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Ocean science and ocean acoustics today are engaged in coupled interdisciplinary research on both 
fundamental dynamics and applications.  In this context interdisciplinary data assimilation, which 
melds observations and fundamental dynamical models for field and parameter estimation is 
emerging as a novel and powerful methodology, but computational demands present challenging 
constraints which need to be overcome.  These ideas are developed within the concept of an 
interdisciplinary system for assessing sonar system performance.  An end-to-end system, which 
couples meteorology-physical oceanography-geoacoustics-ocean acoustics-bottom-noise-target-sonar 
data and models, is used to estimate uncertainties and their transfers and feedbacks. The approach to 
interdisciplinary data assimilation for this system importantly involves a full, interdisciplinary state 
vector and error covariance matrix.  An idealized end-to-end system example is presented based upon 
the Shelfbreak PRIMER experiment in the Middle Atlantic Bight. Uncertainties in the physics are 
transferred to the acoustics and to a passive sonar using fully coupled physical and acoustical data 
assimilation. 

1 Introduction 

Interdisciplinary ocean science today now involves research on coupled physical, 
biological, chemical, sedimentological, acoustical and optical processes.  Research 
advances in interdisciplinary ocean science have led to the emergence of new dynamical 
concepts in which non-linear interdisciplinary processes are now known to occur on 
multiple interactive scales in space and time with bi-directional feedbacks.  Such 
processes importantly can be dominated by strong sporadic events that are intermittent in 
space and time.  Understanding specific non-linear dynamics of known events and 
identifying important additional as yet unknown multi-scale interactive processes 
provides a framework for realistic representation and prediction of the interdisciplinary 
coastal ocean [12]. 

Ocean prediction for science and operational applications has now been initiated on 
global, basin and regional scales [13].  A system approach that synthesizes theory, data 
and numerical computations is essential for efficient and rapid progress in 
interdisciplinary ocean science and prediction [17].  The concept of Ocean Observing and 
Prediction Systems for field and parameter estimations has recently been crystallized with 
three major components: i) an observational network: a suite of platforms and sensors for 
specific tasks; ii) a suite of interdisciplinary dynamical models; and, iii) data 
management, analysis and, importantly, data assimilation schemes.  Systems are 
modular, based on distributed information providing shareable, scalable, flexible and 
efficient workflow. 

Data assimilation is a modern methodology of relating natural data and dynamical 
models [16]. The general dynamics of a model is combined or melded with a set of 
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observations. All dynamical models are to some extent approximate, and all data sets are 
finite and to some extent limited by error bounds. The purpose of data assimilation is to 
provide estimates of nature that are better estimates than can be obtained by using only 
the observational data or the dynamical model. There are a number of specific approaches 
to data assimilation that are suitable for estimation of the state of nature, including natural 
parameters, and for evaluation of the dynamical approximations.  Generally data 
assimilation demands large computational resources and efficient computational 
algorithms are essential.  Interdisciplinary data assimilation can contribute powerfully to 
understanding and modeling physical-acoustical-biological processes and is essential for 
ocean field prediction and parameter estimation [15].  Model-model, data-data and data-
model compatibilities are essential and dedicated interdisciplinary research is needed. 

 

Figure 1.  Density, fluorescence and acoustic backscatter across the Alneira-Oran Front in the Mediterranean 
Sea (from [4]). 

To illustrate these ideas, Figure 1 presents a set of simultaneous physical, optical and 
acoustical measurements obtained in the region of the Almeira-Oran Front in the 
Mediterranean Sea.  The purpose of these measurements was to study coupled biological-
physical frontal dynamical processes.  Hydrographic measurements directly provide the 
sea-water density distribution, fluorescence is a proxy for phytoplankton density and 
acoustic backscatter is a proxy for zooplankton density.  The density front separates 
Atlantic water from Mediterranean waters. Drawn down phytoplankton are concentrated 
at the front and further details are found in [4, 5].  The methodological approach that can 
best exploit the dynamical information in such measurements is data assimilation.  A 
single multi-variate state vector for the physical, biological, optical and acoustical state 
variables should be defined.  The error covariance matrix that determines the relative 
weights of data and dynamics in the melded estimates should include the covariances 
among all the physical, biological, optical and acoustical variables.  Importantly, in 
addition to backscatter data, acoustical propagation data can enhance interdisciplinary 
dynamical studies and ocean prediction efforts [2]. 



