statistics of
the random noise n j

k (Appendix B) used to model the trun-
cated errors and the adaptation of this statistics based on pos-
terior data–model misfits. Properties of the stochastic forcings
(Appendix A.2) also need to be selected and can be adapted.
The choice of the ocean forecast from the ESSE ensemble is
a parameter. One can select either the: central forecast, ensem-
ble mean, most probable forecast (mode) or ensemble mem-
ber closest to the mean/mode or to the new data. Finally, sev-
eral convergence criteria and factors can be used to control
the size of the error subspace. At the data assimilation step,
the amplitudes of error forecasts can be scaled, e.g. inflated.
This scaling can be adapted exploiting the prior data–ensemble
misfits. When ensemble sizes are too small, error covariances
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Fig. 8. Surface horizontal maps for the a priori and NPZ model configurations on Aug 11, 2003, during an upwelling event in the Monterey Bay region. Top:
Chlorophyll associated with the total, large and small phytoplankton for the a priori configuration. Bottom: chlorophyll, nitrate and zooplankton for the NPZ
configuration.
can also be reduced at long distances before DA, based on a
Schur product of the background covariance matrix Bp

k with
another covariance that decays at long distances [32,2,24,25].
After DA, adaptive error learning updates uncertainty esti-
mates from the misfits among ESSE analyses and data (pos-
terior data–ensemble misfits). For the smoothing step, options
are limited because the backward smoothing equations depend
on prior and posterior filtering estimates which are set. Next,
we discuss and illustrate adaptive ESSE filtering.

(i) Adaptive error scaling. The error variances of an ESSE
analysis or ensemble prediction can be scaled, e.g. tuned,
by multiplication with a diagonal matrix of factors [40,41].
The scalar version of this multiplication is often referred to
as error covariance inflation in weather forecasting [1,75].
In regional ocean modeling exercises such as predictive skill
experiments, such scaling is most needed at the start of the
exercise. This is because the internal state of the ocean at t0
is often poorly known. For example, consider the case where
the only synoptic data to start with are a few remotely sensed
surface observations. The initial state is then estimated from
historical in situ data sets, remotely sensed data and feature
models [18]. Ocean state estimation at t0 can thus be very
different from an initialization in weather forecasting where the
atmospheric state at t0 is observed with a much larger accuracy.
Even simple tuning of the initial ocean error estimate is useful.
In ESSE, the estimate of the dominant eigendecomposition
EΠ ET, of the error covariance, Pp, at t0 (or at any tk)
can be scaled using a non-dimensional block diagonal matrix
Γ , leading to Bp

= ΓEΠ ETΓT [41]. Each block of Γ
corresponds to a state variable (Appendix A.1) and is presently
defined by a single scale factor. The procedure to determine
the values of these factors is as follows. A preliminary estimate
is first chosen. At t0, values in Γ are usually set within 0.3–0.7
since EΠ ET corresponds to historical variability estimates [43]
which are often larger than initial uncertainties. At all times
tk > t0, the preliminary estimate is 1, i.e. Γ = I, because
it is first assumed that error amplitudes are adequate. Starting
from this preliminary estimate at t0 (tk), a batch of usually
10–25 ocean forecast simulations is ran to t1 (tk+1) using Eqs.
(B.11) and (B.12) of Appendix B and distributed computing.
The standard deviation of this first batch of forecasts is a
preliminary error prediction. If it is found to be too small
(sometimes too large), either from experience or from the
misfits between this preliminary ensemble and the most recent
data, the factors in Γ are increased (sometimes decreased). The
process is repeated until values in Γ are judged acceptable.
For coastal mesoscale ocean forecasting exercises, it usually
takes a few assimilation cycles and several days after t0 for the
values of Γ to stabilize and remain set to one. Obviously, for
fully operational systems, such an adaptive procedure can be
automated based on data–ensemble misfits.
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(ii) Adaptive parameterization of the truncated errors.
Uncertainties not represented by the posterior error subspace
are modeled by the random noise n j

k whose statistics needs
to be specified. These errors are in theory orthogonal to the
error subspace, i.e. to the eigenvectors of a normalized form of
Pp. In practice, the ESSE scheme utilizes an additive white/red
noise and a multiplicative white noise. For each portion of n j

k

corresponding to a variable v, this amounts to (n j
k = α

j
k +

ε
j
k xk)v where (α j

k )v is a random noise white or red in space

and (ε j
k )v a non-dimensional white noise factor of amplitude

� 1 (usually 1%–5%). Of course, amplitudes of the noise
are limited by numerics since the noise is added to the initial
conditions. Based on experience, the difference between using
a red or white noise is small because the deterministic ocean
model reddens the white noise (by a Shapiro filter in our
model). The additive and multiplicative white noise scheme is
thus utilized.

In the ESSE system, the amplitudes of (α j
k )v and (ε

j
k )v

above can be updated, similarly to the error subspace scaling
factors. A batch of ensemble forecasts to tk+1 is carried out.
If the uncertainty forecast is estimated to be too small (too
large) or inadequate, the standard deviations of (α j

k )v and

(ε
j
k )v are increased (decreased). Currently, this adaptation is

carried out manually, by quick-look evaluation of the standard
deviation of the ensemble forecast. This ESSE parameterization
of the truncated errors is complementary to the scaling of the
error subspace variances (see (i) above) and to the adaptive
error learning (Appendix B) which updates the posterior error
subspace decomposition.

(iii) Modification of error covariances based on a Schur
product. Ideally, the size of the ensemble should be as large or
larger than the number of degrees of freedom of the dominant
uncertain variability. When ensembles are too small, an issue
is covariance estimates with too large amplitudes at long
distances. This leads to erroneous corrections and artificial
reductions of the error variance. With time, the ensemble
variance tends to become null. An engineered remedy to this
issue is to taper the amplitudes of covariance estimates at
long distances by multiplication. This can be achieved by
Schur product of the error covariance matrix with a positive
definite matrix whose amplitudes decay at long distances
(e.g. [21]). This Schur product approach has been successful
in weather prediction studies (e.g. [25]). Other localization
schemes include the use of a cut-off radius [31] and local
DA [58].

