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a b s t r a c t

Correct representation of tidal processes in regional ocean models is contingent on the accurate specifi-
cation of open boundary conditions. This paper describes a new inverse scheme for the assimilation of
observational data into a depth-integrated spectral shallow water tidal model and the numerical imple-
mentation of this scheme into a stand-alone computational system for regional tidal prediction. A novel
aspect is a specific implementation of the inverse which does not require an adjoint model. An optimiza-
tion is carried out in the open boundary condition space rather than in the observational space or model
state space. Our approach reflects the specifics of regional tidal modeling applications in which open
boundary conditions (OBCs) typically constitute a significant source of uncertainty. Regional tidal models
rely predominantly on global tidal estimates for open boundary conditions. As the resolution of global
tidal models is insufficient to fully resolve regional topographic and coastal features, the a priori OBC esti-
mates potentially contain an error. It is, therefore, desirable to correct these OBCs by finding an inverse
OBC estimate that is fitted to the regional observations, in accord with the regional dynamics and respec-
tive error estimates. The data assimilation strategy presented in this paper provides a consistent and
practical estimation scheme for littoral ocean science and applications where tidal effects are significant.
Illustrations of our methodological and computational results are presented in the area of Dabob Bay and
Hood Canal, WA, which is a region connected to the open Pacific ocean through a series of inland
waterways and complex shorelines and bathymetry.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Coastal dynamical phenomena can be significantly affected by
tidal processes. Tidal currents constitute a dominant component
of circulation in many coastal areas, with velocities of 50–
150 cm/s being common (e.g., Moody et al., 1984). Tidally driven
currents may generate complex cross-shelf particle transports,
highly horizontally inhomogeneous barotropic flow patterns, as
well as important secondary tidally-driven features, such as inter-
nal tides, internal waves, tidal mixing and tidal fronts (Chen and
Beardsley, 1998). Tidal processes are also important for ocean eco-
system dynamics on a regional scale. For example, distinct patterns
of nutrient patchiness, have been observed in some tidally active
basins; arguably controlled by tidal processes (e.g., Franks and
Chen, 1996). Correct representation of these tidal processes in re-
gional ocean models is paramount but challenging.

Accurate barotropic tidal estimates (tidal elevations, transports,
and velocities) are needed in numerous oceanographic applica-
tions. These include physical modeling and acoustical, chemical,
biological, and eco-system modeling applications. For example,
the determination of the internal tides requires an accurate knowl-
edge of barotropic transports and flows across bottom topography
ll rights reserved.

: +1 617 324 3541.
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as such flows are utilized as forcing in internal tide models (Baines,
1982; Garrett and Gerkema, 2007). These internal tide models, in
their turn, are needed in acoustical (Lermusiaux and Chiu, 2002)
and biological applications (e.g., Besiktepe et al., 2003) because
the vertical velocity field and the temperature and density pertur-
bations induced by internal tides and wave are consequential in
these applications. The ‘‘state-of-the-art” for modeling tidal phe-
nomena in regional ocean applications is currently based on forc-
ing primitive equation (PE) or non-hydrostatic ocean models
with barotropic tidal fields. This tidal forcing is applied through
open boundary and initial flow conditions. If the horizontal and
vertical model resolutions are sufficient and accurate regional
barotropic tidal forcing is used, this approach can simulate a large
spectrum of tidally driven processes. For example, effects of inter-
nal tides and waves can be generated and represented statistically
and possibly deterministically in limited regions.

Regional tidal models rely on global tidal models (Shum et al.,
1997), larger scale models, and/or extrapolation from local tide
gauges for open boundary conditions (OBCs). For example, the
two Navy tidal modeling systems, ADCIRC (Luettich et al., 1992)
and PCtides (Hubbert et al., 2001), use the tidal harmonic constit-
uents extracted from the global FES95 solutions (LeProvost et al.,
1994), as well as extrapolation from local tide gauges (Blain et
al., 2002). Greenberg et al. (2005) obtain the OBCs for the Quoddy
region of the Bay of Fundy from an outer Bay of Fundy regional
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model. Foreman and Thomson (1997) use the elevation amplitudes
and phases at the southern and western boundaries around the
coast of Vancouver Island from a combination of offshore pressure
tide gauges and the global tidal model of Egbert et al. (1994). Cor-
rect representation of tidal processes on a regional scale is contin-
gent on the accurate specification of OBCs. Errors in OBCs can
generate physically unrealistic flow fields and lead to large interior
data-model misfits. It is, therefore, desirable to tune the OBCs to lo-
cal observations.

The need for dynamical constraints to optimally extrapolate
reliable sea level data on the coastline to tidal model open bound-
aries has long been recognized (Bennett and McIntosh, 1982). A
variety of methods have been developed to constrain regional
barotropic tidal estimates using tidal elevation and velocity obser-
vations (see Section 2). Despite of wide recognition that a quanti-
tative fit of the OBCs to local observational data is highly
desirable, it is often omitted or carried out by simple trial and error
through the comparison of model outputs with tidal elevation
amplitudes and phases at local tide gauge stations (e.g., Foreman
and Thomson, 1997; Greenberg et al., 2005) among others. This
implicitly attests to the fact that new methods to fit OBCs to data,
that are practical and amenable to quick implementation, are still
needed. The data assimilation strategy presented in this paper is
designed specifically to provide a highly practical and quantitative
technique for the fit of OBCs to tidal data in regional tidal modeling
applications.

This paper describes new forward and inverse schemes for esti-
mating regional barotropic tidal flows and the numerical imple-
mentation of these schemes into a stand-alone computational
system. The data-driven prognostic schemes are based on solving
the depth-integrated shallow water equations as a boundary value
problem in the spectral domain. With our system, regional baro-
tropic tides can be computed at very high resolution in multiple
nested domains. The observational data are assimilated into the ti-
dal model through a practical inverse method. The outputs of the
system are accurate high-resolution barotropic tidal fields that
can be utilized to force the open boundary of any modern regional
PE or non-hydrostatic ocean model. Synthesis of observations and
numerical models has long been recognized as a necessary step
towards successful coastal prediction (Robinson et al., 1998;
Lermusiaux, 2006). With our new procedures, the measurements
are assimilated in such a way that the inverse tidal estimates
satisfy the shallow water equations exactly.

Our barotropic tidal estimation system can be used for specific
tidal studies and for forcing PE and internal wave models. Pres-
ently, it is illustrated with the Harvard Ocean Prediction System
(HOPS), an interdisciplinary primitive equation modeling system
designed primarily for regional ocean applications with advanced
data assimilation (DA) (Robinson, 1999; Lermusiaux, 1999). The
free-surface version of HOPS requires barotropic tidal forcings (ti-
dal sea surface height and barotropic velocity components) at open
boundaries and for initialization. These barotropic tidal forcings
are obtained using the new forward–inverse system described in
this paper. Because the barotropic tidal model is designed to sim-
ulate a specific process and serve a specific range of spatial-tempo-
ral scales, we are able to simulate the barotropic tides at very high
resolution and tune its OBCs and model parameters to available re-
gional tide gauges and Acoustic Doppler Current Profiler (ADCP)
data. This new methodology is an example of a multi-model ap-
proach, with several specialized models combined together in a
single ocean prediction system. More general discussion of uncer-
tainties and implementation of multi-model simulations are pro-
vided in Logutov and Robinson (2005), Logutov (2007),
Evangelinos et al. (2006), Lermusiaux et al., 2004.

We have exercised our tidal modeling approach in multiple
regional applications. These include real-time modeling in the
Middle Atlantic Bight and the shelf-break front region off the coast
of New Jersey, as part of the Autonomous Wide Aperture Cluster
for Surveillance (AWACS-06) and Shallow Water (SW06) experi-
ments, in the California Current System and Monterey Bay region
as part of the Monterey Bay-06 (MB06) experiment which followed
our work during AOSN-II (Haley et al., in press; Lermusiaux, 2007)
in that region, and in the Hood Canal and Dabob Bay region, WA, as
part of the PLUSNet-07 (PN07) experiment (Xu et al., 2008). Our ti-
dal modeling work in the Hood Canal and Dabob Bay, particularly
challenging given the complexity of shoreline and bottom topogra-
phy of the inland waterways connecting this basin to the ocean, is
selected here to exemplify our approach and method.

The paper is organized as follows. Existing regional tidal models
and assimilation schemes pertinent to the new techniques de-
scribed in this paper are briefly reviewed next (Section 2). In Sec-
tion 3, the dynamical equations for linearized barotropic shallow
water dynamics and the corresponding boundary value problem
in the spectral domain are outlined. Section 4 covers the numerical
solution of the dynamical equations, with details of the numerical
implementation provided in Appendix B. Section 5 describes the
proposed method of inverse estimation of OBCs designed for regio-
nal tidal modeling. Discussion of our method and its comparison to
the representer method, an approach for DA utilized in global tidal
modeling (Egbert et al., 1994; Egbert and Erofeeva, 2002), are given
in Section 6. Finally, Section 7 presents an illustration of a real-
world tidal modeling application within the framework of the Per-
sistent Littoral Undersea Surveillance Network (PLUSNet) project
in the Dabob Bay/Hood Canal region of WA. Appendices A through
D detail the notation, the specifics of our numerical implementa-
tion, and of the conversion of data from time to model spectral do-
main and back, respectively.
2. A synopsis of tidal modeling and data assimilation

A variety of methods for barotropic tidal modeling has been
developed and analyzed in the literature. Differences among these
methods are in the formulation of the horizontal coordinates, in
the inclusion or omission of the vertical structure of tidal velocity
fields, and in the treatment of the time dependency and of the
non-linear terms. The horizontal coordinate formulations include
finite-difference schemes (e.g., Davies, 1993; Hubbert et al.,
2001), finite-element schemes (e.g., LeProvost and Vincent, 1986;
Luettich et al., 1992; Greenberg et al., 2005; Bernard et al., 2008),
and structured non-orthogonal curvilinear coordinate schemes
(e.g., George, 2007). Two-dimensional (e.g., McLaughlin et al.,
2003) and three-dimensional (e.g., Jones and Davies, 1996; Davies
et al., 1997c) barotropic tidal models have been proposed to allow
for omission or inclusion of the computation of bottom and surface
boundary layers as well as of the vertical current structure,
especially effects of turbulent fluxes and their parameterizations
(e.g., Davies, 1993; Davies and Gerritsen, 1994; Davies et al.,
1997b; Foreman and Thomson, 1997; Lee and Jung, 1999). The
models differ by their treatment of the time dependency and fall
into classes of time-domain (e.g., Le Cann, 1990; Lynch and Gray,
1979) and spectral-domain (e.g., LeProvost et al., 1981; Lynch
and Naimie, 1993; Davies et al., 1997a) models.

