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Abstract

The rapidly-growing computational power and the increasing capability of uncertainty quantifica-
tion, statistical inference, and machine learning have opened up new opportunities for utilizing
data to assist, identify and refine physical models. In this thesis, we focus on Bayesian learning
for a particular class of models: high-dimensional nonlinear dynamical systems, which have been
commonly used to predict a wide range of transient phenomena including fluid flows, heat transfer,
biogeochemical dynamics, and other advection-diffusion-reaction-based transport processes. Even
though such models often express the differential form of fundamental laws, they commonly contain
uncertainty in their initial and boundary values, parameters, forcing and even formulation. Learning
such components from sparse observation data by principled Bayesian inference is very challenging
due to the systems’ high-dimensionality and nonlinearity.

We systematically study the theoretical and algorithmic properties of a Bayesian learning methodol-
ogy built upon previous efforts in our group to address this challenge. Our systematic study breaks
down into the three hierarchical components of the Bayesian learning and we develop new numerical
schemes for each. The first component is on uncertainty quantification for stochastic dynamical sys-
tems and fluid flows. We study dynamic low-rank approximations using the dynamically orthogonal
(DO) equations including accuracy and computational costs, and develop new numerical schemes
for re-orthonormalization, adaptive subspace augmentation, residual-driven closure, and stochastic
Navier-Stokes integration. The second part is on Bayesian data assimilation, where we study the
properties of and connections among the different families of nonlinear and non-Gaussian filters.
We derive an ensemble square-root filter based on minimal-correction second-moment matching that
works especially well under the adversity of small ensemble size, sparse observations and chaotic
dynamics. We also obtain a localization technique for filtering with high-dimensional systems that
can be applied to nonlinear non-Gaussian inference with both brute force Monte Carlo (MC) and
reduced subspace modeling in a unified way. Furthermore, we develop a mutual-information-based
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adaptive sampling strategy for filtering to identify the most informative observations with respect
to the state variables and/or parameters, utilizing the sub-modularity of mutual information due
to the conditional independence of observation noise. The third part is on active Bayesian model
learning, where we have a discrete set of candidate dynamical models and we infer the model formu-
lation that best explains the data using principled Bayesian learning. To predict the observations
that are most useful to learn the model formulation, we further extend the above adaptive sampling
strategy to identify the data that are expected to be most informative with respect to both state
variables and the uncertain model identity.

To investigate and showcase the effectiveness and efficiency of our theoretical and numerical ad-
vances for uncertainty quantification, Bayesian data assimilation, and active Bayesian learning with
stochastic nonlinear high-dimensional dynamical systems, we apply our dynamic data-driven re-
duced subspace approach to several dynamical systems and compare our results against those of
brute force MC and other existing methods. Specifically, we analyze our advances using several
drastically different dynamical regimes modeled by the nonlinear Lorenz-96 ordinary differential
equations as well as turbulent bottom gravity current dynamics modeled by the 2-D unsteady in-
compressible Reynolds-averaged Navier-Stokes (RANS) partial differential equations. We compare
the accuracy, efficiency, and robustness of different methodologies and algorithms. With the Lorenz-
96 system, we show how the performance differs under periodic, weakly chaotic, and very chaotic
dynamics and under different observation layouts. With the bottom gravity current dynamics, we
show how model parameters, domain geometries, initial fields, and boundary forcing formulations
can be identified and how the Bayesian methodology performs when the candidate model space does
not contain the true model. The results indicate that our active Bayesian learning framework can
better infer the state variables and dynamical model identity with fewer observations than many
alternative approaches in the literature.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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