Within ESSE, the size of the ensemble is controlled by a
criterion (Appendix B, Eq. (B.9)) which can prevent the need
to taper covariances. The criterion is based on a measure of
the similarity between subspaces, e.g. [29,30]. Such criteria are
of course only necessary conditions for convergence. Ensemble
sizes are also limited by the speed and storage capacity of
the computer system available. If the convergence criterion
is not satisfied, the prior error covariance Pp

− is tapered by
Schur product with a matrix S. The ESSE assimilation (Eqs.
(B.10)–(B.21) in Appendix B) is then modified by replacing
Pp

− = E−Π −ET
− with the Schur product Pp

− ◦ S. In our ocean
cases, elements of S are set to vary in the horizontal only. Each
observation has then a different tapering covariance function
which varies with the data position in the horizontal and is 1 at
the data position.

To reduce the increased computational costs due to the
Schur product, two approximations are made based on
the facts that most measurement operators H are mainly
local interpolations (e.g. bilinear stencil) and that sequential
processing of observations is used. First, in the sum HPp

−HT
+

R, the Schur product is ignored. The forecast error covariance
at data points HPp

−HT is directly added to the data error
covariance, because sequential processing of observations is
used (data scalars or vertical profiles are assimilated one at
a time) and the non-zero elements in each row of H thus
correspond to local interpolation stencils on the model grid
which are very close to data points. Second, in computing
(Pp

− ◦ S)HT which are covariances among model and data
points, the sums and multiplications with the non-zero elements
of HT (interpolation at data points) are simply approximated
by the covariance with the stencil point the nearest to the data
point. For a bilinear interpolation, only one covariance field is
then computed for each data point instead of four.

For predictions of ocean mesoscale physics over O(100)
by O(100) km regions, ESSE criteria are usually satisfied for
ensemble sizes of 200–600. This is only a necessary condition
for convergence. During AOSN-II, ensemble sizes were at
times limited by computer speeds and the tapering of Pp

−

was carried out. Elements of tapering matrices S were defined
using an exponential decorrelation function, exp(−|∆r |/Ls −

|1t |/τs), where Ls and τs are spatial and temporal exponential
decay scales, 1r the horizontal distance between a data and
stencil (model grid) points, and ∆t the difference between the
data and forecast times. Its effects are exemplified on Fig. 9
for an ESSE assimilation on Aug 28, 2003, using an ensemble
500 members. The position of the quality-controlled in situ T
and S profiles that were assimilated for that day are shown on
Fig. 9(a). The ESSE prediction of the error standard deviation
for T at the ocean surface is on Fig. 9(b). It is smaller where
the data density had been higher (e.g. near the coastline) and
larger where dynamics has led to uncertainty growth, e.g. near
the coastal front and its meanders, filaments and eddies. The
mean surface T uncertainty is about .4 ◦C. Estimates of the
reduction in the error standard deviation of the surface T due
to ESSE assimilation are shown on Fig. 9(c) and 9(d), for the
case without and with a Schur product correction, respectively.
The decay scale used was Ls = 25 km, just a bit larger than
the estimated mesoscale decorrelation length. The time decay
was 100 days (which amounts to no time effects in the Schur
product). Near data points (Fig. 9(a)), the two error reductions
are almost indistinguishable. Away from data points, for the
case without Schur tapering, error reductions are small but not
negligible (e.g. ∼.05–.2 ◦C offshore). However, with tapering,
they are smaller (e.g. almost null offshore). The corresponding
results of the multivariate 3D ESSE assimilation are shown
on Fig. 9(e) and (f), respectively. As for the error reduction
estimates, the DA increments for the surface T are very similar
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Fig. 9. Illustration of the effect of the Schur product of ESSE error covariances with a matrix whose values decay with distances. (a) Horizontal position of the
in situ T and S profiles that are assimilated on Aug 28, 2003. (b) ESSE error standard deviation prediction for the surface T . (c) Reduction of the error standard
deviation (prior–posterior error) due to the 3D multivariate ESSE DA of the T and S profiles, without tapering by Schur product. (d) as (c), but with tapering by
Schur product (note the smaller reduction of error standard deviations offshore). (e) DA increments for the surface T , without Schur product. (f) as (e), but with
Schur product.
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near data points. Away from data points, the Schur tapering
reduces the amplitudes of the field correction.

After study of other assimilation days (not shown), we find
that ESSE increments and correlation estimates suggest that
the region is characterized by mesoscale (.20 km) and larger-
scale (&60–100 km) spatial correlations. This is in accord
with the mesoscale features (e.g. coastal current and upwelling
centers) and the larger-scale California Current System forcing,
respectively.
(iv) ESSE convergence and adaptable ensemble size, error
ubspace rank and stochastic forcing. The ensemble size is
ere controlled by the criterion ρ ≥ α (see Eq. (B.9) and
bove). For the ESSE forecast of Aug. 28, the criterion was
valuated for every new 100 forecast realizations. It was almost
atisfied when ensembles of size 500 and 400 were compared:
he coefficient ρ was then found equal to 0.96, just under the
hosen .97 limit. This suggests that covariance estimates may
ot need any tapering by Schur product (see Fig. 9 above).
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Fig. 10. Sensitivity of error correlation estimates to ensemble size, error subspace rank and stochastic forcing. Shown are two-day ESSE forecasts for Aug 28, 2003
of the error correlation of T at (37.031 N, −122.706 W, 0 m) with T at the surface. (a) Error correlation for an ensemble of size 500. (b) As (a), but using only the
dominant rank-300 subspace of the ensemble. (c) As (a), but using the subspace of rank 100. (d) As (a), but using the subspace of rank 20. (e) Error correlation for
an ensemble of size 100. (f) As (e), but using only its subspace of rank 20. (g) Error correlation for an ensemble of size 500 with stochastic forcings. (h) As (g), but
using only its subspace of size 100.
To illustrate this and impacts of error subspace properties,
we gauge next the sensitivity of error correlation estimates to
the ensemble size, error subspace rank and stochastic forcing
(Fig. 10).
All panels on Fig. 10 are two-day error auto-correlation
forecasts for Aug 28, 2003, of T at the surface with T at
(37.031 N, −122.706 W, 0 m). This location was chosen
because it is on the edge of the equatorward coastal current,
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Fig. 11. Real-time adaptive sampling with ESSE and the R/V Pt. Lobos. (a) S error standard deviation forecast at 10 m for Aug 26, indicating the uncertain frontal
position. (b) Central forecast of the surface T for Aug 26, indicating the meandering coastal current. (c) T error standard deviation forecast for Aug 26, at 30 m,
zoomed over the Monterey Bay region. (d) Sampling plan designed and carried out (Francisco Chavez, personal communication) to investigate the position and
strength of the meander and regions of high uncertainty.
the main inflow at the northern boundary of the modeling
domain. Fig. 10(a–d) correspond to an ensemble of size
500. Fig. 10(a) is the auto-correlation estimated from the
whole ensemble. Fig. 10(b)–(d) are auto-correlations estimated
from its dominant singular value decomposition (SVD) of
rank 300, 100 and 20, respectively. These dominant SVDs,
which define error subspaces, capture 95.8%, 83.1% and
60.4% of the variance explained by the whole ensemble of
500 members, respectively. In accord with ESSE, using a
subspace that captures more than 95% of the total variance
leads to a correlation estimate (Fig. 10(b)) that is a good
approximation of the full estimate (Fig. 10(a)) but that
can substantially accelerate computations. Even 83.1% of
the variance (Fig. 10(c)) could still be acceptable for fast
ESSE analyses. However, using 60% of the variance (20
vectors, Fig. 10(d)) is not sufficient: the correlation estimate
still remains accurate at short distances but then overshoots
substantially at long distances, in accord with a Gibbs-like
phenomenon. Fig. 10(e) shows the auto-correlation estimated
from an ensemble size of only 100 (the first 100 members of the
whole ensemble). In comparison with Fig. 10(a), an ensemble
size of 100 is not large enough to estimate the correlation
field: correlations are relatively similar at shorter distances but
overshoot at longer distances. In fact, the convergence criterion
(Appendix B) gives a similarity coefficient of only 76%
between the ensembles of sizes 100 and 500, indicating non-
convergence at 100. Note also that the estimate on Fig. 10(c) is
more accurate than this Fig. 10(e) because Fig. 10(c) contains
information from the other 400 members. Fig. 10(f) uses only
the dominant 20 singular vectors of the small 100 member
ensemble: its correlation estimate overshoots the most.