Two alternative treatments of the time dependency, by time
stepping (e.g., Lynch and Gray, 1979) and by spectral representa-
tion (e.g., LeProvost et al., 1981), have been exercised. The spectral
domain representation assumes harmonic time dependency for
each tidal constituent and leads to a substantial reduction of model
computational complexity and, therefore, potentially to higher res-
olution models. The coupling between different tidal frequencies
that arises from the nonlinear interactions can be included in the
spectral domain models using a perturbation method (Snyder et
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al., 1979). A review of spectral domain tidal models in regional
ocean applications is provided by Davies et al. (1997a). In addition
to substantial computational efficiency, spectral domain models
are easier in use and, as such, more suitable for dissemination
among a wider audience of researchers. The time stepping models,
on the other hand, are more amenable to inclusion of the nonlinear
terms and more suitable for modeling ocean response to a general
time-dependent meteorological forcing (e.g., Luettich et al., 1992).

The relative importance of the various nonlinear mechanisms for
regional barotropic tidal modeling is reviewed by Parker (1991).
Theoretically, nonlinear processes act as an agent for energy transfer
to higher harmonics and are capable of introducing new frequencies
in tidal spectrum. A number of fully nonlinear regional tidal models
have been developed (Le Cann, 1990, among others; Luettich et al.,
1992; George, 2007). The nonlinear tidal effects can also be simu-
lated by using the primitive equation or non-hydrostatic models
with the open boundary tidal forcing prescribed from the tidal mod-
els. If open ocean boundaries of a PE model are selected away from
the shallow-water regions, significant gains in accuracy can result
from using linearized high-resolution data-assimilative barotropic
tidal models, rather than their non-linear counterparts, to prescribe
the tidal open boundary forcing for PE models.

A number of methods have been developed to include the non-
linear tidal effects within the linearized modeling framework. For
example, the shallow-water tidal constituents can be introduced
to compensate for kinematic and dissipative nonlinearities and
for wave–wave interactions between the astronomical constitu-
ents (LeProvost et al., 1981; Andersen et al., 2006). The character-
istics of the shallow-water constituents can either be empirically
determined from the observational data (e.g., Hea et al., 2004;
Simpson, 1998) or obtained analytically using a classical perturba-
tion method (LeProvost et al., 1981). In the latter case, the fully
nonlinear problem can be reduced to a sequence of linearized
boundary value problems, similar to the boundary value problem
described in Section 3, for each successive order of approximation
of the perturbation method (e.g., LeProvost and Vincent, 1986). In
practice, the perturbation sequence is typically limited to the sec-
ond order. These developments provide a rigorous framework for
full inclusion of the nonlinear effects into robust high-resolution
linearized data-assimilative computations.

Importantly, all regional tidal modeling systems require specifi-
cation of the open boundary conditions (OBCs). The early coastal
tidal DA and parameter estimation work is reviewed in Sections
5.1–2 of Robinson et al. (1998). Bennett and McIntosh (1982)
developed a variational formulation to consistently constrain re-
gional tidal estimates with local observations. The formulation is
in the time domain. It solves the equations of the first variation
of the quadratic cost function penalizing model-data misfits as
well as deviations of the generalized inverse solution from the for-
ward model solution, weighted by observational and model error
covariance estimates. This generalized inverse methodology was
further applied for modeling M2 tides in Bass Strait north of
Tasmania (McIntosh and Bennett, 1984) and has become a founda-
tion for a variety of representer methods for tidal data inversion,
interpolation, and inference (Egbert, 1997). For instance, Egbert
et al. (1994) assimilate TOPEX/POSEIDON altimeter data and tide
gauge data into global barotropic tidal models. The method re-
quires formulation of an adjoint tidal model. An optimization is
carried out in the observational space by generalized inversion
(Bennett, 1992; Bennett, 2002). Reduced-basis alternatives of the
representer method have latter been applied for tidal DA (Egbert
and Erofeeva, 2002). Representer-based inverse models have also
been formulated for estimation of the internal tides (Kurapov
et al., 2003), as well as other coastal ocean modeling problems
(Kurapov et al., 2007). Hybrid schemes have also been developed.
For example, He and Wilkin (2006) have successfully utilized a full
primitive equation model with uniform density to obtain the non-
linear forward tidal solution. Subsequently, a linear, frequency-do-
main, finite-element model is employed for the inverse problem,
assimilating tidal observations by minimizing a least-square
data-model misfit criterion. Zou et al. (1995) also developed a
sequential open-boundary control scheme augmenting radiation
conditions and applied it to idealized barotropic wind-driven
ocean simulations.

Kalman Filtering (KF) and other sequential DA techniques have
been extensively applied in the context of deterministic and sto-
chastic hydrodynamic, water quality, and surface wave regional
forecasting and hind-casting and for error covariance modeling
(e.g., see Section 5 in Robinson et al., 1998). For example, the
KF approach has recently been adopted as an operational method
for assimilation of sea-level measurements into the Dutch
Continental Shelf model utilized at the Dutch Meteorological
Institute to predict water levels along the Dutch coast and the
three-dimensional flow fields in the North and the Baltic sea
basins (Sorensen and Madsen, 2004). Other examples include
operational shelf sea modeling in Danish waters carried out at
the Danish Meteorological Institute (Canizares et al., 2001). Kal-
man filter algorithms rely on propagating an uncertainty in the
model state-space using linearized error covariance evolution
equations or Monte–Carlo techniques. The error covariance evolu-
tion is formulated in the state-space form, with gridded water
levels, velocities, and the uncertain parameters included in a state
vector. Low-rank and ensemble approximations have been de-
scribed and applied in realistic settings, and various regulariza-
tion techniques for error covariance and Kalman gain estimation
have been introduced, including temporal smoothing, the stea-
dy-state approximation, and spatial regularization, among others
(Sorensen and Madsen, 2004). An efficient KF data assimilation
procedure for weakly nonlinear regional tidal models has been
formulated by Heemink and Kloosterhuis (1990). The dynamical
equations were embedded into a stochastic environment and
the state-space was evolved using the non-linear stochastic shal-
low water equations to obtain a constant-gain extended-KF
approximation. The steady-state KF method is founded on an
observation that error covariances often tend to a quasi-steady
state after a few days of assimilation. Therefore, a time invariant
Kalman gain could be obtained off-line and applied without the
need to be recomputed as new measurements became available.
The method was originally applied for assimilation of water level
measurements into a tidal model of the North Sea and, subse-
quently, in numerous other applications in simulated and realistic
settings (Canizares et al., 2001; Sorensen and Madsen, 2004). A
main difficulty of the KF-based algorithms is related to the
quantification of the stochastic noise processes or model error
covariance parameters employed in the scheme (Dee, 1995;
Lermusiaux, 2006; Lermusiaux et al., 2006). Other DA practices
in regional tidal modeling include use of weighted nudging to
loosely constrain model tidal heights to observed sea-level eleva-
tions at available tidal stations (e.g., Navy PCTides system of
Hubbert et al., 2001). Das and Lardner (1992) use water depth
and bottom friction coefficients as tunable parameters in a
depth-averaged linearized tidal model in the time domain. They
employ an adjoint scheme to solve the optimization problem of
fitting the tunable parameters to observations.

The new regional DA scheme developed in this paper differs
from the previous schemes mostly in two ways. Firstly, an optimi-
zation is carried out in the open boundary condition space rather
than in the observational space or full state space. Our strategy
of using the OBCs as the control space for data assimilation reflects
the specifics of regional tidal modeling. Secondly, our approach
does not require an adjoint model. The specifics of the implemen-
tation are such that only the forward dynamical model is needed.
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Of course, variations of our approach and hybrid schemes are
possible. They are outlined in the conclusions.

3. Dynamical equations

Regional and global tidal flow fields are predominantly con-
trolled by different types of tide-generating forcing. In global tidal
models, the forcing is provided by direct astronomical gravitational
forces prescribed through a tide-generating potential. In regional
applications, tidal forcing is primarily provided through the open
boundary conditions. In shallow water, direct astronomical forcing
is negligible as compared to open boundary forcing and can be
omitted from the hydrodynamic equations (Snyder et al., 1979;
Simpson, 1998). Similarly, tidal loading effects related to the defor-
mation of the earth crust under the load of a tidal wave, important
for global tidal modeling, are negligible in regional applications. In
the present paper, we are concerned exclusively with shallow sea
regions and, therefore, the tide generating forces and tidal loading
corrections can be omitted from the hydrodynamic equations.

3.1. Time domain

Given a regional basin X, with open boundary segments oXO

and closed boundary segments oXC , the linearized barotropic shal-
low water equations are derived from vertical integration over the
water column of the three-dimensional momentum and continuity
equations subject to the hydrostatic and Boussinesq approxima-
tions (Lynch and Gray, 1979). Using spherical coordinates in the
horizontal, we obtain

o

ot
gþ 1

a cos /
o

ok
ðHuÞ þ 1

a cos /
o

o/
ðHv cos /Þ ¼ 0

o

ot
u� fvþ Fk ¼

�g
a cos /

o

ok
g

o

ot
vþ fuþ F/ ¼

�g
a

o

o/
g

ð1Þ

for ðk;/Þ 2 X, subject to open boundary conditions

gjoXO
¼ gobc ð2Þ

and closed boundary conditions

n � ujoXC
¼ 0: ð3Þ

In the foregoing, g and u ¼ ðu; vÞ denote tidal elevation and zonal
and meridional velocity components, k, /, and a are the longitude,
latitude, and earth radius, H, g, and f denote the undisturbed water
depth, acceleration due to gravity, and the Coriolis parameter, and
Fk and F/ are the parameterized friction forces in the zonal and the
meridional directions, respectively. Inherent in Eq. (1) is omission
of the non-linear advective terms ðu � $Þu. We will further require
that the dissipative terms Fk and F/ are also linearized in some fash-
ion. The linearization is introduced in order to make the governing
equations amenable to reduction to a linear system of algebraic
equations once they are discretized on a selected grid. As mentioned
in Section 1, linearized models have an important role and multiple
applications. Quadratic friction of the form

Fk ¼ CDjuju=H; F/ ¼ CDjujv=H ð4Þ

with non-dimensional bottom drag coefficient CD ¼ 0:002� 0:003
is typically suggested for depth-averaged barotropic tidal models
(Grenier et al., 1995). Linearization of quadratic dissipation terms
Fk � jðk;/Þu; F/ � jðk;/Þv, with a spatially varying damping coef-
ficient jðk;/Þ, can be obtained for example using the perturbation
method developed by LeProvost et al. (1981). Alternatively, an
iterative approach can be applied in which the 0th iteration of
the solution is obtained with a constant value of j, while the next
iteration solution utilizes the barotropic velocities obtained in the
previous iteration for juj in (4). We follow the latter approach,
with one iteration. A detailed review of bottom friction parameter-
izations suitable for barotropic ocean tidal models is beyond the
scope of this paper but has been addressed in a number of papers
(Grenier et al., 1995; Xing and Davies, 1996; Davies et al., 1997b;
Lee and Jung, 1999). With Eq. (1), the linearized barotropic tidal
estimates can be obtained and tuned to local observations of baro-
tropic tides. Nonlinear tidal effects can then be simulated, if
needed, by the PE models forced by these linearized barotropic
tides at open-boundaries. Such approach is acceptable if tidal
velocities are small enough at the offshore open-boundary of a
PE model. With these considerations in mind, our focus here is
the linearized inverse barotropic tidal estimation and data assim-
ilation in regional applications.

