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SUMMARY

A robust and practical methodology for multi-model ocean forecast fusion has been sought. Present regional
ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that
a forecast combination methodology be adaptive and capable to operate with a small sample of past validating
events. To this end, we consider an extension of maximum-likelihood error parameter estimation to multi-model
predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology
consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable
parametric family (e.g. covariance models) or through a low-rank approximation (e.g. flow-dependent error
subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts
based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended
the maximum-likelihood error parameter estimation methodology to multi-model forecasting systems using the
expectation-maximization technique, with the true state-space vector at observation locations treated as missing
data. With only one forecasting model, the procedure reduces to the standard maximum-likelihood error parameter
estimation. The proposed multi-model fusion methodology neglects cross-model error correlations in order to
gain the capability to work with a small sample of past events. We illustrate the methodology with a two-
model forecasting example (HOPS, ROMS) within the framework of the real-time forecasting experiment held in
Monterey Bay during 2003.
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1. INTRODUCTION

Various forecasting models have different skill in capturing aspects of reality and
therefore forecasting could be improved through model combination. The methodology
for ocean/atmospheric multi-model forecasting, however, is at an early stage. Current
practices are dominated by the multiple-regression-based approaches (e.g. Krishnamurti
et al. 1999; Doblas-Reyes et al. 2000; Kharin and Zwiers 2002) and require a substantial
training dataset. On the other hand, adaptive modelling has been moving steadily into
the mainstream of many real-world forecasting applications, particularly in the area of
regional ocean forecasting (Robinson 1999; Robinson et al. 2002). On regional scales,
dominant ocean processes and conditions can undergo significant changes over time
and adaptiveness is increasingly recognized as the key determinant of a successful
modelling system (Lermusiaux 1999a; Robinson and Lermusiaux 2004). Because such
forecasting systems must adapt and evolve in response to modelled processes, the time-
scale for changes to a forecasting system is often shorter than the time it takes to
collect a sufficient sample of past events for robust model combination, which presents
a difficulty in the use of multi-models in regional ocean applications. In this paper,
we work around this limitation by treating the optimal model combination as a non-
stationary problem that calls for a methodology that operates with a small sample of
past validating events.

In regional ocean forecasting, observational data typically come in batches, with a
certain spatial coverage, and each batch of data is treated as a single validating event.
Within new regional oceanographic applications, as soon as several validating events
become available, a change to a forecasting system is often made to correct for deficien-
cies exemplified in the validating data (e.g. change of model parameters, parametriza-
tion schemes, model grids, etc.). As a result, only a few (often one or two) batches
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of spatially distributed measurements are available as training data for the purposes of
model combination. In our own practice with the Harvard Ocean Prediction System
(HOPS) for regional synoptic forecasting including oceanic (sub)mesoscale variability
(Robinson 1999; Robinson et al. 2002), a training dataset typically has sufficient spatial
coverage to infer the spatial parameters of forecast errors, but insufficient to infer the
cross-model structure of forecast-error covariances. On the other hand, a high variabil-
ity across multiple scales is distinctive of the regional ocean applications (Lermusiaux
1999b). One kind of synoptic phenomenon is often followed by a very different kind
of dynamical process in the time span between validation surveys. The error patterns in
forecasts are, therefore, also highly variable. Under these settings, although the forecast
errors from different models might indeed be correlated, accounting for cross-model
error correlations is risky and generally counterproductive because of over-fitting and
due to the fact that different dynamical events generally result in different error patterns
in forecasts. In this paper, we advocate a Bayesian model fusion approach that treats
forecast errors from different models as uncorrelated in order to gain its capability to
work with a small sample of past validating events, while still accounting for spatial
structure in forecast-error covariances.

The proposed methodology consists of the following three general steps:
(a) parametrization of forecast uncertainties through either a suitable parametric
family (covariance models) or through a low-rank approximation (dominant error sub-
spaces); (b) update of forecast uncertainty parameters via maximum likelihood (ML)
(section 2); and (c) combining model forecasts based on their uncertainty parameters
via ML (section 3). The methodology is amenable to an ensemble-based representation
of error covariances in individual models. The forecasting models are allowed to be
defined on different grids.