Comparing Fig. 10(a)–(f), one notices that amplitudes of
correlation estimates decay at longer distances as the size of
the ensemble or rank of its subspace increases. For example,
consider the larger-scale positive correlation field offshore
(from about 36 N, 122 W to 36.7 N, 123 W), the negative
correlation patch in front of Monterey Bay (near 36.7 N,
122.25 W) and the positive correlations centers in the Bay itself.
These long-distance correlations are still present in Fig. 10(a),
(b) but with much smaller amplitudes. This confirms the needs
for tapering at long distances when ensemble sizes are too
small. Here, based on the similarity criterion (Appendix B), a
size of 500 is almost large enough for 97% similarity.

Stochastic forcing (Fig. 10(g) and (h) also affect error
covariances and correlations. Fig. 10(g) is the auto-correlation
estimated from an ensemble of size 500, with stochastic forcing
(Appendix A.2) during the two-day integrations of the PE
model. Fig. 10(h) shows the same, but using only the error
subspace of rank 100 (dominant SVD that captures 72.1%
of the total variance explained). The stochastic forcing intend
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Fig. 12. Adaptive sampling via ESSE, for an Aug. 24 – Aug. 27 hindcast. (a) T error standard deviation forecast for Aug 27, at 10 m. (b) Central forecast of the
surface T for Aug 26, overlaid with the four candidate tracks. (c) Time line for the ESSE scheme and computations. (d) Predicted optimal track for Aug. 26 and its
relative error reduction for Aug. 27.

Fig. 13. Generation of sampling paths for fixed objective fields [74] using Mixed-Integer Programming (MIP). Examples are for two and three AUVs and a 2D
objective field (the ESSE T error standard deviation averaged over the 0–50 m depths). Grey dots are starting points for the AUVs and white dots are the MIP
optimal termination points. The ranges of the AUVs are set be around 20 km. The paths are constrained by a vicinity constraint such that vehicles remain away from
each other by at least 10 km. (a) Optimal path of two vehicles. (b) Optimal path of three vehicles.
to represent the statistics of sub-grid-scale processes which
have shorter correlations scales. In accord with measurements,
they lead to noisier correlation fields (compare Fig. 10(a)
and (g)) and reduce the main correlation length around
(37.031 N, −122.706 W). However, note that the larger-
scale correlation patches at longer distance remain on average
similar. Comparing Fig. 10(g) and (h), the reduction to an error
subspace of rank 100 modifies the correlation more than in
the case without stochastic forcing (Fig. 10(a) and (c)). This
is because the stochastic forcings flatten the error spectrum,
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as confirmed by the percentages of variance explained, 83.1%
and 72.1%, in the cases without and with stochastic forcings,
respectively.

(v) Adaptive stochastic model. The amplitudes of the
stochastic forcing representing uncertainties in the dynamical
model can vary with time and be tuned. Details of the stochastic
model are outlined in Appendix A.2. Parameters that can be
modified in the current model are: the decorrelation time β
and the amplitudes of model errors relative to the dominant
dynamical model balance. These relative amplitudes are set by
the factors εU , εT , εS and εψ (see Eqs. (A.13a)–(A.13d)). In
theory, the vertically varying characteristic scales in these Eqs.
(A.13a)–(A.13d) could also be tuned or evolved as function of
the background ocean regime. However, this has not yet been
carried out: the noise factors are presently set at t0 based on the
initial state estimate.

4. Adaptive sampling

There are many facets to the adaptive sampling problem.
Ideally, it should account for ocean dynamics, including
nonlinear and coupled processes. Optimal sensors and sampling
patterns should focus on regions of greatest dynamic variability
and uncertainties, compounding model, data, initial condition
and forcing error sources. In Bayesian estimation, the
probability density of an ocean state, conditioned on data and
governed by dynamics, is evolved by a prognostic equation
which contains all these effects [34,16]. The objective of
adaptive sampling can then be to optimize certain properties
of this conditional probability density, for example, minimize
specific future error variances, maximize the knowledge of
dynamical hot-spots or optimize coverage of an area. Adaptive
sampling can occur on various time and space scales, because of
the dynamics itself but also because of the diverse capabilities
of platforms and sensors. Operational constraints have to be
represented. In setting up the problem, diverse assumptions can
be made, e.g. assume a fixed or a variable environment, utilize
an objective independent or dependent of unknown future data
values. Finally, there are many optimization schemes to choose
from.