 

The theme of this presentation is that coupled ocean scientific and ocean acoustical 
data assimilation presents novel and powerful opportunities and challenges for theoretical 
and especially computational acoustics.  In the next section we will introduce the 
particular interdisciplinary system (physical/geological/acoustical/signal-
processing/sonar- system) to be studied.  Section 3 further develops data assimilation 
methods, Section 4 applies the system and the method to the Shelfbreak PRIMER data set 
and Section 5 concludes. 

2 End-to-End System Concept 

Advanced sonar performance prediction requires end-to-end scientific systems: ocean 
physics, bottom geophysics, geoacoustics, underwater acoustics, sonar systems and signal 
processing. The littoral environment can be highly variable on multiple scales in space 
and time, and sonar performance is affected by these inherent variabilities. Uncertainties 
arise in estimates of oceanic and acoustic fields from imperfect measurements (data 
errors), imperfect models (model errors), and environmental variabilities not explicitly 
known. A conceptual basis has been developed to achieve the following: i) generic 
methods to efficiently characterize, parameterize, and prioritize system variabilities and 
uncertainties arising from regional scales and processes; ii) error, variability and 
uncertainty models for the end-to-end system and it’s components to address forward and 
backward transfer of uncertainties; and, iii) transfers of uncertainties from the acoustic 
environment to the sonar and its signal processing in order to effectively characterize and 
understand sonar performance and predictions. In order to accomplish these objectives, 
an end-to-end system approach is necessary [13]. 

 

 
Figure 2.  Schematic diagram of the end-to-end system from a model point of view (from [13]). 

Figure 2 schematizes the end-to-end system from the model point of view, where 
models are used to represent each of the coupled dynamics (boxes) and also the linkages 
to observation systems (circles). An effort was made to make the diagram exact but as 
simple as possible.  The diagram illustrates the forward transfer of information, including 
uncertainties, in terms of observed, processed and model data (dots on arrows) and 
products and applications (diamond).  The system concept encompasses the interactions 
and transfers of information with feedback from: i) observing systems, the information 



 

being meteorological-physical oceanographic-acoustical-bottom-noise-target-sonar data, 
and, ii) coupled dynamical models, the information being physical-acoustical-bottom-
noise-sonar state variables and parameters. 

Specific applications require the consideration of a variety of specific end-to-end 
systems.  Note the backward pointing dotted arrows coming from the sonar model which 
indicate that the specifics of the sonar system determines e.g. the acoustic propagation 
calculations required.  To specify an application requires the choice of: i) observational 
circles and model boxes to be included; ii) data types and sampling schemes; and, iii) 
appropriate form of the dynamical models to be used.  Some of the wide range of 
approximate dynamics useful for various oceanic purposes are shown in Table 1. 

 
Table 1. Coupled (Dynamical) Models and Outputs. 

Models Types Outputs 
Physical • Non-hydrostatic models (PDE, x,y,z,t) 

• Primitive-Eqn. models (PDE, x,y,z,t) 
• Quasi-geostrophic, shallow-water 

models 
• Objective maps, balance eqn. (thermal-

wind) 
• Feature models 

• T, S, velocity fields and 
parameters, C field  

• Dynamical balances  

Acoustic 
Propagation 

• Parabolic-Eqn. models (x,y,z,t/f)  
• (Coupled)-Normal-Mode parabolic-

eqn. (x,z,f) 
• Wave number eqn. models (x,z,f: 

OASIS)  
• Ray-tracing models  (CASS)  

• Full-field TL (pressure 
p, phase j)  

• Modal decomposition of 
p field  

• Processed series: arrival 
strut., travel times, etc. 

