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Abstract. The efficient interdisciplinary 4D data assimilation 

with nonlinear models via Error Subspace Statistical Estimation 
(ESSE) is reviewed and exemplified. ESSE is based on evolving 
an error subspace, of variable size, that spans and tracks the 
scales and processes where the dominant errors occur. A specific 
focus here is the use of ESSE in interdisciplinary smoothing 
which allows the correction of past estimates based on future 
data, dynamics and model errors. ESSE is useful for a wide 
range of purposes which are illustrated by three investigations:  
(i) smoothing estimation of physical ocean fields in the Eastern 
Mediterranean, (ii) coupled physical-acoustical data assimilation 
in the Middle Atlantic Bight shelfbreak, and (iii) coupled 
physical-biological smoothing and dynamics in Massachusetts 
Bay.  

I. INTRODUCTION  

All dynamical models are to some extent approximate, and 
all data sets are finite and to some extent limited by error 
bounds. The purpose of data assimilation is to provide 
quantitative estimates of nature which are better estimates 
than can be obtained by using only observations or a 
dynamical model. State variables, parameters and their 
respective uncertainties can be estimated, processes inferred, 
dynamical hypothesis tested, necessary data identified, and 
fundamental models developed.  

The data assimilation process is optimal because 
dynamical models and data sets are combined based on the 
quantitative minimization of an assimilation criterion or cost 
function. The links between observational data and dynamical 
model fields and parameters are provided by measurement 
models. Since dynamical models, data sets and measurement 
models are all approximate, they all involve an uncertainty 
component, i.e. the error models. In general, it is the 
probability density functions (pdf’s) of the errors which are 

modeled. A specific realization such a pdf is here represented 
by a random noise, i.e. stochastic forcings.  

The assimilation criterion usually weights each 
information according to its uncertainty. Accurate uncertainty 
estimates are thus essential. Since the dimension of error 
models is in principal infinite, an important challenge in data 
assimilation is the efficient attribution, representation and 
estimation of errors. This challenge involves scientific as well 
as computational issues. Two examples are: (i) what are the 
dominant uncertain processes in mesoscale or climate 
predictions?, and (ii) how can errors be accurately forecast at 
feasible costs? Error Subspace Statistical Estimation (ESSE; 
[7,6]) is a data assimilation methodology which can address 
such issues. Instead of characterizing and capturing all 
uncertainties, ESSE focuses on the uncertainties that matter. It 
is based on evolving an error subspace, of variable size, that 
spans and tracks the scales and processes where the dominant 
errors occur.  

After briefly reviewing and illustrating a few data 
assimilation schemes and their applications to physical and 
interdisciplinary research, the oral presentation discussed a 
few current data assimilation research issues. We refer here to 
[18, 19, 20] for such reviews and discussions. Presently, the 
ESSE schemes are first outlined in Sect. 2. Their results are 
then illustrated and evaluated for three physical, acoustical 
and biological applications of scientific and operational 
relevance (Sect. 3). A focus here is the use of ESSE in 
interdisciplinary smoothing, specifically, the correction of past 
estimates based on the future interdisciplinary data, dynamics 
and model errors. Conclusions are provided in Sect. 4.  
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II. FILTERING AND SMOOTHING VIA ESSE  

The spatially discretized interdisciplinary ocean state is 
represented by a coupled state vector, x, which is evolved 
from

0x  based on, dx = M(x)dt + dη, where M is the 
coupled model operator and dη are the stochastic 
uncertainties. At time t

0
ˆ( )t = x

k, measurement models are of the form, 
yk = H(xk) + εk, where yk is the observed data, H the 
measurement model operator and εk the stochastic 
uncertainties. The goal of the present four-dimensional data 
assimilation is to minimize the trace of the a posteriori error 
covariance, p

kP (+), of the coupled state, i.e. find xk such that 

Jk = tr[ p

kP (+)] is minimized using [y0,…,yk/yN]. If data are 
employed up to time tN to estimate the state at time tk, the 
assimilation is a smoothing problem. If only data up to tk are 
employed, it is a filtering problem.  