System (1) is forced through open boundary conditionsgobc . In re-
gional applications, the open boundary conditions are often speci-
fied from global tidal models (Shum et al., 1997). Global tidal
models typically compute estimates for individual astronomical ti-
dal constituents. Astronomical tidal constituent frequencies corre-
spond to combinations of fundamental astronomical frequencies
arising from planetary motions (e.g., Simpson, 1998). Each astro-
nomical constituent is defined by a unique set of Doodson numbers
which determine its frequency. We specify the open boundary con-
dition (2) from a global tidal model as a superposition of K tidal con-
stituents estimated to be significant for the given coastal region of
interest:

gobc ¼ R
XK

k¼1

fkðxO; yOÞ exp ixkt

( )
; ð5Þ

where R denotes the real parts. Complex fkðxO; yOÞ specifies spatial
variations of boundary forcing in amplitude and phase for the kth
tidal constituent along open boundary segments, ðxO; yOÞ 2 oXO. In
our own practice, we utilize global tidal fields of TPXO 7.0 from
OSU (Egbert et al., 1994) for fkðxO; yOÞ in forward computations in
the outer domain and the outer domain solution in the nested do-
mains. We select the K significant tidal constituents in Eq. (5) by
analysis of tidal gauges and other current data in the given coastal
region of interest.

Several OBCs other than (5) can be implemented with our
scheme, as discussed in Tsynkov (1998), Marchesiello et al.
(2001), Oddo and Pinardi (2008), Blayo and Debreu (2005). They
include radiation-based and characteristic boundary conditions
(e.g., Orlanski, 1976; Flather, 1976; Chapman, 1985; Shulman et
al., 2002) as well as relaxation conditions and absorbing (sponge)
layers (e.g., Davies, 1976; Marchesiello et al., 2001; Lavelle and
Thacker, 2008). These OBCs for the barotropic tidal model should
be consistent with the OBCs used in the primitive equation model
(forced by tides) and should account for the different scales and
resolutions. The OBCs used in HOPS, including radiation, relaxa-
tion, simplified physics and advection-based conditions are re-
viewed in Lermusiaux (1997).

In anticipation of reduction of the governing equations to a lin-
ear system of algebraic equations for the discretized model state-
space, we introduce the matrix notation and express (1) as

o

ot
gþ $ �

Hu

Hv

� �
¼ 0 ð6Þ

o
ot þ j �f

f o
ot þ j

" #
u

v

� �
¼ �g$g ð7Þ

where $� and $ are the divergence and gradient operators in spher-
ical coordinates. Eqs. (6) and (7) are solved in the spectral domain
in terms of the prognostic variable g. The velocity field is subse-
quently obtained from g via (7). The details of the solution now
follow.



Fig. 1. Schematic of staggered Arakawa-C grid. Solid lines represent coastlines,
filled symbols are masked nodes. Elevation g, zonal u and meridional v velocity
nodes shown with ‘‘o”, ‘‘+”, and ‘‘x” symbols, respectively. Active, open boundary,
and masked nodes depicted as unfilled circles, unfilled squares, and filled circles/
squares, respectively.
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3.2. Spectral domain

The forced response of a linear dynamical system (6) and (7)
contains K tidal constituent frequencies provided in the open
boundary conditions (5). The solution can be obtained in the
form

fg;u; vgðk;/; tÞ ¼ R
XK

k¼1

f~gk; ~uk; ~vkgðk;/Þ exp ixkt

( )
ð8Þ

By substituting (8) into (6) and (7), we obtain for each individual ti-
dal constituent k

ixk ~gk þ $ �
H~uk

H~vk

� �
¼ 0 ð9Þ

ixk þ j �f

f ixk þ j

� �
~uk

~vk

� �
¼ �g$~gk ð10Þ

subject to boundary conditions

~gkjoXO
¼ fkðxO; yOÞ ð11Þ

at open boundaries, and

n �
~uk

~vk

� �
joXC
¼ 0 ð12Þ

at closed boundaries, with n ¼ ½nx;ny�T denoting a coastal boundary
normal, as before. Eqs. (10)–(12) constitute an elliptic boundary va-
lue problem. Denote

F �
ixk þ j �f

f ixk þ j

� �
ð13Þ

The entries of the matrix F are spatially varying fields. The determi-
nant of F

jFj ¼ ðixk þ jÞ2 þ f 2 ð14Þ

is non-zero given xk 6¼ f or j 6¼ 0. If the tidal constituent frequency
matches the local Coriolis frequency, xk ¼ f , a resonant condition
occurs. The resonance is dampened through the dissipation terms
and, therefore, the form of the dissipation parameterization is par-
ticularly important in the areas with xk � f . With j 6¼ 0, the inverse
F�1 always exists given by

F�1 ¼ 1

ðixk þ jÞ2 þ f 2

ixk þ j f

�f ixk þ j

� �
: ð15Þ

The velocities ð~uk; ~vkÞ are obtained from ~gk as

~uk

~vk

� �
¼ �g

ðixk þ jÞ2 þ f 2

ixk þ j f

�f ixk þ j

� �
$~gk: ð16Þ

By substituting (16) into (9), we obtain an equation for a single
prognostic variable

Lf~gkg ¼ 0 ð17Þ

with an elliptic second order linear operator Lf�g

Lf�g ¼ ixk$ �
gH

ðixk þ jÞ2 þ f 2

ixk þ j f

�f ixk þ j

� �
$

 !
: ð18Þ

Eq. (17) is solved with the boundary conditions (11) and (12). Our
specific numerical implementation of the solution is discussed in
the next section.

Conversion of data and the model outputs from the time do-
main to spectral domain and back is discussed in detail in Appen-
dix D. Although this task might be considered as trivial,
clarification of conventions and details presented in this appendix
are helpful for practical purposes.
4. Discrete model operators

Eq. (17) with the boundary conditions (11) and (12) pose an
elliptic boundary value problem. We solve the problem numeri-
cally on a staggered Arakawa-C grid using finite difference method
similar to that of the global tidal model implementation described
by Egbert and Erofeeva (2002). The discussion of the numerical
implementation is presented in this section, with details and spe-
cifics provided in Appendix B. The index notation utilized is de-
fined in Appendix A.

4.1. Reduction to a linear system

The staggered Arakawa-C grid with schematic given in Fig. 1 is
used throughout. With N denoting the number of grid-points, let
g;u; v 2 CN be complex vectors defined on the discrete g, u, and v
grids of the Arakawa-C grid, respectively. The grid is staggered
such that the gradient operator $~gk maps from the g grid to the
u and v grids when discretized via backward differences. Let the fi-
nite-difference operators implementing g$f�g be denoted as
Gu g;Gv g:

g$!
Gu g

Gv g

� �
: ð19Þ

In our own implementation (see Appendix B for specifics),
Gu g;Gv g 2 RN�N are two-diagonal matrices. The subscripts u g
and v g indicate that Gu g and Gv g provide mappings from g
to u and v nodes so that vectors ðGu ggÞ 2 CN and ðGv ggÞ 2 CN

are defined at u and v grid-points, respectively. Denote the finite-
difference scheme for the matrix multiplication acting on $~gk in
(17) as

1

ðixk þ jÞ2 þ f 2

ixk þ j f

�f ixk þ j

� �
!

Fu u Fu v

Fv u Fv v

� �
: ð20Þ

In (20), the matrices Fu u;Fu v;Fv u; Fv v 2 CN�N correspond to
mappings between u and v grids. Fu u and Fv v map onto the same
velocity grids and, therefore, are diagonal, Fu v and Fv u map across
the u; v staggered grids and are four-diagonal, with the four-point
stencil of u-grid-points around a v-grid-point, and vice-versa, on
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an Arakawa-C grid. The velocity vectors u and v corresponding to
ð~uk; ~vkÞ in (16) are, thus, obtained via linear operators

Uu g ¼ �Fu uGu g � Fu vGv g ð21Þ
Vv g ¼ �Fv vGv g � Fv uGu g ð22Þ

acting on the tidal elevation vector g

u ¼ Uu gg

v ¼ Vv gg:
ð23Þ

The divergence operator maps from u and v to g grid-points and is
implemented via forward differences on an Arakawa-C grid

$� ! Dg u;Dg v
� �

; ð24Þ

where forward difference matrices Dg u;Dg v 2 RN�N (specifics in
Appendix B) are two-diagonal. With Hu u and Hv v denoting the
mappings from velocities to transports (multiplication by H) at u
and v grid points, the discretized second order operator (18) is ex-
pressed as

Lf�g ! Ag g; ð25Þ

where the matrix Ag g 2 CN�N is given by

Ag g ¼ Dg uHu uUu g þ Dg vHv vVv g þ ixkI: ð26Þ

As described in Appendix B, the matrix Ag g 2 CN�N is nine-diago-
nal. Dynamics (17) is thus reduced to

Ag gg ¼ 0: ð27Þ

The vector g 2 CN in the foregoing contains both active, masked and
boundary g-grid points. Next, we discuss the solution of (27) for the
model state-space.