The new adaptive sampling examples presented next
illustrate these various facets. They are based on simulations
for the AOSN-II exercise in the Monterey Bay and CCS region.
The first one (Section 4.1) was carried out in real time. It aims
to select tomorrow’s sampling path that reduces tomorrow’s
uncertainties the most. This problem is radically simplified by
assuming that the error reduction is instantaneous and by letting
the user select the sampling path heuristically using uncertainty
predictions. The other two examples are hindcast studies, but
are directly applicable to real-time computations. They show
the results of two new adaptive sampling schemes. The first
scheme (Section 4.2) is a novel nonlinear ESSE adaptive
sampling. It properly evolves fields and errors nonlinearly
during the optimization and so predicts the impacts of data.
Its only assumption is to pre-determine a number of candidate
sampling regions or paths that is small enough so that the
optimum can be computed in real time. The second new
scheme (Section 4.3) rapidly generates the optimal path exactly,
under the approximation that ESSE predictions remain constant
and unaffected by the sampling. When this approximation is
applicable, it simplifies the adaptive sampling problem such
that its exact solution can be found.

4.1. Heuristic real-time adaptive sampling based on stochastic
ensemble predictions

During AOSN-II, field and error forecasts were used with a
priori experience to intuitively choose the future sampling. It
is illustrated on Fig. 11. The objective is to find the sampling
path to be carried out tomorrow that will most reduce errors in
tomorrow’s analysis. It ignores that sampling the ocean is not
instantaneous. It assumes that uncertainties and ocean fields do
not vary during the 8 h of sampling by the research vessel. It is
a final time optimization problem.

On Aug. 25, the two-day central forecast for Aug. 26
predicted a meander of the coastal current (Fig. 11(b)) that
advected warm and fresh waters towards the southern portions
of the Bay (facing the Monterey Bay Peninsula). However,
the salinity and temperature error fields (Fig. 11(a) and (c))
from a 450-member ESSE ensemble indicated a high degree
of uncertainty in both the frontal position (Fig. 11(a)) and
strength of the meander (Fig. 11(c), at the depth of the main
thermocline). In fact, some ensemble members had either
essentially no meander present or a meander shifted to the
north. Data were needed west of the Peninsula. Based on
this information, and constrained by operational limitations,
a sampling pattern (Fig. 11(d)) was devised for the R/V
Pt. Lobos. Once the 7 temperature and salinity profiles were
sampled, it was found that the meander was most likely very
weak. The assimilation of these data substantially reduced the
meander. In fact, a hindcast (not shown) without the R/V Pt.
Lobos but with re-calibrated glider data for Aug. 20–23 also
weakened the meander.

4.2. Quantitative adaptive sampling via ESSE

The second example is a hindcast using a new fully fledged
ESSE adaptive sampling scheme. The objective is to minimize
the trace of the predicted error covariance matrix. Importantly,
(i) the objective field is affected by the properties of the data
to be collected and (ii) ocean fields and uncertainties change
with time, as a function of the synthetic data assimilated
and predicted ocean dynamics. The model of model errors
(Appendix A.2), here homogeneous in the horizontal, ensures
that the optimization for coverage is also accounted for. The
time scales of the sampling considered are a day to a week. To
reduce computational costs, a number of candidate sampling
tracks or regions are pre-selected, based on available error
forecasts and known operational constraints.

The generic evolution equations for the dynamical model
and error covariances are given in Appendix B (Eqs. (B.1) and
((B.2)), respectively). The ESSE adaptive sampling objective
is to find the future observation patterns Hi , given the
measurement uncertainties Ri , that minimize the trace of the
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error covariance matrix at final time or on average during the
integration time:

MinHi ,Ri tr(P(t f )) or (5a)

MinHi ,Ri

∫ t f

t0
tr(P(t))dt. (5b)

To address this problem, ESSE accounts for the nonlinear error
covariance evolution, including impacts of synoptic DA at time
t and their nonlinear evolution beyond time t . It is based on
tree-structured multi-ensemble prediction.

Let us first consider the case of choosing the sampling path
to be carried out at or near time t < t f , with the objective
of minimizing the error covariance at final time t f (Eq. (2a)).
One first selects a set of candidate sampling paths and data
properties for each of these paths. Using the ESSE ensemble
forecast for first observation time t , synthetic data (taken from
the most probable forecast or from the ensemble mean) are
assimilated via ESSE for each of these paths. The result is
an analysis and its errors (the posterior ensemble) for each of
the path. New ensemble forecasts are then started from each
of these new analyses, to provide the updated nonlinear error
covariance prediction for final time t f . The sampling path that
provides the largest error reduction at t f is optimal among
the pre-selected paths. This novel approach can be generalized
easily to more complex cases, including integrated costs Eq.
(2b). In general, a tree of ensembles with DA of synthetic data
is evolved forward in time. Each branch of the tree corresponds
to a candidate sampling plan. The information corresponding
to each branch is the error reduction corresponding to that plan.
The best candidate is the one that reduces an uncertainty metric
the most.

In the example shown (Fig. 12), the problem is to compute
today, the tracks to sample tomorrow, that will most reduce
uncertainties the day after tomorrow. Precisely, the question
asked is: considering an ESSE nowcast for Aug. 24 and
prediction up to Aug. 27, which sampling track should be
carried on Aug. 26 so as to optimally reduces uncertainties
on Aug. 27? The new ESSE computations are schematized
on Fig. 12(c). The error standard deviation for T at 10 m
on Aug 27 is shown on Fig. 12(a) and the surface T on
Aug 26 on Fig. 12(b). Four candidate tracks for Aug 26 are
selected (Fig. 12(b)). After DA on Aug 26, four ESSE ensemble
forecasts are computed for Aug 27, one for each track. These
forecast ensembles can be relatively small since error variances
usually converge faster than error covariances. The track on
Aug 26 that reduces errors the most on Aug. 27 is the most
northern one. The prediction of its relative error reduction on
Aug. 27 is shown on Fig. 12(d). Note that this path crossed the
coastal current the most and led to surface corrections that are
elongated in the directions of main advections, both upstream
(due to DA on Aug 26) and downstream (due to Aug 26–27
advections).

4.3. Optimal paths generation for a fixed objective field

The new second scheme computes the optimal paths exactly
and rapidly by approximating the full objective field by a
fixed, univariate and two-dimensional field [74]. The example
provided is a hindcast but the scheme can be used in real time.

The objective is here to minimize the error standard
deviation of a 2D ocean field. The hypotheses are that: (i) the
speed of platforms (e.g. AUVs) are much larger than the time
rate of change of environment, and (ii), the objective field is
fixed during the computation of the path and is not affected by
new data. The time scales of the adaptive sampling considered
are hours. The practical problem solved is: assuming the error
field is like that now and will remain so for the next few hours,
where do we send the AUVs?