The rest of the paper is organized as follows. In section 2, we describe the multi-
model error parameter estimation based on ML. The core part of the construction
is the expectation–maximization technique. In section 3, we apply this developed
methodology for multi-model Bayesian fusion. Finally, we illustrate it on the example
of two-model real-time ocean forecasting exercises held in the Monterey Bay/California
Current system in August 2003.

2. MULTI-MODEL ERROR PARAMETER ESTIMATION

(a) Set-up, notation, motivation
Suppose a multi-model ocean/atmospheric predictive system consists of m models

that produce independent forecasts, {xk
1, xk

2, . . . , xk
m}Kk=1, valid at times {tk}Kk=1, with

the corresponding forecast errors {εk
1 , εk

2 , . . . , εk
m}Kk=1. Suppose also that validating

measurements, {yk}Kk=1, with error {εk
o}Kk=1, become available. Each xk

i in the above
designates a grid-space vector of forecast values, xk

i ∈ R
ni , corresponding to model i,

and index k designates a validating event. Each vector yk ∈ R
pk denotes a batch of

spatially distributed validating measurements taken at time tk . Measurements yk and yl

might correspond to different locations, and forecasts xi and xj are allowed to be
defined on different grids. The total number of validating events, K , is assumed to be
small, possibly one, as explained in the introduction. We pose ourselves the problem of
finding the optimal strategy for combining model forecasts, xK+1

1 , xK+1
2 , . . . , xK+1

m , to
generate the central forecast, xK+1 ∈ R

n, the next time a prediction is being made.
Let x ∈ R

n denote the grid-space vector of forecast values on a central forecast grid.
A central forecast grid can be chosen as one of the model grids or defined separately.
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The ML fusion of xK+1
1 , xK+1

2 , . . . , xK+1
m corresponds to maximizing the posterior

probability,
x̂K+1 = arg max

x
{p(x | xK+1

1 , xK+1
2 , . . . , xK+1

m , D)}, (1)

where D = {xk
1, xk

2, . . . , xk
m, yk}K

k=1 denotes a set of all past validating data within the
time window K . The posterior probability (1) typically involves a set of unknown hyper-
parameters, �, such as forecast-error covariance parameters. We simplify (1) by making
a Markov process assumption and finding the hyper-parameters, �, from the validating
data D based on ML,

x̂K+1 = arg max
x

{p(x | xK+1
1 , xK+1

2 , . . . , xK+1
m , ̂�∗)}, (2)

with ̂�∗ = arg max
�

p(� | D). (3)

We assume unbiased Gaussian forecast errors, εi ∼ N (0, Bi ), Bi = 〈εiε
T
i 〉.

The parametrization of forecast uncertainties is needed to reduce the number of degrees
of freedom in the system in order to ensure robust parameter estimation from the data
available within the time window K . We assume that the forecast-error covariances,
{Bi}mi=1, are parametrized in some sensible way, Bi ≈ ̂Bi (αi ), and denote the vector
of all error covariances parameters of model i as αi ∈ R

qi . The collection of the error
parameters in all m models we formally denote as � ≡ {αi}mi=1.

The exact way of parametrizing the Bi remains at the discretion of a researcher
or is determined by the legacy of a data assimilation system. One popular approach
to parametrization is the use of covariance models (e.g. Gaspari and Cohn 1999).
In this case αi could involve decorrelation length-scales and variances, among other
parameters. An example of αi is given in section 2(d). A possible alternative to co-
variance models is the use of a low-rank approximation (e.g. Lermusiaux 1999a),
Bi ≈ Ui�i (αi )UT

i , where Ui is a low-rank orthogonal basis of the dominant forecast-
error subspace. The error basis Ui can be found from a forecast ensemble spread using
the methodology described in Lermusiaux and Robinson (1999). The diagonal matrix
of singular values, �i (αi ), can be parametrized, with parameters αi ∈ R

qi . The simplest
choice of αi are the singular values themselves treated as free parameters. Regardless of
the form of forecast-error covariance parametrization in model i, we refer to it as ̂Bi (αi )
hereafter.