4.2. Solution for model state-space

Let iobc denote the index of open boundary nodes, iobc 2 Nnobc

(Appendix A). The sea surface elevation is prescribed according
to (2) at iobc grid points. We follow the index notation in Appendix
A to write the discrete version of the open boundary condition (11)
as

ðgÞiobc
¼ gobc; ð28Þ

where gobc 2 Cnobc are given values at open boundaries, for example
prescribed from a global tidal model. Let imask denote the index of
masked g-points, imask 2 Nnmask . The remaining g-grid points, neither
in imask 2 Nnmask nor in iobc , are the active nodes, with index ix 2 Nnx ,
nx ¼ ðN � nobc � nmaskÞ. The entire vector g is, thus, partitioned into
three subsets corresponding to active, open boundary, and masked
grid points, with indices ig ¼ fix; iobc; imaskg, where ig 2 NN . The val-
ues of ĝk at ix are the unknowns, the values at iobc prescribe the open
boundary forcing, while the values at imask are masked and not com-
puted. The values ĝk at active nodes ix are grouped into a model
state-space vector x 2 Cnx defined as

x ¼ ðgÞix
ð29Þ

Let also Aðx xÞ and Aðx gobc Þ denote the partitions of matrix Ag g cor-
responding to mappings x x and x gobc

Aðx xÞ � ðAg gÞix ;ix
; Aðx gobcÞ � ðAg gÞix ;iobc

: ð30Þ

Similarly, denote the partitions of matrices Uu g and Vv g in (21)
and (22) corresponding to mappings u x and v x as

Uðu xÞ � ðUu gÞix ;ix
; Vðv xÞ � ðVv gÞix ;ix

: ð31Þ

With this notation, the linear system (27) expressed for the un-
known state-space x is

Aðx xÞx ¼ �Aðx gobcÞgobc ð32Þ
The linear system (32) is our computational discretization of the
dynamical Eq. (17) at active grid-points given the open boundary
conditions gobc . Note, by construction, it avoids any computations
for masked grid points. The right-hand side of (32) represents ocean
open boundary forcing. In our implementation, (32) is solved using
a preconditioned conjugate gradient method for sparse systems
(Trefethen and Bau, 1997). Since an elliptic boundary value problem
(17) with BCs (11) and (12) has a unique solution, a properly formed
matrix Aðx xÞ is guaranteed to be full-rank. The rate of convergence
of conjugate gradient solvers degrades as the condition number of a
matrix increases. We use an incomplete LU decomposition to obtain
the left and right pre-conditioners for Aðx xÞ before applying of the
conjugate gradient method.

Although the inverse matrix A�1
ðx xÞ is never formed explic-

itly but rather the linear system Aðx xÞx ¼ b with b ¼
�Aðx gobcÞgobc is solved iteratively, we can formally write the
solution of (32) and, using (23), the solution for tidal veloci-
ties u and v:

x ¼Mðx gobc Þgobc

u ¼Mðu gobcÞgobc

v ¼Mðv gobcÞgobc

ð33Þ

where

Mðx gobcÞ ¼ �A�1
ðx xÞAðx gobcÞ

Mðu gobcÞ ¼ Uðu xÞMðx gobcÞ

Mðv gobcÞ ¼ Vðv xÞMðx gobcÞ

ð34Þ

The system (33) and (34) constitutes the discretized forward
dynamical model, with forcing provided in open boundary condi-
tions gobc .

5. Inverse estimation of open boundary conditions

5.1. Observational data and observational models

Suppose some observational data of tidal elevation and/or
velocity are available in the model domain. Typically, tidal obser-
vations are collected along coasts and in inland waterways,
although some measurements can come from moorings, ADCPs,
and bottom mounted tide gauges. Care should be exercised in
ensuring that the model resolution is sufficient to resolve the topo-
graphic features and waterways around the tide gauges utilized so
that the measurements chosen for assimilation are representative
of the model tidal fields. Let vectors gobs 2 Cng

obs , uobs 2 Cnu
obs , and

vobs 2 Cnv
obs contain the observed values of barotropic tidal eleva-

tions ĝk, and barotropic zonal and meridional tidal velocity compo-
nents ûk,v̂k at selected observational locations. Let also Hgobs x,
Huobs u, and Hvobs v denote the linear observational operators relat-
ing the state-space x and the gridded values of velocities u and v to
the observed values gobs, uobs and vobs, respectively. If the observa-
tions gobs, uobs and vobs are converted to harmonic amplitudes for
barotropic tidal constituents (Appendix D) then the operators
Hgobs x, Huobs u, Hvobs v merely represent the interpolation from
the model grid to the observation locations. With the above nota-
tion, the data-model misfits in tidal elevation and velocity fields
are given by

dg ¼ gobs �Hgobs xx;
du ¼ uobs �Huobs uu;
dv ¼ vobs �Hvobs vv;

ð35Þ

where ðx, u, vÞ are model state-space and model velocity vectors.
Lets arrange dg, du, and dv into a single data-model misfit vector
d 2 Cnobs of length nobs ¼ ðng

obs þ nu
obs þ nv

obsÞ
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d ¼
dx

du

dv

2
64

3
75

nobs

ð36Þ

and use y 2 Cnobs to denote the full observational vector

y ¼
gobs

uobs

vobs

2
64

3
75

nobs

: ð37Þ

Taking into account (23) with partitions (31), the observational
operator projecting the state-space x onto the observational space
corresponding to y is then given by

H ¼
Hgobs x

Huobs uUu x

Hvobs vVv x

2
64

3
75

nobs�nx

ð38Þ

and the data-model misfits are obtained as

d ¼ y �Hx: ð39Þ
5.2. Observational and OBC error covariances

Let g, u, v denote the true values of tidal elevation and veloc-
ities on their respective staggered model grids, while ĝ, û, v̂ de-
note the corresponding estimates. The true values of the gridded
open boundary conditions gobc 2 Cnobc are related to the estimate
ĝobc as

ĝobc ¼ gobc þ �obc ð40Þ

where �obc is the unknown OBC error. Let Bobc denote the open
boundary condition error covariance

Bobc � Ef�obc�
H
obcg: ð41Þ

In practice, Bobc is not well known (e.g., Egbert et al., 1994). It can be
specified via a parametric form with some assumed OBC error param-
eters reflecting the accuracy information provided with the OBC val-
ues or estimated by the regional modeler. Choosing the OBC error
covariance parameters amounts to specifying a statistical upper limit
for the OBC correction that a modeler deems appropriate to intro-
duce, if needed, in order to fit the dynamical model to data.

The other source of uncertainty relates to the observational er-
ror, denoted by �y. The observational error consists of two compo-
nents, the instrument error and the representativeness error (error
caused by sub-scale features and by processes not represented in
the model formulation). A frequent approximation is to assume
that the observational error covariance matrix is diagonal

R � Ef�y�
H
y g ¼

Rx

Ru

Rv

2
64

3
75

nobs�nobs

: ð42Þ

This is because observations at locations sufficiently far apart are
unlikely to have correlated errors of representativeness. However,
any other valid covariance matrix can be specified for R.

5.3. Inverse estimation of open boundary conditions

We seek to optimally correct an a priori estimate of the open
boundary conditions ĝobc based on the observational data y. Specif-
ically, an inverse estimate

ĝþobc ¼ ĝobc þ Dĝobc ð43Þ

is sought such that the tidal model (33) forced by ĝþobc
xþ ¼Mðx gobcÞg
þ
obc

uþ ¼Mðu gobcÞg
þ
obc

vþ ¼Mðv gobcÞg
þ
obc

ð44Þ

is optimally fitted to the data

Dĝobc ¼ arg min JðDgobcÞ; ð45Þ

where J is the following quadratic form

JðDgobcÞ ¼ DĝH
obcB�1

obcDĝobc þ ðy �HxþÞHR�1ðy �HxþÞ: ð46Þ

that penalizes both the data-model misfits and the values of the
perturbation Dgobc added to the a priori estimate of the open bound-
ary conditions ĝobc . The quadratic penalty (46) corresponds to the
minimum error variance estimation of open boundary conditions.
Note that the inverse estimate xþ in (46) is a function of OBC incre-
ment Dgobc via (43) and (44). The quadratic minimization problem
(45) and (46) is solved by

Dĝobc ¼ BobcMH
ðx gobcÞH

HðHMðx gobcÞBobcMH
ðx gobcÞH

H þ RÞ�1

ðy �HMðx gobcÞĝobcÞ ð47Þ

where ĝobc is the a priori estimate of open boundary conditions.
Derivation of (47) is included as Appendix C: the term BobcMH

ðx gobcÞ
HHðHMðx gobcÞBobcMH

ðx gobcÞH
H þ RÞ�1 is simply the Kalman gain for

the quadratic inverse problem defined by Eqs. (43)–(46). With the
OBC increment (47), the inverse open boundary condition is ob-
tained via (43) and the dynamical Eqs. (43) and (44) are solved with
the inverse OBC estimate ĝþobc for x, u, and v. The practical steps in
computing (47) are discussed next.

5.4. Implementation of inverse OBC estimation

Firstly, we note that OBC increment Dĝobc is obtained as a lin-
ear combination of error subspaces (Lermusiaux and Robinson,
1999) specified in Bobc . To elucidate this point, consider the singu-
lar value decomposition of the OBC error covariance, Bobc ¼
UobcKobcUH

obc , with singular values Kobc (real and positive) sorted
in the descending order by magnitude. Denote Zobc � UobcK

1=2
obc ,

so that

Bobc ¼ ZobcZH
obc ð48Þ

Each column of matrix Zobc specifies an orthogonal error subspace of
open boundary conditions. We observe that the optimal OBC incre-
ment (47) is obtained as a linear combination of columns of Zobc

Dgobc ¼ Zobccobc ð49Þ

where cobc is a vector of complex coefficients computed from data-
forward model misfits. Matrix Zobc , therefore, represents a linear ba-
sis for Dgobc .

As discussed in Section 5.2, the specification of Bobc reflects
the modeler’s knowledge on the dominant parameters of the er-
rors in the OBCs. For specific error covariances and choices of er-
ror length scales (e.g., for Gaussian-based covariances, either a
Gaussian function or the second derivative of a Gaussian, (e.g.,
Lermusiaux et al., 2000;Lermusiaux, 2002), this model error
covariance matrix has eigendecomposition properties that can
be usefully employed.

With the subspaces Uobc sorted by their singular values in
descending order, a position (column number) of a given sub-
space ðUobcÞj in the matrix Uobc indicates the number of its
zero-crossings in the horizontal and, therefore, a corresponding
spatial length scale. For example, the subspace ðUobcÞ1 with the
largest singular value ðKobcÞ1;1 has no zero-crossings (for most
choices of Gaussian-based error covariance parameters), while
the subspace ðUobcÞnobc

with the smallest singular value
ðKobcÞnobc ;nobc

has nobc � 1 zero-crossings. The subspaces with
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smaller singular values correspond to progressively smaller
length scales (if this is not true due to the error parameter values
chosen, the number of zero crossing is always different for each
orthogonal eigenvector that are determined). Since the inverse
OBC increment (49) is a linear combination of columns of Zobc ,
it is sensible that only the subspaces with the desired length
scales are retained in Zobc

Zobc;p � Unobc�p K1=2
p�p: ð50Þ

The exact number p of error subspaces retained in Zobc depends on
the model domain, the regional tidal dynamics and the accuracy re-
quired by the modeler. The p subspaces (50) specify the low-rank
OBC error covariance model.