 

     Fig. 1. Five main components of the present ESSE system. 

The ESSE methodology provides data assimilation 
schemes which solve an optimal reduction of the above 
problem. The goal of ESSE is to determine the ocean 
evolution by minimizing the dominant errors, in agreement 
with the full dynamical model and measurement model (data) 
constraints, and their respective uncertainties. The “dominant 
errors” are here defined by the dominant eigendecomposition 
of a normalized form of the error covariance matrix. The 
dominant error eigenvectors and eigenvalues determine the 
“error subspace.”  

A. Error Subspace Statistical Estimation Schemes 

Presently (Fig. 1), the error subspace is initialized by 
decomposition on multiple scales [9, 13]. The dominant 
uncertainties at t0 are assumed to be the variability that is 
uncertain in the initial state. For parts of this uncertain 
variability, some data are usually available. These “observed 
portions” of the dominant error covariances are directly 
specified from differences between the initial state and those 
data, and/or from a statistical model fit to these differences. 

The “non-observed” portions are constructed by an ensemble 
of stochastic dynamical model integrations: by dynamical 
cross-covariances, these unknown portions of the covariance 
are created and adjusted to the specified observed ones. The 
resulting estimate of the initial error eigendecomposition (E0, 
Π0) or error pdf (Fig. 1: blue, left oval) is used to perturb the 
initial state x0.  

To evolve the ocean fields and uncertainties (Fig. 1: light 
green, central oval) up to time tk, an ensemble of stochastic 
ocean model integrations are carried out in parallel. The error 
covariance forecast is computed from this ensemble. The 
ensemble size is increased and ultimately controlled by 
convergence criteria; when satisfied, the ensemble of states 
leads to the forecast of nature xk (–) and to its error estimate, 
e.g. the error eigenvectors Ek (–) and eigenvalues Πk (–) 
obtained by normalized SVD. It is important to note that in 
this process the biochemical, physical and acoustical 
ensembles are concatenated to provide the coupled predicted 
fields and uncertainties. 

At this stage, the data and their error estimates (Fig. 1: 
dark green, bottom oval) are employed. Data-forecast misfits 
are computed and used to correct the predicted fields by 
minimum error variance estimation in the interdisciplinary 
error subspace (Fig. 1: red, right oval). During this melding, 
the data influence is across disciplines, e.g. biochemical data 
correct the physics. The outputs are the filtering estimates: the 
a posteriori coupled fields xk (+) and a posteriori coupled 
errors, e.g. Ek (+), Πk(+). A posteriori data misfits are then 
calculated and used for adaptive learning of the dominant 
errors, e.g. [8]. This learning of errors from misfits can be 
necessary because error estimates are themselves uncertain.  

Ultimately, the smoothing via ESSE [7] is carried out (Fig. 
1: yellow, top oval) to correct, based on future data, the past 
coupled fields and uncertainties. Starting from the filtering 
estimate, a statistical approximation to the forward integration 
of the dynamical model between two data times tk-1 and tk is 
first derived. The approximation is importantly written in a 
backward form. Presently, it is a backward statistical 
linearization based on the a posteriori error subspace at times 
tk-1 and nonlinear forecast error subspace at times tk. It is then 
utilized to minimize the smoothing cost function and so 
compute the smoothing estimate and its errors. Carrying out 
the smoothing process recursively up to t0 leads to the 
smoothed initial fields and errors, e.g. E0/N, Π0/N.  