• CW / Broadband TL 
Reverberation 
(active) 

• Surface, volume and bottom scattering 
models 

• Scattering strengths 

Bottom • Hamilton model, Sediment flux models 
(G&G), etc 

• Statistical/stochastic models fit-to-data 

• Wave-speed, density 
and attenuation 
coefficients 

Noise • Wenz diagram 
• Empirical models/rule of thumbs 

• f-dependent ambient 
noise (f,x,y,z,t): due to 
sea-surface, shipping, 
biologics 

Sonar system 
and signal 
processing 

• Sonar equations (f,t) 
• Detection, localization, classification 

and tracking models and their 
inversions 

• SNR, SIR, SE, FOM 
• Beamforming, spectral 

analyses outputs 
(time/frequency 
domains) 

Target • Measured/Empirical • SL, TS for active 



 

3 Interdisciplinary Data Assimilation 

Data assimilation provides a powerful methodology for state and parameter estimation via 
the melding of data and dynamics. It makes feasible such estimates on a substantial and 
sustainable basis. The general process is schematized in Figure 3.  Sensor data are linked 
to state variables and parameters and transformed as appropriate for the dynamical model 
via measurement models. Dynamics interpolates and extrapolates the data. Dynamical 
linkages among all the state variables and parameters allows all of them to be estimated 
from observations of some of them (i.e., those more accessible to existing techniques and 
prevailing conditions). Error estimation and error models play a crucial role. Using data 
assimilation schemes, data and dynamics are melded, often with weights inversely related 
to their relative errors. The melding is based on an assimilation criterion involving a cost 
or penalty function. The final estimates should agree with the observations and 
measurements within data error bounds and should satisfy the dynamical model within 
model error bounds. There are many important feedbacks in the generally highly 
nonlinear ocean observing and prediction system schematized in Figure 3, which 
illustrates the system concept and three feedbacks. Prediction provides the opportunity of 
efficient sampling schemes adapted to real-time structures, events, and errors. Data 
collected for assimilation also used for ongoing validation can identify model deficiencies 
and lead to model improvement, including the adaptation of the approximate models in 
real-time [15]. 

 

 
Figure 3.  Illustration of a generic Ocean Observing and Prediction System with data assimilation. 

Mathematically, the generic data assimilation problem is represented in terms of: 
 
Dynamical models 
dφi  +  v . ∇  φi dt - ∇ . (Ki ∇ φi ) dt = Bi (φ1,… φi,… φn) dt + dηi        (i = 1- - n) 
            
Parameter (P) equations 
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Assimilation criterion 
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li Π,ϕ     ),,,,,( εζηεζη qqqjldidJ

 
In the dynamical models, φi is a generic state variable (e.g. i = u, v, T, … , Zoo, … 

p), t is time, v the velocity vector and Ki a diffusivity. The first term on the left is local 
time change at a point, the second advection and the third diffusion.  On the right, the 
term Bi represents sources and sinks of φi; the stochastic forcings dηi the model 
uncertainties. Model parameters (diffusivities, bottom attenuations, etc.), Πl = {Kl, Rl …}, 
are also represented by an equation with stochastic forcings dζi, where Ci are functionals 
that describe the possible deterministic evolution of parameters with time and space. The 
state variables φi are related to the data yj, e.g. yj = {XBTj, SSHj, Fluo, etc.}, via 
measurement models, also with stochastic forcings εj. The assimilation or melding 
criterion involves the minimization of a functional J of the stochastic or error forcings 
dηi, dζi and εj, and of their a priori statistical properties or weights denoted by qη, qζ and 
qε, subject to the constraints the other equations. The three sets of equations and 
assimilation criterion define the assimilation problem (Fig. 3). For state estimation, we 
refer to the estimates just before (forecast) and just after (nowcast) data assimilation as a 
priori and a posteriori respectively.  For parameter estimation, a priori and a posteriori 
refer to parameter values at the beginning and at the conclusion of the optimization. Data 
residuals or data-model misfits refer to the differences between the data and model-
estimated values of the data. 

 
For the coupled physical-acoustical assimilation problem of interest here, the coupled 

discrete vector X, associated with the continuous vector φi is the combined X = [XA  XO], 
where the physics is represented by XO = [T, S, U, V, W] and the acoustics is represented 
by XA = [Pressure(p), Phase (ϕ)]. The coupled error covariance for the state defined by  
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The error covariance P is of paramount importance for the coupled assimilation, here the 
minimum error variance update defined by, 
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where X- is the a priori estimate and X+ the a posteriori estimate. The matrix H 
corresponds to the coupled measurement models and the matrix R is the coupled data 
error covariance. 
  