The open boundary condition error subspaces propagate
through the dynamical system according to

Zx ¼Mðx gobcÞZobc;p

Zu ¼Mðu gobcÞZobc;p

Zv ¼Mðv gobcÞZobc;p

ð51Þ

The matrices Zx, Zu, and Zv are defined at active g, u, and v-nodes,
respectively, and contain the state-space and velocity error sub-
spaces of the forward model. We hereafter use tildes to denote a
projection from the model space onto the observational space, i.e.

~Zx ¼ Hgobs xZx; ~Zu ¼ Huobs uZu; ~Zv ¼ Hvobs vZv ð52Þ

where ~Zx 2 Cnx
obs
�p, ~Zx 2 Cnu

obs
�p,, and ~Zx 2 Cnv

obs
�p. With the observa-

tions given by tidal constituent harmonics (Appendix D), (52) repre-
sents an interpolation of Zx, Zu, and Zv to observation locations.
With this notation, the data-forward model misfit covariance
matrix

Q � HMðx gobcÞBobcMH
ðx gobcÞH

H þ R

is given by

Q ¼

~Zx
~ZH

x þ Rx; ~Zx
~ZH

u ;
~Zx

~ZH
v

~Zu
~ZH

x ;
~Zu

~ZH
u þ Ru; ~Zu

~ZH
v

~Zv
~ZH

x ;
~Zv

~ZH
u ;

~Zv
~ZH

v þ Rv

2
664

3
775

nobs�nobs

ð53Þ

The values of the coefficients cobc in (49) are readily obtained as

cobc ¼ ½~ZH
x ;

~ZH
u ;

~ZH
v �Q

�1d ð54Þ

where

d ¼ y �HMðx gobcÞĝobc ð55Þ

are data-forward model misfits.
6. Methodological discussion

The proposed method seeks to control the solution of the line-
arized shallow water equations through the correction, Dgobc ,
added to the offshore open boundary conditions. Our present opti-
mization of Dgobc best fits the dynamical model to the observa-
tional data by keeping the magnitude and spatial structure of the
OBC correction consistent with the prior OBC error covariance. Be-
cause the correction is presently introduced only through the
OBCs, our inverse tidal estimate satisfies the barotropic dynamical
equations exactly. More generally, additional parameters can be
introduced into the control space and utilized for steering the
model trajectory towards observations. For example, in certain
applications the model fields are sensitive to bottom friction
parameters. In this case, the procedures presented in this paper
can be modified in order to add the bottom friction parameters
to the control space. Theoretically, such an extension is straightfor-
ward and would require a linearization of (15) with respect to the
bottom friction coefficient jðk;/Þ. The first variation of (18) with
respect to j can then be included in the right-hand-side of (32),
with the rest of the methodology unchanged. In addition, an anal-
ysis increment to model bottom topography could be sought. One
sensible approach is to employ a low-rank parameterization of the
topographic increment and include the parameters in the control
space, similarly to the OBCs. A variety of other extensions of the
presented inverse method are possible and will be considered in
the future.

It is useful to contrast the described method against the repre-
senter method which is a very useful data assimilation approach
for global tidal modeling (Egbert et al., 1994; Egbert and Erofeeva,
2002). A complete and consistent overview of the representer
method can be found in Bennett (1992, 2002). Our discussion be-
low is only intended as a parallel to Section 5.

Given the linearized tidal dynamics (32), which we write here
as

Aðx xÞx ¼ f; ð56Þ

with the forcing f provided by open boundary conditions in regional
tidal applications (viz. Eq. (32)) or by astronomical tidal forcing in
global tidal applications (Egbert and Erofeeva, 2002), combined
with the observational constraint

Hx ¼ y; ð57Þ

the representer method finds the generalized inverse solution

xþ ¼ xþ Dx ð58Þ

through an increment Dx found as a linear combination of the
representer vectors zi 2 Cnx

Zrep ¼ ½z1jz2j . . . jznobs
�nx�nobs

Dx ¼ Zrepcrep: ð59Þ

Thus, the representer matrix Zrep specifies the linear basis for anal-
ysis increment Dx. Complex coefficients crep are obtained from data-
forward model misfits d as

crep ¼ ð~Zrep þ RÞ�1d ð60Þ

where R is the observational error covariance and, similarly to (52),
tilde denotes projection from the model state-space onto the obser-
vational space, ~Zrep ¼ HrepZrep, with the observational operator Hrep

(we distinguish Hrep from H solely to signify optional differences
in implementation and choice of the observational subset/reduced
basis approach). Eqs. (59) and (60) are equivalent to expanding a
portion of data-forward model misfits d (a part of d corresponding
to the forward model error) in the basis of the representer func-
tions. Eq. (59) can be contrasted against Eq. (49) of our described
method. In the representer method, the optimization is carried out
in the observational space while the present regional scheme seeks
the optimization in the OBC space. Computationally, the represent-
ers are obtained in two steps (Egbert et al., 1994). Firstly, the adjoint
system

AH
ðx xÞai ¼ hi ð61Þ

is solved for the adjoint variables ai, i ¼ 1; nobs. The right-hand side
of (61), hi 2 Rnx , is given by a column of HH corresponding to obser-
vation i, hi ¼ ðHHÞi. In the case of observation location coinciding
with a model grid-point, hi is a vector of all zeros except one entry
at observation location i which is set to one. Secondly, the forward
system

Aðx xÞzi ¼ Bfai ð62Þ

is solved for the representers zi. The matrix Bf 2 Rnx�nx specifies the
error covariance associated with the forcing f of the dynamical sys-
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tem (56), Bf � Ef�f�
H
f g. Similarly to (48), Bf is not well known and

needs to be specified from second principles. Note that the matrix
Bf is of much larger dimensions than Bobc: it can be challenging to
compute or store Bf for large size problems. In order to reduce
the computational cost, a recursive spatial filter can be designed
and applied to ai to simulate the effect of matrix multiplication by
Bf , without forming Bf explicitly (Purser et al., 2003).

The model state-space error covariance Bx is related to Bf via

Bx ¼ A�1
ðx xÞBfA

�H
ðx xÞ ð63Þ

Inspection of (63) and (61) and (62) reveals that the representer
matrix corresponds to

Zrep ¼ BxHH: ð64Þ
In other words, by design, each representer i constitutes a covari-
ance of the model state-space error � at model grid points with
the model state-space error �i at observation location i, i.e.,
zi ¼ BxhH

i ¼ Ef��H
i g.

Taking into account (60), we further observe that the general-
ized inverse solution (58) is equivalent to

xþ ¼ xþ BxHHðHBxHH þ RÞ�1d ð65Þ
which is the minimum error variance estimate of the model state-
space vector x, given observations y and the state-space and
observational error covariances Bx and R, respectively. The repre-
Fig. 2. Model nested domains and bottom topography [m]. Red dots show assimilated ti
with magenta dots. (a) Outer domain around Vancouver Island. Black lines show nested
islands. Black lines show nested Dabob Bay/Hood Canal domain. (c) High-resolution dom
this figure the reader is referred to the web version of the article.)
senter method is an efficient specific way of computing (64) and
(65).

Our approach and scheme differ from the representer approach
methodologically in two ways. Firstly, an optimization is carried
out in the open boundary condition space rather than in the obser-
vational space. Our strategy of using the OBCs as the control space
for data assimilation reflects the specifics of regional tidal model-
ing. As explained in Section 1, the data-driven control of open
boundary conditions is desirable and needed for regional ocean
applications. Secondly, our approach does not require an adjoint
model. The specifics of the implementation are such that only
the forward dynamical model is needed. Variations of our approach
will be presented in the conclusions.
7. Barotropic Tidal Modeling in Dabob Bay/Hood Canal, WA

The approach to barotropic tidal modeling advocated in this pa-
per was guided and developed following the need in real-world
ocean applications. In October of 2007, we utilized free-surface
ocean models and acoustic models for real-time forecasting in
Dabob Bay/Hood Canal region of WA within the framework of
the Persistent Littoral Undersea Surveillance Network (PLUSNet)
project. The modeling component of PLUSNet required that the
barotropic tidal forcing for several nested domains of the primitive
de gauges. Validation ADCPs A1 and A2 and tide gauge T2 in Hood Canal are shown
Buffer domain. (b) Buffer domain covering Strait of Juan de Fuca and the enclosed

ain around Dabob Bay and the Hood Canal. (For interpretation of color mentioned in
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equation model be specified. A description of the experiment is
available at http://modelseas.mit.edu/Sea_exercises/PLUSNet07/.
Fig. 2 shows the location and the bottom topography of Dabob
Bay/Hood Canal region of WA and the surrounding basin. Dabob
Bay/Hood Canal are connected to the ocean through a series of in-
land waterways, with complex shorelines and highly complex bot-
tom topography. Incoming tides are funneled through a series of
shallow sills and a succession of narrowing and broadening bays
as they travel through the Strait of Juan de Fuca and the enclosed
straits toward Dabob Bay/Hood Canal basin. Given the complexity
of shoreline and bottom topography, tidal modeling in that region
is particularly challenging and presents an opportunity to demon-
strate our method.

For enclosed regional-scale basins, such as Dabob Bay, the tidal
forcing occurs through the open boundary conditions and the
contribution of the astronomical tidal forcing inside the domain
is negligible. In such basins, the barotropic response of the ocean
to the tidal signal in the open boundary conditions (OBCs) has to
be accurately modeled. To properly propagate the information
from global tidal model to local scale, three nested model domains
were set up (Fig. 2). The outer large scale domain was chosen such
as to have an open ocean boundary resolved in the global tidal
model. We have utilized TPXO7.0 1=4-degree resolution global ti-
Fig. 3. M2 sea surface height amplitude [in cm] (color) and data-model misfits (red
arrows). (a) Forward solution. (b) Inverse solution. The misfits are plotted as arrows
originating at observation locations and pointing up if an observed value is higher
than a model value and down if otherwise. (For interpretation of color mentioned in
this figure the reader is referred to the web version of the article.)
dal fields (Egbert and Erofeeva, 2002) to specify open boundary
conditions in the forward computation of the outer domain. The
Outer domain entirely encompasses Victoria Island and resolves
the straits separating Victoria Island from the mainland. Smith
and Sandwell (1997) (Version 9.1) 1-min resolution bottom topog-
raphy was utilized in the outer domain and the model resolution
was set to match the bottom topography resolution. A Buffer do-
main covering Strait of Juan de Fuca and the enclosed straits was
setup at 1/2-min resolution and nested in the Outer domain (Fig.
2b) and a high-resolution Dabob Bay/Hood Canal domain covering
the basin of interest was setup at 1/20-minute (� 100 m) resolu-
tion and nested in the Buffer domain (Fig. 2c). Nesting implemen-
tation was one-way: an inverse solution in a larger domain was
utilized to specify open boundary conditions in a nested smaller
domain, however, there was no information flow from a smaller
domain to a larger domain (Logutov, submitted for publication).