III. INTERDISCIPLINARY INVESTIGATIONS  

A. Physical Smoothing in the Levantine Sea 

The first smoothing application illustrated is in the 
Levantine Sea. The focus is on the mesoscale to subbasin-
scale physical fields and errors. To introduce this region and 
its contemporary upper-thermocline features, a multivariate 
3D objective analysis (computed by ESSE, [13]) of the 
potential density at 105 m and velocity at 5 m is shown on 
Fig. 2. Because of thermal-wind effects, surface circulation 
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Fig. 2. March 27 analysis of potential density σθ at 105 m, overlaid with 
horizontal velocity vectors at 5 m (vectors are plotted only if the 
analyzed ||u|| is larger than 6 cm/s). The numbers identify the location of 
the main upper-thermocline features: Asia Minor Current (1), Mid-
Mediterranean Jet (2), Rhodes Gyre (3), West Cyprus Gyre (4), Ierapetra 
Eddy (5), a lobe of the Mersa Matruh Gyre (6) and main anticyclone in 
the Mersa Matruh-Shikmona Gyre complex (7). 

 
 

Fig. 3. Surface expected normalized mesoscale error variances (0–1) of the 
hydrographic data used in the smoothing, as computed by 2D objective 
analysis. Plots are ordered chronologically: (a) AXBT, March 15; (b) 
Week1 CTD, Mar 19–Mar 26; (c) Week2 CTD, Mar 27–Apr 2 (d) Week3 
CTD, Apr 3–Apr 9; (e) Week4 CTD, Apr 10–Apr 16. In the 2D objective 
analysis, mesoscale zero-crossings are 150 km and decay-scales 30 km. 

structures are easily distinguished along the steepest slopes of 
isopycnals. Several water masses of the Levantine Sea are also 
visible. The data, dynamical model and smoothing results are 
outlined next.  

Ocean Physics Data. The measurements were collected 
during the Levantine Intermediate Water-95 campaign which 
involved five intensive cruises carried out by research vessels 
of Germany, Turkey, Italy, Greece and Israel, from January to 
April 1995 in the Eastern Mediterranean [16]. For the present 
smoothing application, the focus is on the spring period, from 
March 15 up to April 16, 1996. To rapidly re-sample the 
physical fields just before the spring cruises, temperature vs. 
depths probes were deployed by aircraft (AXBTs) of the US 
Navy on March 15, 1995. Surface error variance fields 
computed by a quick 2D objective analysis of the available 
data are shown on Fig. 3. From these data coverage plots, it is 
obvious that it is only by the end of the campaign that the 
model domain has been covered by temperature and salinity 
profiles. Determining initial conditions for the model 
simulations is thus an issue. In addition, velocities are not 
measured. The estimation of the nonlinear physical evolution 
is thus an interesting smoothing problem. It is a prime 
candidate for ESSE. 

Ocean Physics Model. The physical state variables are 
temperature T, salinity S, velocity u and pressure pw. For this 
study, their deterministic mesoscale evolution is computed by 
the primitive-equation model of the numerical Harvard Ocean 
Prediction System, e.g. [17]. Boundary condition formulations 
are employed at the surface and at the open-ocean boundaries. 
In the present examples (Sects. III.A–C), these conditions and 

the model parameters are calibrated using data and sensitivity 
studies. In the uncertainty forecasts, stochastic forcings are 
added to the primitive-equation model. 

ESSE Filtering and Smoothing. To obtain the ESSE 
smoothed estimates, ESSE filtering is first carried out until the 
end of the campaign, assimilating the hydrographic profiles a 
time advances and here learning errors adaptively(see [5,8]). 
To carry this out, uncertainty forecasts are computed (Sect. 
II). Initial conditions are perturbed in accord with the initial 
error covariance and a parallel ensemble of perturbed 
forecasts is evolved. To account for model errors, each 
forecast is forced at each time-step by stochastic noise. This 
noise represents here the eventual model deficiencies in the 
surface external forcings and the sub-mesoscale to mesoscale 
processes. It consists of a stationary first-order Gauss-Markov 
process in time, with an autocorrelation time of half a day. In 
space, it has a correlation length of about one grid point (10 
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Fig. 4. (a) ESSE filtering estimate of the temperature at 5 m on April 
6, 1995. (b) As (a), but for the ESSE smoothing estimate. 

km). The amplitude of the noise is depth-dependent and was 
bracketed to be 10% of the dominant horizontally-averaged 
primitive-equation balance. We refer to [5] for more details. 