(b) Single-model and multi-model error parameter estimation
The ML error parameters are found through maximizing the probability of observ-

ing data D given error parameters, p(D | �). Since D is given and hence fixed, the
probability p(D | �) is a deterministic function of parameters �, called the likelihood
function, L. ML error parameter estimation amounts to maximizing the likelihood func-
tion, L,

̂�∗ = arg max
�

p(D | �) = arg max
�

L(� | D). (4)

We use �, as before, to formally denote the collection of all error parameters
in all m models, � ≡ {αi}mi=1. With only one forecasting model, all the relevant
information contained in the validating data D = {xk

1, yk}K
k=1 can be fully expressed via

model–data misfits, dk = yk − H1xk
1. Gaussian error assumption leads to the standard

ML error parameter estimation from model–data misfits (Dee 1995; Dee and da Silva
1999; Purser and Parrish 2003). Because the sum of Gaussian errors, H1ε1 and εo (where
H1 is linear mapping from model state-space onto the observational space), is also
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distributed as a Gaussian with covariance 〈H1ε1ε
T
1 HT

1 〉 + 〈εoε
T
o 〉, the model–data mis-

fits, dk = yk − H1xk
1, are random samples from the normal distribution N (0, Q1(α1)),

where Q1(α1) is the sum of the forecast- and the observation-error covariances,
Q1(α1) = H1B1(α1)HT

1 + R. Therefore, the likelihood function L(α | D) in (4) is read-
ily expressed as

log L(α | D) ∝ (α − α0)
T�−1(α − α0) + K log det Q(α) +

K
∑

k=1

dT
k Q−1(α)dk. (5)

ML parameter estimation in a one-model system amounts to minimizing (5) with
respect to α. The first term in (5) describes prior information on parameter values,
N (α0, �), and can be omitted if no such prior information is available (Dee 1995;
Purser and Parrish 2003).

In a multi-model system, the likelihood function L(� | D) is not easily expressed
because the relevant information contained in D cannot be fully represented via model–
data misfits. Model–model differences are another source of information about fore-
cast errors that complement the information contained in model–data misfits. Learning
forecast errors from model–data misfits only, within each model separately, is equiva-
lent to ignoring the information contained in model–model differences and results in
suboptimal error parameter estimation. The amount of information contained in the
model–model differences depends on the accuracy of the models, as well as on the
degree of independence of their errors. Synthetic data tests presented later in this section
demonstrate that ignoring the information contained in model–model differences leads
to significant degradation of error parameter estimates (Table 1). In the next subsection
we present a method that solves the multi-model error parameter estimation problem in
a way that is both practical and easy to implement.

(c) Multi-model error parameter estimation via expectation–maximization
Our method of solving (4) in the multi-model settings rests on the observation

that the problem is amenable to a missing data interpretation. The likelihood function
L(� | D) is not easily expressed in the multi-model case. However, the multi-model
error parameter estimation becomes straightforward if we know the values of the true
state of the ocean/atmosphere at observation locations. In order to take advantage of that
fact, we augment the data, Y = {D, Z}, where Z = {zk}K

k=1 is the true ocean/atmosphere
state at observation locations (zk ∈ R

pk ), and employ the expectation–maximization
(EM) technique to replace L(� | D) with L(� | D, Z) for the purposes of error
parameter estimation. We call Y the complete data. As opposed to L(� | D), the
complete-data likelihood L(� | D, Z) is readily expressed. However, L(� | D, Z)
is not a deterministic function of parameters �, since Z is unknown and therefore
must be treated as random, with some underlying probability distribution, p(Z | D, �).
The expectation, EZ|D,�{L(� | D, Z)}, of the complete-data likelihood with respect
to missing data Z, on the other hand, is a deterministic function of parameters �
(EZ|D,�{·} ≡ ∫

Z{·}p(Z | D, �) dZ). The EM method amounts to replacing the
maximization of log L(� | D) by maximization of EZ|D,�{log L(� | D, Z)} as this
substitution leads to the same parameter values (Dempster et al. 1977; Redner and
Walker 1984).