Water level stations of the National Water Level Observation
Network (NWLON) were utilized to constrain model sea levels to
observations. The NWLON stations have tidal datums established
by the National Ocean Service, following the National Geodetic Ref-
erence System. The information from coastal tide gauges in the
Outer and Buffer domains was assimilated to improve the esti-
mates of open boundary conditions using the inverse method de-
scribed in this paper. Assimilated tide gauges are shown with red
Fig. 4. M2 co-tidal chart [Greenwich phase in deg] (color) and data-model phase
misfits [in deg] (red arrows). (a) Forward solution. (b) Inverse solution. Misfits
depicted as in Fig. 3. (For interpretation of color mentioned in this figure the reader
is referred to the web version of the article.)

http://modelseas.mit.edu/Sea_exercises/PLUSNet07/
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dots in Fig. 2. Computations for eight tidal constituents, M2, K1, O1,
S2, P1, and N2 were carried out, consistently with the composition
of tidal variablity observed at these water level stations. Tide gauge
T2 and ADCPS A1 and A2 in Hood Canal (Fig. 2c) were allocated for
validation and, therefore, not used for assimilation. Figs. 3 and 4
show the sea surface height data-model misfits (red arrows) in
the Buffer domain for forward and inverse computation of M2 tidal
constituent. Fig. 3 compares the amplitudes, while Fig. 4 provides
the co-tidal chart and phase misfits. In general, the inverse solution
can not satisfy all the observation points exactly since the utilized
tidal model is limited to barotropic dynamics only and does not re-
solve subgrid topographical features which might influence tide
gauge measurements. The inverse solution provides an optimal
fit of the barotropic tidal dynamics to observational data, given
assumptions made about uncertainties in the open boundary con-
ditions and in measurements.

A Gaussian two-dimensional parametric form with length scale
L ¼ 10 km and variance r2 ¼ ð15 cmÞ2 was utilized to specify the
OBC error covariance in the Buffer domain. The tide gauge observa-
tional data were assumed to have uncorrelated errors, with vari-
ance r2

o ¼ ð1 cmÞ2, plus the representativeness error with
variance r2

o ¼ ð4 cmÞ2. The representativeness error accounts for
subgrid processes and unresolved dynamics. A slightly lower rep-
resentativeness error was specified for tide gauge excepted T1
(Fig. 3) in order to steer a solution more closely to the sea-surface
height observed at the main inlet leading to our main basin of
Fig. 5. Analysis increment to sea surface height in the Buffer domain for M2 tidal
constituent. (a) Increment amplitude [cm]. (b) Increment phase [degrees].
interest (note resulting very small data-inverse model misfit at
T1). A correction to open boundary conditions obtained from
assimilation of the tide gauges and the resulting sea-surface height
analysis increment are shown in Fig. 5. The increment is driven
through the correction added to open boundary conditions and sat-
isfies the barotropic tidal dynamics Eqs. (1)–(3) exactly.

The main environmental modeling focus of PLUSNet-07 experi-
ment was Dabob Bay/Hood Canal basin (Fig. 2c). The use of the in-
verse methodology described in this paper has allowed us to
demonstrate a very significant skill in modeling the barotropic ti-
dal circulation in Dabob Bay/Hood Canal despite of the challenges
presented by the complexity of waterways connecting this basin to
the ocean. Fig. 6 shows the observed and the model sea-surface
height time series for the period of PLUSNet-07 experiment. The
forward solution exhibits errors of up to 30 cm (still a relatively
good match given a 3:5 m range of observed total tidal elevation
variations), the inverse solution is within 3 cm error bar from the
observed SSH.

During the real-time phase of PLUSNet-07, no velocity measure-
ments were available to us to validate the barotropic tidal velocity
forecasts for Dabob Bay/Hood Canal region. Therefore, tidal veloc-
ity forecasts were issued and used in real-time without validation.
An example of such a forecast is shown in Fig. 7. Tidal velocity fore-
casts were issued for every hour of the PLUSNet-07 real-time
phase, a 2-week period in October of 2007. It is not until after
the experiment that we had a chance to validate our forecasts by
analyzing the ADCP data obtained in Hood Canal in September-
October of 1994, kindly provided to us by Edward G. Josberger of
the US Geological Survey. Fig. 8 shows the inverse model tidal
velocities from the Dabob Bay/Hood Canal domain against the total
depth averaged velocity measured by the ADCP A1 in September-
October of 1994. ADCP measurements showed very little velocity
variation with depth, however significant variations in the hori-
zontal. The total flow was almost entirely driven by tides (figure
not shown). The match of ADCP measurements to the velocity field
which we have computed for PLUSNet-07 via the inverse method
presented in this paper was impressive.
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Fig. 6. Sea surface height (SSH) time series at T2 tide gauge (see location in Fig. 3).
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Fig. 7. Inverse estimate of tidal velocity in Dabob Bay/Hood Canal (sum of all constituents). Two snapshots corresponding to times indicated with markers ‘‘a” and ‘‘b”
in Fig. 6.
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To conclude, Fig. 9 compares the sea surface height analysis
increment resulting from assimilation of a single tide gauge T1
using the method described in this paper and the representer
method discussed in Section 6. The background error covariance
Bf in Eq. (62) was specified as spatially uniform via a Gaussian
two-dimensional parametric form with length scale L ¼ 10 km
and variance r2

f ¼ ð15 cmÞ2. The difference of analysis increment
from the two methods can be observed by comparing Fig. 9(a)
and (b). The difference results from the underlying assumptions
about sources of errors in the tidal solution. With the representer
method, the inverse solution contains an additional body forcing
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Fig. 8. Inverse model tidal velocity against observed barotropic velocity measured
by ADCP A1 (see location in Fig. 2) in Dabob Bay/Hood Canal. (a) Entire period of
available ADCP measurements. (b) One week period.

Fig. 9. Sea surface height analysis increment (real part) resulting from assimilation
of tide gauge T1. (a) Computed via method described in this paper. (b) Computed
via representer method.
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term (Eq. (62)) that originates from an assumption about tidal
model errors. With the method presented in this paper, the inverse
solution is constructed following a proposition that largest errors
often originate from the open boundary conditions and the inverse
solution is such that it satisfies the barotropic tidal dynamics ex-
actly. In our own practice of regional tidal modeling, the latter ap-
proach was found to be somewhat more robust and practical.
8. Conclusions

A new methodology and computational system for forward and
inverse barotropic tidal modeling for regional tidal estimation have
been developed. The modeling system is capable of forward (no
data assimilation) tidal field predictions over high resolution
bathymetry, and subsequent assimilation of tidal elevation and
velocity observational data via a new practical inverse method.
The forward prognostic scheme solves the linearized depth-inte-
grated shallow water equations as a boundary value problem in
the spectral domain. The inverse scheme assimilates filtered tidal
velocity observations by adjusting the OBCs. After assimilation,
the interior and boundary tidal fields are in accord with the tidal
model and with the error covariances of the tidal observations
and the prior OBC estimate. With this methodology and computa-
tional system, we have carried out accurate barotropic tidal field
estimations for multi-scale nested domains including complex in-
land waterways is several regions of the world’s oceans. To illus-
trate our results, such a computation was presented in the area
of Dabob Bay and Hood Canal, WA.

The inverse procedures are specifically designed for regional
ocean applications. We found that both high resolution and control
of the barotropic model through OBCs are important elements in
successful regional tidal modeling. This is because the tidal forcing
is provided through the OBCs in regional ocean applications and
can constitute a significant source of uncertainty. To reduce these
uncertainties, the prior tidal conditions at the open boundaries
need to be adjusted to the observational data, high-resolution
bathymetry, and tidal dynamics. Our tidal model is fitted to data
through a correction made to OBCs, consistent with the error
covariances of the data and the prior OBCs. The inverse solution
generated by our method presently satisfies the barotropic shallow
water dynamical equations exactly.

The data assimilation scheme developed in this paper differs
from previous techniques mostly by our use of a spectral-domain
shallow water model and our implementation of a new inverse
which is practical and does not require an adjoint model. In our
method, an optimization is carried out in the OBC space rather than
in the observational space or model state space as is the practice in
other popular tidal data assimilation and inversion methods (e.g.,
representer approach, nudging, optimal interpolation, etc). Our
strategy is motivated by the specifics of regional tidal modeling
applications, in which the OBCs constitute a significant source of
uncertainty. Our methodology and computational system are ex-
pected to continue to find wide-range applications in regional and
coastal ocean science, including the estimation of barotropic tidal
forcing needed for regional primitive equation modeling systems.

Variations of our approach and computational system can, of
course, be further developed. For example, specific model field
and parameter uncertainties can be included in the interior to ac-
count for non-linear effects and uncertainties of shallow water
model parameters (e.g., bottom drag). The Error Subspace Statisti-
cal Estimation (ESSE) approach (Lermusiaux, 2002; Lermusiaux,
2006) can be additionally utilized to efficiently represent model
field uncertainties at interior ocean nodes by their dominant eigen-
modes. This would allow us to continue to provide timely tidal
estimates in varied regions of the worlds coastal ocean. The inverse
scheme could also be upgraded to include a multi-model fusion ap-
proach, with 2-D and 3-D barotropic tidal models combined to-
gether to produce the highest possible horizontal resolution, on
the one hand, and resolution of the vertical velocity structure
and boundary layers, on the other (Logutov, 2007). Future work
could also include the implementation of our forward and inverse
model on an Arakawa-B grid to add consistency with Arakawa-B
formulated primitive equation models utilizing barotropic tidal
forcing. Our presently linear forward modeling scheme can also
be extended to a nonlinear predictor using a perturbation method
and an iterative procedure, as described in Section 2. The OBCs of
this nonlinear model could then be corrected at each iteration
using tidal data and our inversion scheme. Finally, the fusion of
the barotropic model with baroclinic tidal and internal wave mod-
els might be desirable. All together, these extensions could lead to
highly accurate, data-driven barotropic and baroclinic tidal model-
ing at highest resolutions.
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Appendix A. Notation

A 2 Cm�n complex m� n matrix,
N
a 2 C complex vector of length N,

K a diagonal matrix,
AH transposed and complex conjugated A,
A�H an inverse of AH ,
ðAÞj the ðjÞth column of A,
ðAÞi;j the ði; jÞth entry of A,
ðaÞi the ith entry of a,
N a set of natural numbers f1;2; . . .g,
iK 2 NK a set iK ¼ fikgK

k¼1, ik 2 f1;2; . . .g,
ðaÞiK

2 CK comlex vector of length K containing the iK th entries
of a, ðaÞiK

¼ ½ai1 ; ai2 ; . . . ; aiK �
T ,

ðAÞiK ;jL
2 CK�L comlex K � L matrix containing the entries in the

iK th rows and jLth columns of matrix A,
ðAÞiK ;jL
¼

ai1 ;j1 ai1 ;j2 . . . ai1 ;jL

ai2 ;j1 ai2 ;j2 . . . ai2 ;jL

..