The filtering and smoothing fields are illustrated by Fig. 4. 
Starting from the filtering estimate on April 16, the ESSE 
smoothing progresses backward in time, based on the 
evolution of the error subspace during the filtering step (the 
error covariances of the filtering need to be saved). Presently, 
the error subspace size evolved within 318 and 329. 
Comparing the smoothed (Fig. 4b) and filtered (Fig. 4a) 
temperature fields on April 6, the smoothing process has 
corrected the positions, shapes and strengths of the main 
features of the Levantine Sea (Fig. 2), in accord with the 
future data, dynamics and model errors. The positive effects of 
the continued stochastic error forcings are also visible on Fig. 
4b. Since they increase the forecast error variance, they allow 
for better data corrections and, importantly, also lead to higher 
sub-meso- to mesoscale variability in the smoothed field, in 
accord with the data.  

For quantitative evaluation, root-mean-square differences 
between ESSE field estimates and data were computed at data 
points. As shown on Fig. 5 (dots), the smoothing improves the 
filtering, especially the initial conditions. On two days, the 
filtering estimate is closer to data. This is statistically possible, 
but in this case, the two filtering estimates are in fact too close 
to data. This is in part supported by comparing the quality of 
forecasts starting from filtering estimates with these starting 
from smoothing estimates. As shown on Fig. 5 (squares), 
forecasts from smoothing estimates are better. The forecast 
error growth is much larger from filtering estimates than it is 
from smoothing estimates. In fact, it is mainly the non-
linearities and the error subspace truncation which lead to 
differences between the smoothing estimate at tk+1 and the 
forecast to tk+1 starting from the smoothing estimate at tk.  

B. Physical-Acoustical Filtering in a Shelfbreak 
Environment 

 
Fig. 5. Root-mean-square differences between temperature data at 5 m and 
ESSE field estimates at these data-points, on 6 different days. The “RMS-
error” shown are these of the: filtering estimates (red dots), smoothing
estimates (green dots), forecasts from the previous filtering estimate (red 
squares) and forecasts from the previous smoothing estimate (green squares). 
The dashed-dotted lines illustrate the forward filtering (red zig-zag) and 
backward smoothing (green continuous line) evolutions. 

Coupled physical-acoustical data assimilation is now 
illustrated. The physics is the mesoscale dynamics of the 
Middle Atlantic Bight shelfbreak front, including remote 
influences from the shelf, slope and deep ocean. The acoustics 
is the transmission of low-frequency sound from the 
continental slope, through the shelfbreak front, onto the shelf. 
The period is the summer of 1996. In the present case, the 
coupled assimilation is an “identical twin experiment.” Data 
are extracted from a physical-acoustical simulation that is 
independent from the ensemble of realizations carried out 
during ESSE. This independent realization is called the “true” 
ocean. Goals in such an experiment are to study the 
assimilation in a simulated situation and to find out if the a 
posteriori fields become close to the known “true” fields. 

Physical and Acoustical Data. The physical data are 
profiles of temperature and salinity collected during the 1996 
Shelfbreak-PRIMER [15] experiment. Several of these data 
are here assimilated in the physical simulation to create a 
relatively realistic “synthetic” true ocean. After five days of 
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Fig. 6. Acoustic paths considered, overlaid on bathymetry. 

 

Fig.7. (a) “True” TL, a priori TL, a posteriori TL and TL realization closest 
to a posteriori TL, all along path 1. (b) A posteriori residuals and a 
posteriori error St.Dv., all for TL along path 1. 

physical evolution, the acoustic model is run using the sound-
speed field of the physical model. The coupled assimilation of 
acoustic data is then carried out via ESSE, correcting the 3D 
physical fields and 2D transmission loss (TL) along an actual 
PRIMER acoustic path (Fig. 6). The 224 Hz source is at 300 
m depth. The acoustical data assimilated here are simulated 
towed-receiver TL data along path 1, i.e. TL1. The TL 
observations are made at constant 70 m depth, every 50 m 
from a range of 150 m to almost receiver 1. These are very 
sub-sampled data since the (r, z) acoustic grid resolution is 5 
m by 5 m (see [14] for more detail).  