 

Specific classes of data assimilation schemes are listed in Table 2.  Specific schemes are 
overviewed in [16]. 

Table 2. Classes of Data Assimilation Schemes 
Class Examples Important Properties 
Estimation Theory 
(Filtering and 
Smoothing) 

1. Direct Insertion, Blending, 
Nudging 

2. Optimal interpolation 
 
3. Kalman filter/smoother 
4. Bayesian estimation (Fokker-

Plank equations) 
5. Ensemble/Monte-Carlo 

methods 
6. Error-subspace/Reduced-order 

methods: Square-root filters, 
e.g. SEEK 

7. Error Subspace Statistical 
Estimation (ESSE): 5 and 6 

1. Linear 
 
2. Linear, Least Squares 

(LS) 
3. Linear, LS 
4. Non-linear, Non-LS 
 
5. Non-linear, LS/Non-

LS  
6. (Non)-Linear, LS 
 
 
7. Non-linear, LS/Non-

LS 
Control Theory -
Calculus of 
Variations 
(Smoothing) 

1. “Adjoint methods” (with 
descent) 

2. Generalized inverse (e.g. 
representer method with 
descent) 

1. Linear, LS 
 
2. Linear, LS 

Optimization Theory 
(Direct local/global 
smoothing) 

1. Descent methods (Conjugate 
gradient, Quasi-Newton, etc) 

2. Simulated annealing, Genetic 
algorithms 

1. Linear, LS/Non-LS 
 
2. Non-linear, LS/Non-

LS 
Hybrid Schemes Combinations of the above  

 
The ocean observing and prediction system utilized at Harvard is the Harvard Ocean 

Prediction System (HOPS), which is schematized in Figure 4a. The data assimilation 
scheme associated with HOPS, Error Subspace Statistical Estimation (ESSE) is pictured 
in Figure 4b.  HOPS is an integrated system of data analysis and assimilation schemes, 
and a suite of coupled interdisciplinary (physical, acoustical, optical, biogeochemical-
ecosystem) dynamical models [14].  This system was developed for producing 
interdisciplinary oceanic field estimates that include effective and efficient data 
assimilation, dynamically consistent model initialization, multi-scale nesting, and model-
driven adaptive sampling with feedbacks.  HOPS employs a primitive equation (PE) 
physical dynamical circulation model. Boundary layers (top and bottom) and isopycnal 
and diapycnal turbulence are modeled through process parameterization and scale-
dependent filters.  Multiple sigma vertical coordinates are calibrated for accurate 
modeling of steep topography. Multiple two-way nests are an existing option for the 
horizontal grids. 



 

 

Figure 4.  Schematic of (a) the Harvard Ocean Prediction System (HOPS) and (b) the Error Subspace Statistical 
Estimation (ESSE) procedure. 

ESSE is a four-dimensional multivariate estimation scheme for physical-
biogeochemical-acoustical fields and parameters that aims to capture and forecast the 
dominant uncertainties, i.e. the error subspace, and assimilate all relevant data to control 
and reduce errors [6,7,10]. Instead of characterizing and capturing all uncertainties, ESSE 
focuses on the uncertainties that matter. The sub-optimal truncation of the error space is 
itself optimal. For example, if a variance criterion is used to combine data and dynamics, 
the error subspace is then defined by the ordered eigen-decomposition of the error 
covariance. The error subspace is initialized by decomposition on multiple scales and 
evolved in time by an ensemble of model iterations. Initial conditions are first perturbed 
using random combinations of the initial error principal components. For each perturbed 
initial conditions, the nonlinear dynamical model (HOPS), forced stochastically to 
represent various model errors, is integrated until the next data time. These Monte-Carlo 
integrations are carried out in parallel until the size of the ensemble is large enough to 
describe most of the error variance forecast. This is assessed by a convergence criterion. 
Once the error forecast has converged, the available data are assimilated, presently based 
on a singular value decomposition of the minimum error variance update. After data 
assimilation, the posterior data residuals are computed and utilized to correct the posterior 
error estimates, i.e. adaptive learning of the dominant errors is carried out. Using error 
estimates, adaptive sampling plans are determined using schemes that are consistent with 
the data assimilation scheme itself. Ultimately, the ESSE smoothing can be used to 
correct the past estimates, including initial conditions and boundary forcings, based on 
the future data-model misfits and their error estimates. ESSE has been developed for and 
applied to both fundamental research and real-time operations. It has been used in several 
regions of the world's ocean for varied purposes, including error forecasting, adaptive 
sampling, dynamical studies, model improvements, 3D objective analyses and 
predictability studies. Current ESSE developments focus on a fully distributed and 
scalable architecture, interdisciplinary parameter estimation, adaptive sampling and 
adaptive modeling. 