. . .
.

. . . ..
.

aiK ;j1 aiK ;j2 . . . aiK ;jL

2
66664

3
77775

K�L

;

vecðAÞ the vector version of A obtained by rearranging the col-
umns to a vector, i.e. vecðAÞ ¼ ½aT

1; a
T
2; . . . ; aT

n�
T
,
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0N the null vector of length N (all entries are zero),
1 the ones vector of length N (all entries are one),
N

A 	 B the Hadamard (elementwise) product of A and B,
AøB the Hadamard (elementwise) division of A by B, with spe-
cial definition for zero elements in B

ðAøBÞi;j ¼ ðAÞi;j=ðBÞi;j if ðBÞi;j 6¼ 0;
ðAøBÞi;j ¼ 0 if ðBÞi;j ¼ 0;

ðA:1Þ
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DðaÞ 2 CN�N diagonal N � N matrix with vector a 2 CN specify-
ing the main diagonal, ðDðaÞÞ ¼ di;jai,
i;j i�1;j i;j i;jþ1 i�1;jþ1
i;j

D�nðaÞ 2 CN�N diagonal N � N matrix with vector a 2 CN speci-
fying the ð�nÞth (lower) diagonal, such that ðD�nðaÞÞi;j ¼ di�n;jai,
DþnðaÞ 2 CN�N diagonal N � N matrix with vector a 2 CN speci-
fying the ðþnÞth (upper) diagonal, such that ðDþnðaÞÞi;j ¼ diþn;jai,
DþnðaÞ ¼ DT

�nðaÞ and DðaÞ ¼ D�0ðaÞ ¼ Dþ0ðaÞ,

Appendix B. Specifics of model implementation

Below, we provide details on specification of matrices
Gu g, Gv g, Fu u, Fu v, Fv u, Fv v, Dg u, Dg v, Hu u, and
Hv v utilized in forming the discrete model operators (21),
(22), and (26).

B.1. Grids, masks, and bottom topographies

The Arakawa-C staggered grid, with the schematic given in Fig.
1, is utilized throughout. The coordinate of each grid point is iden-
tified in terms of latitude and longitude stored in Ugrid;Kgrid 2 Rm�n

(lat,lon) for g;u; v-grids. Firstly, a land mask, Mg, is defined at g grid
points. The mask is a logical array of size m� n, with entries set at
ocean grid points and unset at masked/land points. The land masks
for u and v grids, Mu and Mv, are derived from Mg by unsetting the
entries of the u,v nodes neighboring with masked g nodes, viz in
Fig. 1, the filled symbols which indicate masked g;u; v-nodes. Let
mgrid denote the vectorized model grid matrix, Mgrid, i.e.,
mgrid ¼ vecðMgridÞ, where grid ¼ fg; u; vg.

The model does not put any restrictions on the steepness of bot-
tom topography. However, if this inverse barotropic model is exer-
cised in conjunction with a primitive equation model, the bottom
topographies at their open boundaries should be consistent. Let
Hg 2 Rm�n denote the values of bottom topography at g-grid
points, positive for ocean nodes. The bottom topography at u and
v grids, Hu;Hv 2 Rm�n are needed in (26). On an Arakawa-C grid,
this is computed from Hg following

Hu
i;j ¼ ðH

g
i;j þ Hg

i;j�1Þ=ðM
g
i;j þMg

i;j�1Þ if Mu
i;j ¼ 1

Hu
i;j ¼ 0 if Mu

i;j ¼ 0

Hv
i;j ¼ ðH

g
i;j þ Hg

i�1;jÞ=ðM
g
i;j þMg

i�1;jÞ if Mv
i;j ¼ 1

Hv
i;j ¼ 0 if Mv

i;j ¼ 0:

ðB:1Þ

With hgrid ¼ vecðHgridÞ, the operators

Hu u ¼ DðhuÞ; Hv v ¼ DðhvÞ ðB:2Þ

define mappings from tidal velocities to transports (26) on u and v
grids, respectively. Note that mappings u g and v g are given
by backward differences and mappings g u and g v by forward
differences on an Arakawa-C grid. We zero-pad the boundary ele-
ments to maintain m� n dimensionality of matrices.

B.2. Gradient and divergence operators

On a staggered Arakawa-C grid, the forward difference operators
in the zonal x and meridional y directions
Dfrwd
k ¼ Dþmð1NÞ �Dð1NÞ

Dfrwd
/ ¼ Dþ1ð1NÞ �Dð1NÞ

ðB:3Þ

define the mappings from the u and v grids onto the g grid (sche-
matic in Fig. 1), while the backward difference operators

Dbcwd
k ¼ Dð1NÞ �D�mð1NÞ

Dbcwd
/ ¼ Dð1NÞ �D�1ð1NÞ

ðB:4Þ

define mappings from g-grid onto u and v grids, respectively. Thus,
the gradient operator g$f�g in (19) which maps from g to u and v
grid-points is implemented via backward differences

Gu g ¼ Dðgu gÞDbcwd
k

Gv g ¼ Dðgv gÞDbcwd
/

ðB:5Þ

where the diagonal matrices Dðgu gÞ and Dðgv gÞ correspond to
metric terms in g$f�g (g is acceleration due to gravity):

gu g ¼ g � ð1Nødk
u gÞ

gv g ¼ g � ð1Nød/
v gÞ;

ðB:6Þ

where dk
u g, d/

v g represent metric terms on a spherical grid. Simi-
larly, the divergence operator (24) maps from u and v to g grid-
points and is implemented via forward differences

Dg u ¼ Dðdg uÞDfrwd
k

Dg v ¼ Dðdg vÞDfrwd
/

ðB:7Þ

where the diagonal matrices Dðdg uÞ and Dðdg vÞ correspond to
metric factors in $ � fg:

dg u ¼mgødk
g u

dg v ¼mgød/
g v

ðB:8Þ

Since dg u and dg v contain the mask mg, the multiplications
ðDg uuÞ and ðDg vvÞ produce zero values at masked g points for
any values of u and v, that is ðDg uuÞig

mask
¼ 0ng

mask
and

ðDg vvÞig
mask
¼ 0ng

mask
.

B.3. Rotational operators

Operators Fu v and Fv u in (20) map across the u; v staggered
grids. The computations of their components are now described.
First, the averaging operators are computed. On an Arakawa-C grid,
a four-point stencil of v-points around an ði; jÞth u-node leads to

vu
i;j ¼
ðMv

i;j�1vi;j�1 þMv
iþ1;j�1viþ1;j�1 þMv

iþ1;jviþ1;j þMv
i;jvi;jÞ

ðMv
i;j�1 þMv

iþ1;j�1 þMv
iþ1;j þMv

i;jÞ
ðB:9Þ

interpolation rule from v to u grid. In the foregoing, vu
i;j is the value

of the ði; jÞth element of v interpolated to the ði; jÞth u-grid point
from its corresponding four-point v-grid stencil (vu

i;j set to zero if
all the mask values in the denominator are zero). Similarly, a
four-point stencil of u-points around an ði; jÞth v-node leads to

uv
i;j ¼
ðMu

i�1;jui�1;j þMu
i;jui;j þMu

i;jþ1ui;jþ1 þMu
i�1;jþ1ui�1;jþ1Þ

ðMu
i�1;j þMu

i;j þMu
i;jþ1 þMu

i�1;jþ1Þ
ðB:10Þ

interpolation rule from u to v grid (again, uv
i;j set to zero if all the

mask values in the denominator are zero). In order to implement
(B.9) and (B.10) in terms of averaging operators Su v and Sv u acting
on vectors defined on the v and u grids, respectively, we form the
matrices Nu and Nv corresponding to the denominator in (B.9) and
(B.10)

ðNÞui;j ¼ ðMÞ
v
i;j�1 þ ðMÞ

v
iþ1;j�1 þ ðMÞ

v
iþ1;j þ ðMÞ

v
i;j

ðNÞv ¼ ðMÞu þ ðMÞu þ ðMÞu þ ðMÞu
ðB:11Þ
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and denote nu ¼ vecðNuÞ and nv ¼ vecðNvÞ. The four-point averaging
operators Su v and Sv u in (B.9) and (B.10) are then obtained as
(symbol definitions are in Appendix A)

~Su v ¼ D�mðmvÞ þD�mþ1ðmvÞ þDðmvÞ þDþ1ðmvÞ
~Sv u ¼ D�1ðmuÞ þDðmuÞ þDm�1ðmuÞ þDþmðmuÞ
Su v ¼ Dð1NønuÞ~Su v

Sv u ¼ Dð1NønvÞ ~Sv u

ðB:12Þ

Second, the values of the determinant (14) and other frequency
elements are computed as follows. With vectors jgrid; fgrid 2 RN

containing the friction and Coriolis coefficients at model grid-
points (ð:Þgrid denotes specific staggered grid, either fg;u; vg) and
x denoting the tidal constituent frequency, this determinant
(14) is,

qgrid ¼ ðix � 1N þ jgridÞ 	 ðix � 1N þ jgridÞ þ fgrid 	 fgrid ðB:13Þ

and the vector frequency elements are

xu ¼mu 	 ðix � 1N þ juÞøqu

xv ¼mv 	 ðix � 1N þ jvÞøqv

fu ¼mu 	 fuøqu

fv ¼ �mv 	 fvøqv

ðB:14Þ

The operator matrices Fu u and Fv v 2 RN�N defining mappings
u u and v v in (20) are then obtained from xgrid (B.14) as

Fu u ¼ DðxuÞ
Fv v ¼ DðxvÞ

ðB:15Þ

The operator matrices Fu v and Fv u in (20) defining mappings
u v and v u across the staggered u and v grids are then finally
obtained from fgrid (B.14) by utilizing the four-point stencil averag-
ing operators (B.12)

Fu v ¼ DðfuÞSu v

Fv u ¼ DðfvÞSv u
ðB:16Þ

Matrices Fu v and Fv u 2 RN�N are four-diagonal. Note that because
(B.14) contains the masks mu and mv, the operators (B.15) and
(B.16) produce zero velocity values at masked u and v points.