The parameter values, �, are unknown for the purposes of evaluating p(Z | D, �)
when taking the expectation EZ|D,�{·}. The EM methodology overcomes that diffi-
culty through an iterative succession of expectation (E) and maximization (M) steps.
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At an E-step, the expectation of the complete-data log-likelihood is computed based on
the current estimate of parameter values, Q(�, ̂�iter) ≡ EZ | D,̂�iter{log L(� | D, Z)}.
At an M-step, Q(�, ̂�iter) is maximized as a function of � to improve upon ̂�iter.

E : Q(�, ̂�iter) =
∫

Z
log{L(� | Z, D)}p(Z | D, ̂�iter) dZ

M : ̂�iter+1 = arg max
�

Q(�, ̂�iter).

⎫

⎪

⎬

⎪

⎭

(6)

The EM algorithm has global convergence, with linear or better rate (Dempster
et al. 1977). Under the Gaussian error assumption, the complete-data log-likelihood is
expressed as

log L(� | Z, D) ∝ K

m
∑

i=1

log det ˜Bi (αi )

+
K

∑

k=1

m
∑

i=1

(zk − Hixk
i )

T
˜B−1

i (αi )(zk − Hixk
i ), (7)

where Hi denotes linear mapping from the ith model state-space onto the observa-
tional space, and ˜Bi = HiBiHT

i . The prior term (� − �0)
T�−1

� (� − �0) can also
be included in (7) in the same way as in (5) if prior information on � is available.
Assuming the independence of validating events in D , the marginal probability density
p(Z | D, ̂�iter) expands as

p(Z | D, ̂�iter) =
K
∏

k+1

p(zk | D, ̂�iter), (8)

where each probability density function, p(zk | D, ̂�iter), is the normal distribution,

p(zk | D, ̂�iter) = N {iterzk
a,

˜Ba(̂�
iter)}. (9)

The vector iterzk
a ∈ R

pk is the analysis at observation locations and ˜Ba(̂�
iter) is the

analysis-error covariance, both evaluated with parameter values ̂�iter:

iterzk
a = arg min

z

m
∑

i=1

(z − Hixk
i )

T
˜B−1

i (α̂iter
i )(z − Hixk

i ) + (z − yk)TR−1(z − yk) (10)

˜B−1
a (̂�iter) = ˜B−1

1 (α̂iter
1 ) + ˜B−1

2 (α̂iter
2 ) + · · · + ˜B−1

m (α̂iter
m ) + R−1. (11)

An alternative to (10) is the closed-form expression

zk
a = ˜BaHT

1 B−1
1 xk

1 + ˜BaHT
2 B−1

2 xk
2 + · · · + ˜BaHT

mB−1
m xk

m + ˜BaR−1yk. (12)

By using the Gaussian integral identity for an expectation of a quadratic form,
∫

z
(z − Hixk

i )
T
˜B−1

i (z − Hixk
i )N (z; zk

a,
˜Ba) dz

= (zk
a − Hixk

i )
T
˜B−1

i (zk
a − Hixk

i ) + Tr(˜B−1
i

˜Ba),
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for every term in (7), and keeping the terms dependent on �, we obtain a closed-form
expression for the expectation of complete-data log-likelihood:

Q(�, ̂�iter) ∝ K

m
∑

i=1

log det ˜Bi(αi )

+
K

∑

k=1

m
∑

i=1

(iter̂zk
a − Hixk

i )
T
˜B−1

i (αi )(
iter̂zk

a − Hixk
i ). (13)

The EM procedure simplifies to a sequence of iterative updates to the analysis,
iter̂zk

a , based on the current error parameter estimates, ̂�iter, and the subsequent updates
to the error parameter values from model–analysis misfits:

iter̂zk
a = arg min

z

m
∑

i=1

(z − Hixk
i )

T
˜B−1

i (α̂iter
i )(z − Hixk

i ) + (z − yk)TR−1(z − yk) (14a)

̂�iter+1 = arg min
�

Q(�, ̂�iter), with Q(�, ̂�iter) given in (13). (14b)

Because we have assumed that forecast errors from different models are uncorre-
lated, error parameter estimation (14b) can be carried out independently in the individual
modelling systems using their own error parameter estimation procedures. Only vectors
iter̂zk

a have to be communicated between the models. Thus, the methodology is easy to
implement and carries little overhead in terms of new software development.