An exact solution is obtained by Mixed-Integer Program-
ming (MIP, [56,65]) if the objective field is discretized as a
piecewise-linear cost function (MIP is optimization approach
for linear cost functions and constraints where some of the un-
knowns are integers). The approach is then a modified “travel-
ing salesman” problem. The towns to be visited are hot-spots
in discretized fields and the salesmen are the AUVs. The op-
timization is here carried out using the tool Xpress-MP from
Dash [14]. An illustration is shown on Fig. 13 for the case of
two and three AUVs. The objective field is the vertically aver-
aged (0–50 m depths) error standard deviation of temperature
around Monterey Bay. The ranges of the AUVs are set to be
near 20 km and the distance between 2 AUVs is constrained to
be larger than 10 km. The MIP computations take 2–30 min on
today’s computers. Results indicate that this scheme could be
very useful for rapid adaptive sampling in marine operations.

5. Conclusions

Concepts of adaptive modeling, adaptive data assimilation
and adaptive sampling were introduced, discussed and
exemplified within the context of comprehensive real-time
ocean observing and prediction systems. For a more unified
presentation, illustrations were provided for the Monterey Bay
and CCS region but the adaptive schemes outlined are being
utilized in other regions. Novel but simple adaptive modeling
approaches for hypothesis testing were first developed and
applied to physical and physical–biogeochemical dynamics.
The schemes are based on an ensemble of simulations using
different model structures and parameter values, and on the
automated selection of the model version with the best
predictive skill. For physical adaptive modeling, predictive
skill was measured by a weighted average of the bias, root
mean square error and pattern correlation coefficient of model
estimates. Adaptable components of the ESSE system were
then reviewed, discussed and illustrated. This new synthesis of
adaptable ESSE components includes error estimates (initial,
prior and posterior covariance re-scaling, models of truncated
errors, etc), ensemble sizes, error subspace ranks, covariance
tapering by Schur product and parameters of stochastic
error models. Such components are calibrated by quantitative
adaptation. Illustrations were provided for influences of
ensemble size, error subspace rank, covariance tapering and
stochastic forcing. Adaptive sampling approaches and schemes
were then outlined and their capabilities illustrated. The first
scheme was heuristic, selecting the sampling manually based
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on predictions and experience. The other two new schemes are
quantitative. Adaptive sampling via ESSE selects the optimal
sampling plan out of a set of candidates while the second
scheme computes the optimum sampling path assuming a fixed
objective.

Adaptive modeling is an extension of classic parameter
estimations to the selection of model state variables, linkages,
parameterizations and/or computational characteristics. The
optimization is over both model structures and parameter
values. The model changes and learns from data as they
are collected. Adaptive modeling appears especially valuable
for the parameterizations of sub-grid-scale effects and for
biological investigations, two research areas for which
fundamental models are being debated. The present Monte
Carlo “trial and error” approach used for adaptive modeling
is simple but already useful. It is quantitative, accounts for
nonlinear effects and is representative of what is done manually
by a human tuning a model. However, many other adaptive
modeling methods need to be evaluated and used in the future.
If a tangent linear model is a good approximation, a possibility
is to use Green functions or adjoint equations for everything
that is different in each of the model structures and parameter
values, and optimize over the corresponding Euler–Lagrange
equations, with weak or strong constraints.

Several aspects of adaptive modeling are computationally
challenging [45] and require more research. Adaptation triggers
can be provided to the software through external files which
are checked during runtime and updated when model properties
need to be modified. For example, for hypothesis testing (Fig. 5,
left), the forecasts of competing models are compared based
on their respective data–forecast misfits and the best functional
forms selected for each data assimilation period. In the second
category (Fig. 5, right), the code may modify parameters,
increase the number of state variables (e.g. de-aggregation) or
alter the form of a source term. Such structural adaptations are
not trivial. They can be implemented using C function pointers
to choose among Fortran modules. To account for forecast
uncertainties, ESSE can be used and provide expected bounds
on misfits. For each candidate model, these uncertainty bounds
can be computed based on a small-size ensemble. This is
because error variances often converge faster than covariances.

The first adaptive sampling scheme illustrated is the simple
heuristic estimation of the ideal future sampling based on
quantitative predictions of ocean fields and uncertainties.
This is an approach often followed today in oceanic studies.
However, it has the disadvantages of being manual and of
usually ignoring the impact of the sampling plans on ocean
estimates subsequent to that sampling. Adaptive sampling via
ESSE is based on the nonlinear prediction of the impact of
future observations on the predicted ocean state and uncertainty.
A set of candidate sampling plans (data locations and types) is
chosen a priori. For each plan, a nonlinear ESSE prediction and
data assimilation is carried out. This estimates the impact of
each plan on predicted fields and so the candidate plan with
the best impact. Adaptive sampling via ESSE is theoretically
a better algorithm but it requires prior selection of a finite
set of candidate sampling plans. The last adaptive sampling
scheme neglects the evolution of the objective field for the
duration of the sampling, but computes the optimal sampling
plan exactly. This is feasible by Mixed-Integer Programming.
It is the quantitative version of the above heuristic adaptive
sampling approach.

The present schemes for adaptive sampling and modeling
were based on ensemble approaches and the ESSE system.
An extension of these schemes is based on genetic algorithms,
where new versions of the model or the sampling plans are
generated based on the skill of previous generations, e.g. a
previous ensemble of model versions or of sampling plans.
There are also many ways to carry out adaptive DA and the
adaptive ESSE components presented here were representative.
Because of insufficient or limited data, the use of adaptive
schemes in ocean studies can be challenging. Quantitative
adaptive filters that work in engineering applications where
the number of independent observations is typically large
when compared to the number of control parameters may not
work directly in oceanography. This does not mean however
that adaptive schemes should not be employed. In fact, in
oceanography, prior estimates can often be quite far from
data. The adaptation of models, error models and assimilation
schemes is then required.