In the HOPS/ESSE methodology, the real-time initialization of the dominant error 
covariance decomposition is evaluated under the assumption that dominant uncertainties 



 

are missing or that there is uncertain variability in the initial state, e.g., smaller mesoscale 
variability.  Important issues include the fact that some state variables are not observed 
and that the uncertain variability is multi-scale.  The evaluation approach is multi-variate, 
multi-scale and three-dimensional, the “observed portions” are directly specified and 
eigen-decomposed from differences between the intial state and data, and/or from a 
statistical model fit to these differences, and for the “non-observed portions” the 
“observed” portions are kept fixed and the “non-observed portions” are computed from 
an ensemble of numerical (stochastic) dynamical simulations. 

4 Shelfbreak PRIMER Example 

In this section we present an example to illustrate three major points: i) end-to-end 
uncertainty transfer through an idealized system; ii) coupled physical and acoustical data 
assimilation; and, iii) the careful simulation of the physical environment necessary for 
realistic acoustic propagation studies. 

The Middle Atlantic Bight (MAB) shelfbreak marks a dramatic change, not only in 
water depth, but also in the dynamics of the waters that lie on either side. The shelf is 
about 100 km wide, extending from Cape Hatteras to Canada. The shelfbreak, which 
refers to the first rapid change in depth that occurs between the coastal and deep ocean, is 
near the 100m isobath. The main oceanographic feature in the MAB is a mesoscale front 
of temperature, salinity and hence sound speed, separating the shelf and slope water 
masses (Figure 5a).  The shelf-water to the north is cold and fresh while the slope-water 
to the south is warm and salty. Located near the shelfbreak, this front is usually tilted in 
the opposite direction of the bottom slope (Figure 5b).  

Figure 5.  (a) Map of the Middle Atlantic Bight shelfbreak front, (b) Vertical sections of temperature, salinity, 
zonal velocity and vertical velocity across the front. 

During July and August of 1996, data were collected in the MAB south of New 
England, as part of the ONR Shelfbreak PRIMER Experiment [11]. The main objective 
was to study the influence of oceanographic variability on the propagation of sound from 
the slope to the shelf.  Intensive in situ measurements were carried out in a 45 km by 30 
km domain between the 85 m and 500 m isobaths. The measurements consisted of 
temperature, salinity, velocity, chlorophyll, bioluminescence and acoustic transmissions. 
The physics considered here are the mesoscale dynamics of the Middle Atlantic Bight 
shelfbreak front, including remote influences from the shelf, slope and deep ocean. The 
acoustics is the transmission of low-frequency sound from the continental slope, through 



 

the shelfbreak front, onto the shelf. These dynamics, and also the model parameters, data 
assimilated in the physical model, and acoustical-physical uncertainties are described in 
[8].  The coupled assimilation via ESSE is illustrated for the 3D physical fields and 2D 
transmission loss along an actual Shelfbreak-PRIMER acoustic path (Figure 6). 

 

 
 Figure 6.  Acoustic paths considered overlaid on bathymetry. 

The present example of the end-to-end system using PRIMER data involves the 
physical, acoustical and passive system components of Figure 2.  The method adopted to 
characterize sonar performance involved the concept of Predictive Probability of 
Detection (PPD).  Figure 7 illustrates conceptually the PPD, details of which are given in 
[1]. The system-based environmental PDF was derived by a comparison of model 
predictions with system data. A histogram of the differences between the data and the 
acoustic model was fit with an appropriate distribution to yield the PDF. This PDF 
represents the uncertainty in the computational modeling process, typically small, and the 
inherent variability of the environment not contained in the model inputs, which typically 
is larger. The PPD is a prediction of the system performance versus range. Rather than 
use a single range value (e.g. “range-of-the-day” or “range-of-the-moment”), the PPD 
provides the system operator with a probabilistic representation of the system 
performance. The operator can thus use this information to operate the system more 
effectively, and can make more informed decisions on search, risk, and expenditure of 
assets.   