Coupled Ocean Physics and Acoustic Models. The ocean 
physics model is the primitive-equation model used in Sect. 
III.A. Here, it is forced by atmospheric fluxes imposed at the 
ocean surface. The physical-acoustical couplings occur 
through the sound-speed field which is the main water-column 
parameter in the acoustics. The acoustic model is a coupled 
normal mode model [2, 3] which solves a linearized wave 
equation governing sound pressure ps. This pressure is 
decomposed in the frequency domain into slowly-varying 
complex envelopes that modulate (mode by mode) analytic, 
rapidly-varying, adiabatic-mode solutions. Given the sound 
speed, density, attenuation rate and bathymetry vertical cross-
sections, the acoustic state is obtained by integrating 
differential equations governing the complex modal 
envelopes. The model output contains sound pressure, 
transmission loss, and travel time, phase and amplitude of the 
individual modes.  

ESSE Filtering. The results of the coupled assimilation are 
illustrated on Fig. 7. The simulated true TL, a priori TL (i.e. 
the mean TL), a posteriori TL and the TL realization closest 
to the a posteriori TL are shown on Fig. 7a. Even though the 
true TL is challenging to retrieve (TL of high-order modal 
interactions) and the sub-sampled data are limited, the a 
posteriori TL is substantially closer to the true TL than the 
mean TL. From the ESSE ensemble of predicted TLs, one can 
select for best estimate the TL the closest (in some metric 
sense, here the RMS measure over the r, z grid) to the a 

posteriori TL. This realization is at some locations closer to 
the true TL than the a posteriori TL. 

The differences between the a priori and true TLs, and 
between the a posteriori and true TLs, are shown on Fig. 7b. 
The a posteriori residuals are much smaller than the a priori 
ones at most locations, except above the thermocline near the 
surface on the shelf. This is due to the refractive effects of the 
thermocline (data are below at 70 m) and to the limited error 
subspace size (here 79). With ESSE, error covariances are 
also estimated: the diagonals of the a priori and a posteriori 
error covariances are plotted on Fig. 7b. Overall, these 
standard deviations agree with the averages of the residuals 
(note that their accuracy increases with the subspace size). In 
particular, the expected error along the simulated towed-
receiver at 70 m has been reduced.  
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C. Biochemical-Physical Smoothing in Massachusetts 
Bay 

A joint estimation of biochemical-physical variabilities and 
uncertainties in Massachusetts Bay is carried out via ESSE for 
the late summer of 1998. It is based on multiscale 
interdisciplinary data sets collected during the Littoral Ocean 
Observing and Predicting System (LOOPS-98) experiment. 
The LOOPS-98 scientific focus was phytoplankton and 
zooplankton patchiness, in particular, the spatial variability of 
zooplankton and its relationship to physical and 
phytoplankton variabilities. Synoptic physical and 
biochemical data sets were obtained simultaneously over a 
range of spatial and temporal scales. Real-time 
interdisciplinary nowcasts and forecasts were issued [1] and 
quantitative adaptive sampling was carried out [10]. The focus 
here is on the ESSE smoothing during the Aug. 25–Sep. 2, 
1998 period.  

Biochemical and Physical data. During LOOPS-98, 
observations were gathered on multiple scales using ships and 
Autonomous Underwater Vehicles. The gathering occurred in 
three phases: the initialization surveys (17–21 Aug.), update 
surveys (2–4 Sep.) and two weeks of intensive operations (17 
Sep.–5 Oct.). The main physical data consisted of temperature 
and salinity profiles at Bay-scale, mesoscale and sub-
mesoscale resolutions. For the ecosystem, profiles of 
chlorophyll-a fluorescence and light levels, and bottles of 
nitrate, ammonium, chlorophyll-a and pheaopigment, were 
collected at mesoscales and sub-mesoscales resolution in Cape 
Cod Bay and at mesoscale resolution north of Cape Cod Bay. 
The Massachusetts Water Resources Authority (MWRA) also 
collected biochemical samples which are employed here. 