Appendix C. Optimal OBC increment

Here, we provide the derivation of (47). Consider the problem of
finding optimal OBCs

ĝobc ¼ arg min
g

JðgobcÞ; ðC:1Þ

with the penalty functional

JðgobcÞ ¼ ðgobc � g�obcÞ
HB�1

obcðgobc � g�obcÞ þ ðy �HxÞHR�1ðy �HxÞ:
ðC:2Þ

where g�obc is the a-priori OBC estimates, matrices Bobc and R are OBC
and observational error covariances, and state-space x is given by

x ¼Mðx gobcÞgobc: ðC:3Þ

Eqs. (C.1)–(C.3) are equivalent to (45), (46), and (44).

Theorem 1. The minimization problem C.1, C.2, C.3 has a unique
solution given by
ĝobc ¼g�obc þ BobcMH
ðx gobcÞH

HðHMðx gobcÞBobcMH
ðx gobc ÞH

H þ RÞ�1

� ðy �HMðx gobcÞg
�
obcÞ: ðC:4Þ
Proof. Since matrices Bobc and R are covariances and, therefore,
symmetric and positive definite, the quadratic penalty function
(C.2) is convex and has a unique minimum. The minimum can be
found in closed form by expressing the gradient of JðgobcÞ with
respect to gobc

rJðgobcÞ ¼ B�1
obcðgobc � g�obcÞ �MH

ðx gobcÞH
HR�1ðy

�HMðx gobcÞgobcÞ ðC:5Þ

and setting it to zero

rJðgobcÞ ¼ 0: ðC:6Þ

By solving (C.6) for gobc , we obtain

ĝobc ¼ ðB�1
obc þMH

ðx gobcÞH
HR�1Mðx gobcÞHÞ

�1B�1
obcg

�
obc þ ðB

�1
obc

þMH
ðx gobcÞH

HR�1Mðx gobc ÞHÞ
�1MH

ðx gobcÞH
HR�1y ðC:7Þ

We next apply the Sherman-Morrison-Woodbury identity

ðB�1 þ UHR�1VÞ�1 ¼ B� BUHðVBUH þ RÞ�1VB ðC:8Þ

to the first term in (C.7) and the identity

ðB�1 þ UHR�1VÞ�1UHR�1 ¼ BUHðVBUH þ RÞ�1 ðC:9Þ

to the second term in (C.7).
Identities (C.8) and (C.9) are valid for any matrices B, R, U, V of

correct sizes. The validity of the Sherman-Morrison-Woodbury
formula can be shown by multiplying B�1 þ UHR�1V with the
right-hand side of (C.8) and showing that the result is identity. Eq.
(C.9) is a corollary of (C.8) shown as lemma 1 below. By using the
identities (C.8) and (C.9) with U ¼ V ¼Mðx gobcÞH in (C.7), we
obtain (C.4). h

Lemma 1. (C.9) holds for any matrices B, R, U, V of correct sizes.

Proof.. Let Q denote

Q � VBUH þ R

By (C.8)

ðB�1 þ UHR�1VÞ�1UHR�1 ¼ BUHR�1 � BUHðVBUH þ RÞ�1VBUHR�1

¼ BUHðQ�1QR�1 � Q�1VBUHR�1

¼ BUHQ�1ððVBUH þ RÞR�1 � VBUHR�1Þ

¼ BUHQ�1: �
Appendix D. Conversion between time and spectral domains

D.1. Preliminaries

Tidal harmonic constants at tide gauges are typically tabulated
following the standard convention as either an amplitude, jujk, and
a Greenwich phase, ju

k , for each tidal constituent k, i.e., a tuple
ðjukj;ju

kÞ, or as a complex amplitude uk

uk ¼ jukje�iju
k : ðD:1Þ

Variable u in the foregoing represents either an SSH (g), or a zonal
(u) or meridional (v) component of tidal velocity. Note the minus
sign for Greenwich phases in (D.1), ju

k ¼ �\uk, which is a universal
convention. For a given tidal constituent k, every moment in time
maps to an astronomical phase hk. An astronomical phase of a tidal
constituent k at UTC time tUTC

0 can be obtained using astronomical
tables or a t_tide toolbox implemented in matlab by Pawlowicz
et al. (2002). The tidal time series is recovered from tidal harmonic
constants ðjukj;ju

kÞ as
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utideðtÞ ¼
Xq

k¼1

jukj cosðxkt þ hk � ju
kÞ ðD:2Þ

or from complex uk in (D.1) as

utideðtÞ ¼ R
Xq

k¼1

uk exp iðxkt þ hkÞ
( )

ðD:3Þ

where hk is an astronomical phase at time t ¼ 0. We also note that
Greenwich phases ju

k are typically given corresponding to local time
zones and care should be taken to ensure that time t and ju

k are
consistent.

D.2. Velocity data

The time series of zonal and meridional velocity components u
and v at point ðxi; yiÞ are reconstructed from the spectral domain
variables ~uk and ~vk following (8), which is equivalent to

utideðtÞ ¼
Xq

k¼1

~uk

2
exp iðxkt þ hkÞ þ

~u
k
2

exp iðxkt þ hkÞ
� 	

ðD:4Þ

vtideðtÞ ¼
Xq

k¼1

~vk

2
exp iðxkt þ hkÞ þ

~v
k
2

exp iðxkt þ hkÞ
� 	

ðD:5Þ

where ~u
k and ~v
k denote complex conjugates of ~uk and ~vk. In order to
facilitate velocity data analysis, define a complex variable

UðtÞ � uðtÞ þ i vðtÞ ðD:6Þ

with the real and imaginary parts given by the zonal and meridional
velocity components. As directly seen from (D.4) and (D.5), the
complex velocity UkðtÞ associated with each tidal constituent k is
described as a sum of counter-clockwise rotating (~ak) and clockwise
rotating (~a�k) complex exponents

UkðtÞ � ukðtÞ þ i vkðtÞ ¼ ~akeiðxktþhkÞ þ ~a�ke�iðxktþhkÞ; ðD:7Þ

with the complex amplitudes ~ak and ~a�k given by

~ak ¼
~uk þ i~vk

2
; ~a�k ¼

~u
k þ i~v
k
2

: ðD:8Þ

Eq. (D.7) describes an ellipse in a complex plane, with the counter-
clockwise rotation of velocity vectors if j~akj > j~a�kj and clockwise
rotation if j~akj < j~a�kj. A velocity vector at any given moment of time
is a superposition of two circular components, the first and the sec-
ond terms on the right-hand-side of (D.7), rotating in the positive
(counter-clockwise) and negative (clockwise) directions, respec-
tively. The maximum current occurs when the circular components
have the same phase, i.e., the positively and negatively rotating ra-
dial vectors point in the same direction. In this case, their velocity
magnitudes are added and the current velocity is

Mk ¼ j~akj þ j~a�kj: ðD:9Þ

Mk is the length of the major semi-axis of a velocity ellipse. The
minimum current occurs when the circular components have
180� phase difference. In this case, the current velocity is

mk ¼ j~akj � j~a�kj; ðD:10Þ

positive for the counter-clockwise and negative for clockwise veloc-
ity vector rotation. Thus, the magnitude of mk is the length of the
minor semi-axis of a velocity ellipse. A velocity ellipse degenerates
into a line when j~akj ¼ j~a�kj. The oppositely rotating radial vectors
representing the two terms on the right-hand-side of (D.7) meet
(generate maximum current) at an angle

/k ¼ ð\ð~a�kÞ þ \ð~akÞÞ=2 ðD:11Þ

(\ denotes an argument of a complex number). Therefore, (D.11)
provides an inclination of the major semi-axis, also referred to as el-
lipse inclination. The northern major semi-axis is typically utilized as
the reference axis and, therefore, 180	 is subtracted from /k, if
/k > 180	. The Greenwich phase is defined as an angle that the
two oppositely rotating radial vectors have to traverse from their
initial positions, ðxkt þ hkÞ ¼ 0, before they meet each other, i.e.,
an angle between an initial position and the first encountered major
semi-axis for either of the oppositely rotating radial vectors. Simple
algebra reveals that this angle is given by

gk ¼ ð\ð~a�kÞ � \ð~akÞÞ=2: ðD:12Þ

Greenwich phase gk describes a delay, Dt ¼ gk=xk, of the maximum
current relative to the zero astronomical phase times (i.e., moments
of time when ðxkt þ hkÞ ¼ 0). By solving (D.8) for uk and vk, we can
obtain the tidal harmonics in terms of the exponent coefficients

uk ¼ ~ak þ ~a
�k; vk ¼ ið~a
�k � ~akÞ ðD:13Þ

where ~a
�k is the conjugate of ~a�k.

D.3. Harmonic analysis

Arrange observational data as a complex vector zobs 2 Cnt

zobs ¼ uobs þ ivobs ðD:14Þ

with uobs and vobs 2 Rnt containing either the zonal and the meridi-
onal components of the observed currents or the observed sea sur-
face height, in which case only the real part uobs is needed. The time
tUTC of measurements zobs referenced at tUTC

0 is arranged in a vector
tobs 2 Rnt , i.e.,

tobs ¼ tUTC � tUTC
0 1nt : ðD:15Þ

The astronomical phase hk corresponding to tUTC
0 can be obtained by

using t_tide toolbox of Pawlowicz et al. (2002). Also, let column
vector xq 2 Rq;2q < nt denote tidal constituent frequencies.

We seek a least-squares fit of tidal constituents (D.4) and (D.5)
to observational data zobs. Least-squares analysis can be carried by
specifying the basis matrix

Ent�2q � ½Eþnt�q; E�nt�q�; ðD:16Þ

corresponding to (D.7), with

Eþnt�q ¼ expði tnt x
T
qÞ; Eþnt�q ¼ expð�i tnt x

T
qÞ

where exp denotes an entry-wise exponential (not a matrix expo-
nential). By minimizing the squares of the misfits

â ¼ arg min
a

JðaÞ

JðaÞ ¼ ðzobs � En�2qaÞHðzobs � En�2qaÞ
ðD:17Þ

as a function of coefficients a (e.g., using the method of Lagrange
multipliers), we obtain

â ¼ ðEHEÞ�1EHzobs ðD:18Þ

Partition a into coefficients corresponding to Eþnt�q and E�nt�q

a ¼
aþ

a�

� �
2q

ðD:19Þ

with aþ and a� 2 Cq. Values of coefficients aþ and a� depend on the
reference time utilized in the harmonic analysis procedures. Refer-
ence time is related to the astronomical phase hk via (D.7). There-
fore, we can obtain the tidal constants ~aþk and ~a�k independent of
the reference time in the harmonic analysis by absorbing hk into
the constants

~ak ¼ ak expð�ihkÞ; ~a�k ¼ a�k expðihkÞ ðD:20Þ

where ak ¼ ðaþobsÞk and a�k ¼ ða�obsÞk. With ~aþk and ~a�k, the values of
complex amplitudes ~uk and ~vk in (8) are obtained following (D.13).
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