Figure 7.  Example Predictive Probability of Detection (PPD) 



 

In this example, the problem is to start with physical environmental data, transfer it 
through the idealized end-to-end system and compute a depth and range dependent PPD 
from first principals. A novel approach is used in which coupled physical-acoustical data 
assimilation method is used in Transmission Loss (TL) estimation. The methodology 
involves a coupled physical-acoustical identical-twin experiment [9] and is ESSE based. 

 
Methodology: Uncertainty prediction, transfer, processing and reduction 
ESSE is first utilized to predict uncertainties in the ocean physics, transfer them to the 
acoustics and compute acoustics uncertainties [10]. The approach is based on dominant 
error principal components and on ensembles of Monte-Carlo simulations. Specifically, 
the dominant physical uncertainties are initialized using a multi-scale, principal 
component decomposition of the initial error covariance whose parameters are a function 
of oceanic data and dynamical models. An ensemble of initial physical conditions for the 
ocean physics primitive-equation model of HOPS is then computed, in accord with this 
initial statistics or error subspace. For each initial realization, the ocean physics model is 
integrated forward in time, which produces an ensemble of physical field forecasts, 
providing environmental uncertainties for the volume around the acoustic region of 
interest. The different realizations of the sound speed field forecast, i.e. the sound speed 
ensemble, are then interpolated onto the vertical planes of acoustic interests and fed into 
the NPS coupled-mode sound propagation model. For a specific vertical plane, running 
the acoustics model for each sound-speed realization produces an ensemble of predicted 
acoustic wavefields. The resulting coupled physical-acoustical error subspace captures 
the dominant uncertainties in each physical and acoustical field, but also captures their 
(cross)-covariances and other coupled statistics.  

Presently, the main acoustic variable of interest is the transmission loss (TL) because 
the ultimate objective is to provide uncertainty estimates for sonar systems. To obtain TL 
uncertainties for a broadband sonar, the above continuous-wave uncertainties for a single-
frequency forecast TL are processed. A variable-width running-range average is applied 
to the ESSE ensemble of single-frequency TL realizations. This produces an estimate of 
the uncertainties in the broadband TL term of a passive sonar equation.  

Once physical and/or acoustical data are available, they are combined with the model 
estimates via ESSE data assimilation so as to reduce errors and improve predictions. 
Presently, the physical and acoustical data are assimilated such that the total error 
variance in the error subspace is minimized. After assimilation, the a posteriori acoustical 
variables and corresponding (reduced) uncertainties are available. By variable-width 
running-range average, the a posteriori broadband TL and its uncertainties are computed. 
Ultimately, the coupled assimilation reduces uncertainties in the sonar predictions. This 
coupled uncertainty estimation and data assimilation approach is now illustrated. 

 
Twin-experiments 
The approach is exemplified in identical-twin experiments using PRIMER data [11] In 
such an experiment, the data are synthetic, i.e. they are output from a simulation that 
defines the ``truth’’, and the model used to create data is identical to the one used for 
prediction. In the present case, the simulation defining the truth assimilates some real data 
to be closer to reality. Goals of such twin-experiments are to study the assimilation in an 
ideal situation and to find out if the a posteriori fields become close to the known “true” 
fields. Importantly, all computations are made at resolutions and on domains appropriate 
for each field. The acoustic 2D-space resolution is here much finer than the 3D-space 



 

resolution of the ocean physics. In addition to the possible different scales within each 
discipline, there are multiple scales because of the interdisciplinary nature of the problem. 

Figure 8.  (a) Bottom slope used in the model, (b) optimized model levels, (c) surface temperature for PRIMER 
domain.  