The use of adaptive schemes in oceanography is recent
and multiple research questions remain, from theoretical to
applied subjects. Developing adaptive schemes and systems
that quantify and automate the learning process of the ocean
researcher should become more and more fruitful in the years
to come.
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Appendix A. Stochastic–deterministic interdisciplinary oc-
ean models

A.1. Deterministic coupled models

Physical Model. The PE model (Eqs. (A.1)–(A.7), of the
Harvard Ocean Prediction System (HOPS, [27]) is used. The
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state variables are temperature T , salinity S and horizontal total
velocities uh . In Eqs. (A.1)–(A.7), (x, y, z, t = r, z, t) is the
position vector and time, u = (uh, w) the velocity vector, ρ
the density, ρ0 the density of a state of reference, g gravity,
f the Coriolis frequency, pw the water pressure, Av and Kv
vertical eddy viscosities and diffusivities, and Ah and Kh their
horizontal counterpart (modeled by a scale dependent Shapiro
filter). Atmospheric fluxes from external atmospheric models
are imposed at the surface (sometimes with a flux correction).
Possible outputs consist of a wide range of prognostic and
diagnostic variables and parameters.

Horiz. Mom.
Duh

Dt
+ f e3 ∧ uh = −

1
ρ0

∇h pw + ∇h · (Ah∇huh)

+
∂Av∂uh/∂z

∂z
. (A.1–2)

Vert. Mom. ρg +
∂pw
∂z

= 0. (A.3)

Thermal energy
DT

Dt
= ∇h · (Kh∇h T )+

∂Kv∂T/∂z

∂z
. (A.4)

Cons. of salt
DS

Dt
= ∇h · (Kh∇h S)+

∂Kv∂S/∂z

∂z
. (A.5)

Cons. of mass ∇ · u = 0. (A.6)

Eqn. of state ρ(r, z, t) = ρ(T, S, pw). (A.7)

The parameters of the PE model which were adapted in
real time during AOSN-II (Section 2) included the profiles of
vertical eddy viscosities Av and diffusivities Kv , which are
a function of space, time and local physical fields, see [42]
and references therein. In the surface layers, a mixing-layer
model is used to transfer and dissipate the atmospheric forcings
(here COAMPS fluxes). This model first evaluates the local
depth of turbulent wind-mixing or “Ekman depth” he(x, y, t) =

Ek
(√

‖τ‖/ρ0
)
/ f where τ (x, y, t) is the wind stress vector, Ek

an empirical factor, and ρ0 and f as above. This depth he is
constrained within adjustable bounds. Vertical eddy coefficients
within he are empirically set to the scalars Ae

v and K e
v . Below

he, Av and Kv are estimated based on the local gradient
Richardson number Ri . Where Ri(x, y, z, t) is ≥ 0, they are
set to Av = Ab

v +
ν0

(1+5Ri)2
and Kv = K b

v +
ν0

(1+5Ri)3
. In this

shear vertical mixing scheme, the adjustable parameters are the
background coefficients, Ab

v and K b
v , and shear eddy viscosity

at Ri = 0, denoted by ν0. For negative Ri’s, convective mixing
values Acvct

v and K cvct
v are utilized.

Biogeochemical Model. The model stems from advection–
diffusion–reaction (ADR) equations [70]. Its state variables
φi (x, y, z, t) are governed by

∂φi

∂t
+ u · ∇φi − ∇h(Ai∇hφi )−

∂Ki∂φi/∂z

∂z
= Bi (φ1, . . . , φi , . . . , φ7). (A.8)

In Eq. (A.8), the first term is the local time change at a point,
the second is advection, and the third and fourth are eddy
diffusions. The u are velocities, the Ki ’s eddy diffusivities and
the Bi ’s biological dynamics or reactions. The latter model the
sources and sinks of φi ’s due to, e.g., reproduction, life-stage
transitions, natural mortality, predation, chemical reactions and
behavior. Details on the different options that are coded in the
numerical generalized model and can represent such processes
are given in [70].

A.2. Stochastic models

In the present applications, a stochastic model is utilized to
represent model errors in physical equations. These stochastic
forcings aim to account for statistical effects of processes
(e.g. sub-mesoscales) not resolved in the deterministic PEs
(Eqs. (A1-2–A.7)). They are correlated in time and space,
and added to the prognostic equations based on the following
construction.
(a) Time correlations. In time, model errors are assumed
to be stationary, zero-mean, random processes, exponentially
decorrelated. To generate such processes, white noise is passed
through a simple feedback equation. For a scalar noise w̃(t), the
sample path and variance equations are,

dw̃ + βw̃dt = dw (A.9)

ṗw̃ = −2βpw̃ + q (A.10)

where 1
β

is the autocorrelation time and w ∼ (0, q) a Gaussian
noise white in time. Setting ṗw̃ to zero at all times yields
pw̃(0) = σ 2

=
q

2β . For a stationary process (fixed fluctuation

amplitude σ and autocorrelation time 1
β

), the variance of w is

set to be a constant q = 2βσ 2.
(b) 3D Spatial covariances. In space, model errors are set to be
of vertically varying amplitude and of approximately two-grid-
point decorrelation in all spatial directions. This is obtained
from a white noise on a coarser grid, linearly interpolated onto
the actual finer model grid. The result is an approximate two-
grid-point correlated noise. For each prognostic equation, the
noise variance at a given level is chosen equal to a small ε
fraction of the amplitude of the terms involved in the dominant
PE balance at that level (ε is usually set within .1 –.3).
(c) Stochastic PE Model. In continuous time and discrete space,
equations are

dx =M(x, t)dt + B f c(t)dw̃c (A.11)

dw̃c
= −βcw̃cdt + dwc (A.12)

where: x ∈ Rn is the discrete-space PE state vector; M(·, t)
the discrete PE operator; wc

k the multivariate coarse 3D white
noise; w̃c

k the coarse 3D Gauss–Markov process; and B f c(t)
the coarse-to-fine linear interpolation operator. The discrete
PE model [27,13] state is x = (û, v̂,T,S,p)T, where the
vectors û and v̂ are internal horizontal zonal and meridional
velocities, T temperatures, S salinities and p barotropic
streamfunctions (discretized ψ). The vector components of wc

are (wc
û,wc

v̂
,wc

T ,wc
S,wc

ψ )
T. Similar definitions hold for the

correlated w̃c. Its diagonal sub-matrices of time decorrelations,
(βu,βv,βT ,βS,βψ ) = βc, are here set simply to βX = βI.
The noise decorrelation time is thus assumed homogeneous
in space and across state variables. The diagonal sub-matrices
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of noise variances, (Σu,Σ v,Σ T ,Σ S,Σψ ) = Σ w̃c , are
here functions of z only. Their amplitudes are set to “ε ∗

‖geostrophy(z)‖”, which leads to:

Σu = Σ v = σ 2(z)I, with σU (z) = εU fcU (z) (A.13a)

Σ T = σ 2
T (z)I, with σT (z) = εT U (z)

∆T (z)

L(z)
(A.13b)

Σ S = σ 2
S (z)I, with σS(z) = εSU (z)

∆S(z)

L(z)
(A.13c)

Σψ = σ 2
ψ (z)I, with σψ (z) = εψ

ωL(z)

U (z)
(A.13d)

where fc is the central Coriolis frequency. The values of the
vertically varying characteristic scales, U (z),∆T (z),∆S(z),
L(z) and ω, and corresponding εX ’s are estimated from a
combination of observations and model runs.