Coupled Ocean Physics and Biochemical Models. The 
ocean physics model is the primitive-equation model used in 
Sect. III.A. Here, it is coupled to a biochemical model which 
governs the interactive evolution and spatial distribution of 
phytoplankton, zooplankton, detritus, nitrate, ammonium and 
chlorophyll-a (Chl-a). The model is nitrogen-limited: fluxes 
and state variables are expressed in terms of nitrogen (µ mol 
N/l) except the Chl-a compartment which is in (mgCh/m3). For 
all biochemical state variables, a four-dimensional advective-
diffusive-reactive equation is employed. The model 
parameters were estimated from a combination of in situ data, 
literature surveys and approximate dynamical constraints. 
After the real-time cruises, a wide range of parameter values 
were investigated and the optimal values found are used here. 
Further details on model parameters and structures are given 
in [1].  

ESSE smoothing. The biochemical-physical fields and their 
dominant errors are first initialized. This initialization is 
carried out following the 3D methodology of [9] (as in Sect. 
III.A), using the above interdisciplinary data and dynamical 
models. Presently, only the period Aug. 25–Sep. 2 of the 
ESSE simulation is discussed. The results of the coupled 
dynamical forecasts and of the assimilation via ESSE filtering 

and ESSE smoothing backward in time are illustrated on Fig. 
8.  

The nowcast on Aug.25 (Fig.8a) clearly indicates 
patchiness in the Chl-a field. At the end of the 1998 summer, 
the Chl-a maxima are around 4–7 mgChl/m3 and located near 
20 m depth. As September nears, storms of increasing strength 
and frequency pass over the region, sub-mesoscale and 
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Fig. 8. Panels (a–f): Cross-sections in Chl-a fields, from south to north 
along the main axis of Massachusetts Bay, with, a) Nowcast conditions 
on Aug. 25; b) Forecast for Sep. 2; c) 2D objective analysis for Sep. 2 of 
the Chl-a data collected on Sep. 2–3; d) ESSE filtering estimate on Sep. 
2; e) Difference between ESSE smoothing estimate on Aug. 25 and 
nowcast on Aug. 25; f) Forecast for Sep. 2, starting from ESSE 
smoothing estimate on Aug. 25. Panel (g): as d), but for Chl-a at 20 m 
depth. Panel (h): RMS differences between the Chl-a data on Sep. 2 and 
the field estimates at these data-points as a function of depth 
(specifically, “RMS-error” for persistence, dynamical forecast and ESSE 
9



mesoscale variability builds up, and light levels start to 
decrease. The combination of these effects lead to a horizontal 
homogeneization and vertical mixing of the Chl-a field, an 
increase of Chl-a at the surface in response to the mixing and 
in some locations to decreased light inhibition, and a 
deepening of the Chl-a maxima. The results of these 
phenomena are visible on the forecast for Sep. 2 (Fig. 8b).  

On Sep. 2–3, the available data are assimilated via ESSE. 
A cross-section in a 2D objective analysis for Sep. 2 of the 
Chl-a data collected during Sep. 2–3 is shown on Fig. 8c (note 
that values are masked for a non-dimensional data error larger 
than 70%). The result of the ESSE assimilation with an error 
subspace of size 600 is shown on Fig. 8d. Even though the 
interdisciplinary model forecast (Fig. 8b) was quite good, the 
data corrections are clearly visible on Fig. 8d. The differences 
between Fig. 8d and Fig. 8c provide a good example of the 
benefit of data assimilation and dynamical interpolation: on 
average, the 2D objective analysis (Fig. 8c) and the ESSE 
filtering field (Fig. 8d) have a similar departure from the 
actual data values (their RMS-differences with respect to data 
are similar). However, the ESSE filtering field is more 
realistic away from data positions, with multiple non-
homogeneous scales, than the 2D objectively analyzed field. 