(d) Synthetic data tests
The EM-based multi-model error parameter estimation procedure described in

the previous subsection improves an estimate of forecast-error parameters based upon
model–data misfits by the inclusion of additional information contained in model–model
differences. Synthetic data tests in which the ‘truth’ and the ‘true’ error parameter val-
ues are generated (and hence known) can be carried out to examine the improvement
attributed to the method for different uncertainty parameters. Figure 1 illustrates such
an experiment, and Table 1 summarizes the statistics. Two ‘models’ are drawn indepen-
dently at random from a normal distribution around a synthetic ‘truth’, with chosen error
covariance parameters. An isotropic covariance model, B(ξ1, ξ2) = σ 2ρ(|| ξ1 − ξ2 ||),
with the fifth-order piecewise rational representing function, ρ(r) = ρc(r, L), given by
(4–10) in Gaspari and Cohn (1999), has been utilized. The choice of the covariance
model was arbitrary and made solely because it yields a well-conditioned Bi(αi ) for the
whole range of parameter values. The vector αi in this case consists of only two param-
eters, αi = (σi, Li)

T. The error length-scale parameters, Li , in the models have been
intentionally chosen to be very different. Synthetic ‘observations’ have also been drawn
at random from a Gaussian distribution, with diagonal covariance R. Figure 1(a) illus-
trates the data on which the multi-model error parameter estimation procedure is run.
Figures 1(b) and (c) show the analyses computed with error parameters obtained from
model–data misfits and through the EM procedure described in this paper, respectively.
The experiment illustrated in Fig. 1 was repeated 100 times for each uncertainty level
attributed to the observations (i.e. different ratio values in Table 1) to collect statistics.
Table 1 illustrates that, given a sufficient level of uncertainty in the measurements as
compared to uncertainty in the models, the information contained in the model–model
differences leads to a significant improvement of the error parameter estimates and of
the multi-model analysis.
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Figure 1. Synthetic data test illustration: (a) two model forecasts and validating observations, (b) analysis based
on error parameter estimation from model–data misfits, and (c) analysis based on multi-model error parameter

estimation described in this paper.
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TABLE 1. NORMALIZED∗ r.m.s. ERROR OF ESTIMATES σ̂ , ̂L AND x̂†
a

Via EM formalism From model–data misfits

Ratio‡ σ̂ ̂L x̂a σ̂ ̂L x̂a

0.10 0.10 0.18 1.05 0.17 0.21 1.1
0.25 0.11 0.20 1.10 0.18 0.23 1.2
0.50 0.14 0.23 1.25 0.21 0.27 1.4
0.75 0.16 0.25 1.35 0.25 0.32 1.7
1.00 0.17 0.26 1.40 0.30 0.38 2.1

∗ By true parameter values in case of σ̂ and ̂L, and by the r.m.s. of the
‘true’ analysis (obtained using true error parameters) in case of x̂a.
‡ Ratio ≡ rmso/(rms1 + rms2), where rmso, rms1, and rms2 are the
r.m.s. errors of observations, first and second models, respectively.
† See text for definitions.

3. MAXIMUM-LIKELIHOOD FORECAST FUSION

Once the multi-model error parameters are estimated through the EM procedure
(14), we combine the models based on their relative uncertainties via the ML principle.
Given independent forecasts, x1, x2, . . . , xm, the conditional probability density of the
true state, x, expands via the individual forecast p.d.f.s (we drop the index k hereafter as
all the vectors correspond to tK+1),

p(x | x1, x2, . . . , xm) ∝ p(x | x1)p(x | x2) . . . p(x | xm). (15)

The independence of multi-model forecasts can be questioned since the indivi-
dual models have qualitatively similar model errors and typically use the same set
of measurements for initialization. We advocate (15) for the reasons explained in the
introduction—with only a few validating events, an attempt to account for cross-model
correlation structure amounts to over-fitting and is counterproductive.