Appendix B. Error subspace statistical estimation

B.1. Formalism

Using continuous–discrete Bayesian estimation [34] and
the notation of [33], the spatially discretized version of the
deterministic–stochastic ocean model and parameter equations
are combined into a single equation for the augmented state
vector x, of large but finite dimensions. Observations are taken
at discrete instants tk ≥ t0 and are concatenated into a data
vector yo

k . The dynamics, observations and DA criterion are
then,

dx =M(x, t)+ dη (B.1a)

yo
k = H(xk, tk)+ εk (B.1b)

min
x

J (x, yo
k; dη, εk,Q(t),Rk) (B.1c)

where M and H are the model and measurement model
operator, respectively, J the objective function, and dη Wiener
processes (Brownian motion), i.e. β ∼ N (0,Q(t)) with
E{dη(t)dηT(t)}

.
= Q(t)dt . Note that the deterministic ocean

dynamics and parameter equations are actually forced by noise
processes correlated in time and space. State augmentation [34,
22,20] is used to re-write equations in the form of Eq.
(B.1a) which are forced by intermediary processes dη white
in time and space. Measurement model uncertainties εk are
assumed white Gaussian sequences, εk ∼ N (0,Rk). The initial
conditions have a prior PDF, p(x(t0)), i.e. x(t0) = x̂0 + n(0)
with n(0) random.
Defining the data collected prior to time t by yt−, the
conditional PDF of x(t), p(x, t |yt−), is the Bayesian prediction
to time t . The Fokker–Planck equation [34,19] governs
p(x, t |yt−) which is itself random since it depends on data
values prior to t . For realistic ocean applications, the focus
has been on sub-optimal estimates of the conditional mean
and error covariance matrix P = E{(x − x̂)(x − x̂)T}. One
approximation is to aim for minimum error variance. The
objective function J in Eq. (B.1c) is then the trace of the
a posteriori error covariance Pk(+): the goal is to find xk
such that Jk = tr[Pk(+)] is minimized using [y0, . . . , yk/yN ]
for filtering/smoothing. For accurate approximations, accurate
estimates of P are required. In between observations, P is
governed by Eq. (B.2a) where 〈·〉 denotes expectations. It is
obtained from Eq. (B.1a) and the Itô rule [34,22]. The update
of P at data times tk is given by Eq. (B.2b) where 〈·〉− are
expectations over p(x, t |yt−).

dP
dt

= 〈(x − x̂)(M(x)−M(̂x))T〉

+ 〈(M(x)−M(̂x))(x − x̂)T〉 + Q (B.2a)

Pk(+) =
〈xkxT

k p(yo
k |xk)〉−

〈p(yo
k |xk)〉−

− x̂k(+)̂xk(+)
T. (B.2b)

The evolution of P depends on four factors: (i) its initial
condition P(0); (ii) the deterministic dynamics, first two terms
in the RHS of Eq. (B.2a); (iii) the model uncertainties which
increase variance, last term in Eq. (B.2a); and (iv) the data
impacts which reduce variance, Eq. (B.2b). Importantly for
adaptive sampling, P depends on data and state values prior to
t . It is only for linear systems that the covariance evolution does
not depend on these values.

Error Subspace Statistical Estimation (ESSE, [38,44])
intends to estimate and predict the largest uncertainties, and
combine models and data accordingly. When the DA criterion
(Eq. (B.1c)) guides the definition of the largest uncertainties
or “error subspace”, the suboptimal truncation of errors in the
full space is optimal. For minimum error variance estimation,
the subspace is defined by a truncation of the ordered
eigendecomposition of a normalized form of the multivariate P
governed by Eq. (B.2). For a truncation of rank p, it is denoted
here by Pp

k (Eq. (B.3)). The corresponding DA criterion is Eq.
(B.4). ESSE intends to approximate Eqs. (B.2a) and (B.2b)
using these Eqs. (B.3) and (B.4).

Er. Subspace:

{Pp
k = EkΠ kET

k with rank (Ek) = p| min
Π k ,Ek

‖Pk − Pp
k ‖}

(B.3)

Min. Er. Var.:

{̂xk | min
x̂k

Jk = tr[Pp
k (+)] using [yo

0, . . . , yo
k/y

o
N ]}. (B.4)

B.2. Computational schemes

Six of the main computational components of the present
ESSE system are summarized next. Adaptive sampling
components were described in Section 4 and details on our
model of model errors in Appendix A.2.
(i) Initialization. The scheme utilized to initialize the
multivariate error subspace (ES) is given in [43]. In summary,
some data are often available to estimate parts of the dominant
uncertainties in the initial mean or background state x̂0.
These “observed portions” of Pp

0 are directly specified from
differences between x̂0 and these data. The remaining “non-
observed” portions are then computed by dynamical inference,
using an ensemble of model integrations (Eq. (B.1a)): the
background state is perturbed with the observed portions, model
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equations are integrated and the unknown portions arise by
dynamical adjustments. The result is an estimate of the initial
decomposition (E0,Π 0).
(ii) Ensemble and error subspace forecasts. At tk, x̂k(+) is
perturbed (Eq. (B.6)) using a combination of error modes
Ek(+) with random coefficients π

j
k (+). These coefficients are

weighted by Π k(+) and constrained by dynamics [38]. The
truncated tail of the error spectrum is modeled by random
white noise n j

k . For the evolution to tk+1, a central forecast
(Eq. (B.5a)) and an ensemble of j = 1, . . . , q stochastic
ocean model integrations is run (Eq. (B.7)), starting from
the perturbed states x j

k (+). The forcings dη(t)are defined in
Appendix A.2. The ES forecast (Eq. (B.8)) is computed from
the ensemble. The matrix Mk+1(−) = [̂x j

k+1(−) − x̂k+1(−)]

of differences between q realizations and an estimate of the
conditional mean, e.g. x̂em

k+1(−) in Eq. (B.5b), is then computed.
It is normalized and decomposed (Eq. (B.8)) into Π k+1(−)