Once the ESSE filtering is completed, the ESSE smoothing 
is carried out, leading to an update of the nowcast on Aug. 25. 
The difference between this ESSE smoothing field (not 
shown) and the nowcast on Aug. 25 (Fig. 8a) is shown on Fig. 
8e. Starting from the ESSE smoothing estimate on Aug. 25, 
the forward dynamical model is integrated up to Sep. 2, 
leading to the forecast from the ESSE smoothing estimate. 
This forecast (Fig. 8f) is clearly closer to the Sep. 2 data than 
the first forecast (Fig. 8b) started from the Aug. 25 nowcast 
(Fig. 8a). However, the forecast from the ESSE smoothing 
estimate is not as good as the ESSE filtering field (Fig. 8d). 
This is expected and is due to the: (i) nonlinearities, (ii) 
perfect dynamical model assumption (model errors were used 
in Sect. III.A, but are not used here), and (iii), error subspace 
truncation.  

To indicate the 4D aspects of the simulation, a horizontal 
map is provided on Fig. 8g, showing the Sep. 2 values of the 
Chl-a field at 20 m as estimated by ESSE filtering. The 
increased Chl-a values along the shallow coastline in Cape 
Cod Bay indicate an initial phase of the Fall bloom in the 
region. The locations of the high Chl-a just north of Cape Cod 
Bay, at the southern tip of Stellwagen Bank (north of the tip of 
Cape Cod) and to the south-east of Cape Cod, correspond to 
the regional physical circulations and to the path of the Gulf 
of Maine coastal current in Massachusetts Bay around that 
time. Higher sub-mesoscale mixing occur along the fronts and 
eddies associated to these circulation features, which leads to 
higher biological biomass.  

Finally, the skill of the ESSE simulation is quantitatively 
evaluated as a function of depth. Fig. 8h shows the 
horizontally-averaged RMS differences between Chl-a data on 
Sep. 2 and three field estimates: persistence (initial conditions 
on Aug. 25), dynamical forecast for Sep. 2 and ESSE filtering 

estimate for Sep. 2. Based on these curves, the dynamical 
forecast is about 70 to 100% better than persistence, while the 
ESSE filtering estimate is about 15 to 50% better than the 
dynamical forecast. The forecast fields are relatively good 
because the dynamical model parameters have been tuned to 
the data and because the model is forced in surface by 
atmospheric analyses.  

IV. CONCLUSIONS  

ESSE has been shown to be useful for a wide range of 
purposes as illustrated by three particular investigations. The 
smoothing estimation of physical ocean fields in the Eastern 
Mediterranean provided dynamically consistent fields superior 
to those obtained by statistical methods alone. The coupled 
physical-acoustical data assimilation in the Middle Atlantic 
Bight shelfbreak demonstrated the multiscale nature of ESSE 
in recovering the fine scale transmission loss signal from 
coarser resolution data and physical ocean model. The impacts 
of interdisciplinary ESSE filtering and smoothing were 
quantified in coupled physical-biological dynamical 
simulations for Massachusetts Bay. The ESSE estimates 
provided evidence of patchiness in the Chl-a field and 
highlighted the effects of storms, of sub-mesoscale to 
mesoscale variability and of decreasing light levels on the 
Chl-a field at the end of the 1998 summer.  

With ESSE, the sub-optimal reduction of errors is itself 
optimal. Without such reductions, real-time and accurate 
predictions of uncertainties are not directly feasible with the 
computers available today. On average, the computational cost 
of ESSE is about 103 to 104 times smaller than that of classic 
estimation schemes (e.g. Kalman smoother).  

Other recent examples of the applications of ESSE include: 
dynamical studies of the dominant mesoscale features and 
water pathways in the Strait of Sicily [8,11]; operational 
adaptive sampling in the Gulf of Cadiz [20]; coupled physical-
acoustical uncertainty predictions in the Middle Atlantic Bight 
shelfbreak [12]; physical variability forecast and dynamics in 
Massachusetts Bay [10]; and, visualization of uncertainties 
[4].  
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