Under the Gaussian error assumption, the individual p.d.f.s p(x | xi) in (15) are
normal distributions N {Hc

i xi, Bi (α̂i )}, where Hc
i denotes linear mapping from the ith

model state-space onto the central forecast state-space and Bi (α̂i ) = Hc
i Bi(α̂i )HcT

i .
The ML (minimum variance) central forecast, xc, corresponding to (2) is found as

xc = arg min
x

m
∑

i=1

(x − Hc
i xi)

TB−1
i (α̂i )(x − Hc

i xi), (16)

or using a closed-form solution,

xc = ̂BcHT
1
̂B−1

1 x1 + ̂BcHT
2
̂B−1

2 x2 + · · · + ̂BcHT
m
̂B−1

m xm, (17)

where the central forecast-error covariance, ̂Bc, is expressed as

̂Bc = ( ̂B−1
1 + ̂B−1

2 + · · · + ̂B−1
m )−1. (18)

The above procedure is equivalent to Bayesian Model Averaging (Hoeting et al.
1999), where xc = ̂C1x1 + ̂C2x2 + · · · + ̂Cmxm, with Bayesian weight matrices, ̂Ci ,
given by ̂BcHT

i
̂B−1

i . Denote the sum of columns of ̂Ci as p̂i ,

p̂i =
ni

∑

n′=1

̂Ci (j, n′) ∀j, ̂Ci = ̂BcHT
i
̂B−1

i , (19)
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where j is the central forecast grid point index. Bayesian weights pi provide the spatially
varying optimal weight of the ith model in the central forecast and satisfy pi(j) > 0 ∀j
and

∑m
i=1 pi = 1. These weights translate model error parameters in terms of relative

model skill. If it is desired that no extra smoothing be introduced through model fusion,
the Ci (j, :) are to be replaced with the pi(j) in the overlapping parts of the central and
ith model domains, xj

c ∈ xi , so that the multi-model Bayesian fusion becomes

xc =
{

p̂1x1, xj
c ∈ x1

̂C1x1, xj
c /∈ x1

+
{

p̂2x2, xj
c ∈ x2

̂C2x2, xj
c /∈ x2

+ · · · +
{

p̂mxm, xj
c ∈ xm

̂Cmxm, xj
c /∈ xm.

(20)

Bayesian model fusion (20) ignores inter-model forecast-error correlations in order
to gain its capability to work with a small sample of past validating events in response
to the needs discussed in the introduction. In applications with a sufficient amount of
validating data for robust estimation of cross-model error covariance parameters, steps
could be taken to correct for the inter-model error correlations. One possible approach is
given in Julier and Uhlmann (2001) who describe the Covariance Intersection algorithm
that seeks to account for the inter-model error correlation structure by introducing and
optimizing an additional scalar parameter that specifies a convex combination of the
model covariances. If this general approach can be extended to accommodate the high
dimensionality of real-world data and models, then it might be useful for applications to
atmospheric and oceanographic forecasting systems.

4. REAL-TIME FORECASTING IN THE MONTEREY BAY/CALIFORNIA CURRENT SYSTEM

We illustrate the methodology based on the real-time ocean forecasting exercises
held in the Monterey Bay/California Current system in August 2003 and designated as
AOSN-2. The Autonomous Ocean Sampling Network (AOSN) project brought together
a wide range of measurements from various platforms with the state-of-the-art numerical
ocean models and was designed to test and further improve the methods, the forecast
protocols and technical infrastructure behind an integrated observing and modelling
system for regional ocean predictions∗. The exercises included two ocean models,
the HOPS (Robinson 1999; Robinson and Lermusiaux 2002) and the University of
California (Los Angeles) version of the Regional Ocean Modeling System (ROMS;
Shchepetkin and McWilliams 2005). These two forecasting models were defined in
overlapping but slightly different domains (Fig. 2(a)) and operated independently of
each other in real time. The use of two independent models provided the opportunity to
consider improving the forecasting by combining the two models.