.
=

1
q Σ

2
k+1(−) and Ek+1(−) of rank p ≤ q by singular value

decomposition (the operator SVDp(·) selects the rank-p SVD).
The ensemble size is limited by a convergence criterion (Eq.
(B.9)). The coefficient ρ used here measures the similarity
between two subspaces of different sizes [29,30]. A “previous”
estimate (E,Π ) of rank p and “new” estimate (Ẽ, Π̃ ) of rank
p̃ ≥ p are compared, using singular values to weight singular
vectors. The scalar limit α is chosen by the user (1−ε ≤ α ≤ 1).
σi (·) selects the singular value number i and k = min( p̃, p).
When ρ is close to one, (Ẽ, Π̃ ) is the error forecast for tk+1:
Π k+1(−),Ek+1(−). The dimensions of the ensemble (q) and
ES (p) hence vary with time, in accord with data and dynamics.

Central fcst:

x̂cf
k+1(−) | d̂x =M(̂x, t)dt, with x̂k = x̂k(+). (B.5a)

Ens. mean:

x̂em
k+1(−)

.
= Eq

{̂
x j

k+1(−)
}

(B.5b)

ES In. Cond.:

x̂ j
k (+) = x̂k(+)+ Ek(+)π

j
k (+)+ n j

k ,

j = 1, . . . , q. (B.6)

Ens. Fcst:

x̂ j
k+1(−) | d̂x j

=M(̂x j , t)dt + dη,

with x̂ j
k = x̂ j

k (+). (B.7)

ES Fcst:

Mk+1(−) = [̂x j
k+1(−)− x̂k+1(−)]

{Σ k+1(−),Ek+1(−)|SVDp(Mk+1(−))

= Ek+1(−)Σ k+1(−)VT
k+1(−)}. (B.8)

Conv. Crit.: ρ =

k∑
i=1

σi (Π
1
2 ETẼΠ̃

1
2 )

p̃∑
i=1

σi (Π̃ )

≥ α. (B.9)

(iii) Measurement Models and Data. In the present applications,
the raw data from the gliders are processed into vertical profiles.
Glider and ship temperature and salinity profiles are then
interpolated onto model levels. The measurement operator (H),
linking data and model variables, is then straightforward. It
consists of simple bilinear interpolations. Measurement error
variances are assumed to vary in the vertical. They are set to be
a fraction of the horizontally averaged variability, as estimated
from historical data. Measurement error covariances are set to
zero (assumed uncorrelated).
(iv) ESSE data assimilation. Once new data and their error esti-
mates are available, forecasts are updated (Eqs. (B.10)–(B.13),
k + 1 omitted). Data–forecast misfits are computed and com-
bined with the predicted state by multivariate minimum error
variance estimation in the ES. Outputs are the filtering esti-
mates: the a posteriori state x(+) and errors, e.g. E+,Π (+).
The Eqs. (B.10)–(B.13) are a linear approximation of Eq.
(B.2b). Filtering covariance estimates can also be obtained by
update of the SVD of the ensemble spread (see [38]).

State Upd.:

x̂(+) = x̂(−)+ Kp (yo
−H (̂x(−))) . (B.10)

ES Optimal Gain:

Kp
= E−Π (−)HpT

(
HpΠ (−)HpT

+ R
)−1

,

where Hp .
= HE−. (B.11)

ES Cov. Upd.:

LΠ (+)LT
= Π (−)− Π (−)HpT

(HpΠ (−)HpT

+ R)−1HpΠ (−) (B.12)

E+ = E−L (B.13)

(v) ESSE adaptive error estimation. Dominant errors are
learned from a posteriori data–model misfits (e.g. [40]).
This adaptive learning from misfits Eqs. (B.14)–(B.17) can
be necessary because covariance estimates are truncated and
themselves uncertain. Eqs. (B.14)–(B.17) correspond to the
present case where measurements are tracer data. The posterior
misfits are first gridded. This is done using Eqs. (B.16) and
(B.17), where Etrc(−) and Π trc(−) are a decomposition of a
tracer misfit covariance and Htrc

.
= HEtrc(−). The result n̂(+)

are added by SVD to the ES, increasing its rank by one. This
lead to Ea

+ and Σ a(+).

n̂(+) = Ktrc(yo
−H(̂x(+))) (B.14)

Ktrc = Etrc(−)Π trc(−)HT
trc

(
HtrcΠ trc(−)HT

trc + R
)−1

(B.15)

Ea
+Σ a(+)Va

+

T
= SVDp+1 ([E+Σ (+), n̂(+)]) (B.16)

Π a(+) =
1

q + 1
Σ a2

(+). (B.17)

(vi) ESSE smoothing. To correct, based on future data, the past
states and uncertainties, smoothing via ESSE [38] is carried out
backward in time Eqs. (B.18)–(B.21). The scheme starts from
the filtering estimate. A statistical approximation to the forward
integration of the dynamical model between two data times tk−1
and tk is derived. The approximation is a backward statistical
linearization Eq. (B.19) based on the a posteriori ES at tk−1
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and nonlinear ES forecast at tk . This backward rule is then used
to minimize the smoothing DA criterion. The results are the
smoothing estimate Eq. (B.18) and its errors (Eqs. (B.20) and
(B.21)). Carrying out this process recursively up to t0 leads to
the smoothed initial state x0/N and its errors E0/N ,Π 0/N .

Filtering Est.: ESSE filtering during [t0, tN ].

Sm. Est.:

x̂k/N = x̂k(+)+ Lp
k (̂xk+1/N − x̂k+1(−)),

with x̂N/N = x̂N (+). (B.18)

Sm. Gain:

Lp
k = Ek(+)Γ kET

k+1(−) and

Γ k = Σ k(+)VT
k (+)Vk+1(−)Σ

−1
k+1(−). (B.19)

Sm. Err. Cov.:

HkΠ k/N HT
k = Π k(+)+ Γ k(θk+1Π k+1/N θT

k+1

− Π k+1(−))Γ
T
k . (B.20)

Ek/N = Ek(+)Hk, with θk+1
.
= ET

k+1(−)Ek+1/N . (B.21)
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