Our approach to model combination led us to develop and apply the methodology
described in this paper. The AOSN-2 program included two conductivity–temperature–
depth (CTD) surveys for initialization and assimilation, with nominally similar station
locations, the first on 5–7 August, with the stations depicted in Fig. 2(a), and the second
on 21–23 August, with the stations depicted in Fig. 2(d). (CTD instruments measure
vertical profiles of in situ temperature and salinity, and other seawater properties.)
We have utilized the data from the first CTD survey to estimate the forecast-error
parameters in HOPS and ROMS. We have then applied these parameters for model
fusion, as described in this paper. The data from the second CTD survey were utilized
to evaluate HOPS and ROMS forecast skill as compared to the skill of the combined
forecast which we now call the central forecast, CNTR. Figures 2(b) and (c) show

∗ The full description of the experiment is available at http://www.mbari.org/aosn/
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Figure 2. (a) HOPS (blue) and ROMS (green) domains, with dots indicating conductivity–temperature–depth
stations (first survey), (b) HOPS and (c) ROMS sea surface temperature (◦C) forecasts, and (d) Bayesian fusion

of HOPS/ROMS forecasts, with validating CTD stations (second survey).

examples of the individual HOPS and ROMS forecasts. The corresponding CNTR,
obtained via Bayesian fusion of HOPS and ROMS, is shown in Fig. 2(d).

Table 2 summarizes some skill metrics, specifically the r.m.s. error and the
correlation of forecast with observed SST. These skill metrics have been accumu-
lated for the individual HOPS and ROMS forecasts, and for the central forecasts
obtained via Bayesian fusion of HOPS and ROMS using two different error par-
ameter estimation methodologies. The first set of central forecasts, CNTREM, was
computed based on the EM multi-model error parameter estimation methodology
described in this paper. The second set of central forecasts, CNTRd, was based
on the standard ML error parameter estimation from model–data misfits, within
each model separately, following the methodology described in Dee (1995) and
Purser and Parrish (2003). (d represents the innovation vector.) Table 2 shows im-
provements in both the r.m.s. error statistics and the correlation of forecast with
validating measurements for CNTREM compared with CNTRd. This improvement stems
from the inclusion of information contained in the model–model differences.
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TABLE 2. SST FORECAST SKILL

HOPS ROMS CNTREM CNTRd

R.m.s. forecast error (degC) 1.2 1.6 0.9 1.1
Forecast-to-data correlation 0.75 0.68 0.83 0.80

CNTREM: central forecast with the EM error parameter estimation.
CNTRd: central forecast with error parameter estimation as in Dee (1995).

5. CONCLUSIONS

Describing the model fusion process within a probabilistic Bayesian framework
through the formalism of multi-model error parameter estimation is a sensible venue
for multi-model forecasting. Today, in regional ocean forecasting applications, the time-
scale for changes to a forecasting system is often shorter than the time it takes to collect
a statistically significant sample of validating events. We have outlined a methodology
designed to work with a small sample of past validating events. Our method consists
of parametrization of forecast uncertainties, multi-model error parameter estimation,
and Bayesian fusion of multi-model forecasts based on their estimated uncertainty
parameters. The method is not optimal because it does not directly treat the inter-model
forecast-error correlations, but it does take into account the information contained in
model–model differences. The method is practical and well suited for regional adaptive
ocean forecasting and possibly other ocean and atmospheric forecasting applications.

Multi-model error parameter estimation is the essential component of the method-
ology. Synthetic data tests indicate that model–model differences supply important
additional information to forecast-error parameter estimation beyond the information
contained in each of the model–data misfits. We have put forward a practical algorithm
to account for the information contained in model–model differences via the EM-based
scheme. The strength of our algorithm is that it makes full use of the existing error
parameter estimation procedures within the individual models and carries little over-
head in terms of software development. We have successfully implemented Bayesian
multi-model fusion via error parameter estimation in the AOSN-2 real-time forecasting
exercises which led to improved forecast quality. In August 2006, HOPS and ROMS
will again forecast together in real time in the Monterey Bay area for an adaptive sam-
pling experiment involving Woods Hole and Scripps fleets of gliders and several other
observational platforms. The methodology presented here will be utilized in real time.
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