To achieve numerical predictions of the ocean physics at accuracies suited for useful 
acoustical computations, substantial efforts were necessary. This included compiling all 
data sets collected over the large-scale New England shelfbreak region relevant to the 
(sub)-mesoscale physics. Bathymetric data sets were collected and combined in accord 
with their uncertainties and biases. Numerical research (i.e. minimize numerical errors 
due to steep topographies/pressure gradient, non-convergence issues, pycnocline 
resolution, etc) was carried–out to allow the ocean physics model (HOPS) to run on 
accurate topographies, with almost no smoothing of the bathymetry. This was necessary 
for the acoustics and is illustrated on Figure 8 by the bottom slope (Fig. 8a) and optimised 
model levels along a cross-slope section (Fig 8b). The physical representations of 
boundary influences (e.g. Hurricane Bertha) and their numerics (e.g. OBC) were also 
improved. The latest numerical ocean simulation is illustrated in Fig. 1c. Of interest are: 
the impacts of a large meander of shelf water intruding slope waters at latitudes further 
south than usual, the corresponding upstream presence of a large slope eddy (confirmed 
by SST) that is pinching off from the shelfbreak front, and the strong effect of Hurricane 
Bertha in setting up the basis of the overall regional internal circulation. 

In the present coupled assimilation via ESSE example, the synthetic representation of 
the “true” ocean is a 4D (x, y, z, t) ocean physics model simulation that assimilates real 
physical data. After 5 days in this simulation, a snapshot of the “true” ocean is taken and 
the corresponding “true” sound-speed field input to the 2D (r, z) acoustical coupled-
normal-mode model. Running the acoustical model then leads to the “true” transmission 
loss (TL) field on day 5. Different synthetic physical and acoustical data were then 
coarsely sampled from this “true” physical-acoustical ocean. These different data sets 
were then successfully assimilated using ESSE. As a technical aside, the order of the 



 

assimilation (ocean physics before acoustics, or vice-versa) does not matter and 
sequential processing of observations is utilized. 

Figure 9.  Ensemble mean, standard deviation, skewness and kurtosis of sound speed section  

The uncertainties in the ocean physics along one of the PRIMER acoustical path 
(Fig. 6) are illustrated on Figure 9. An ESSE ensemble of 79 members was used to 
compute this prior error estimate and the ensemble mean and statistical moments of the 
deviations from this mean are shown. Of course, the 79 simulations were independent 
from the physical-acoustical realization that defines the truth. The mean sound-speed 
section show the shelbreak front, surface summer thermocline and cold pool (sound 
channel) on the shelf. The standard deviation is maximum around 35 m depth, in accord 
with independent data (Glen Gawarkiewicz, personal com.), and has an amplitude of 
5m/sec. This depth is where the front surfaces within the middle of the thermocline, near 
the largest hydrographic gradients and largest internal velocities (shelfbreak front jet). At 
the front, the skewness is close to 0 and kurtosis close to 3 (relatively Gaussian), except 
near the surface and bottom boundary layers. Just away from the front, uncertainties are 
less Gaussian.  

Coupled assimilation results for the sound-speed and continuous-wave TL fields are 
illustrated on Figures 10-11. In this example, the physical data are coarse temperature and 
salinity measurements sampled in the synthetic ``true’’ ocean: 2 CTD profiles are taken 
over 35 km across the shelfbreak front, along the PRIMER path (Fig. 6). The 224 Hz 
source is at 300 m depth on that path (bottom left corner). The acoustical data are 
synthetic towed-receiver TL data, measuring the relative sound intensity received at 224 
Hz along that path. The TL observations are made at constant 70 m depth, every 50 m 
from a range of 150 m to almost the receiver (about 35 km from the source). These are 
sub-sampled data since the (r, z) acoustic grid resolution is 5 m by 5 m.  

The sound-speed (C) residuals before assimilation (prior field residuals), after 
assimilation of the TL data, after assimilation of both the TL and C data (posterior field 
residuals), and the error standard deviation estimate for this posterior sound-speed field 
are on Fig. 10. The true TL, prior TL (i.e. the mean or forecast), TL after assimilation of 
TL data and TL after assimilation of both TL and C data (posterior TL) are shown in Fig. 
11. Even though the sub-sampled data are limited, the posterior C and TL are 
substantially closer to the true C and TL than the priors. The improvements of both the 



 

TL and sound-speed fields due to the assimilation of the TL data alone, and their 
subsequent improvements due to the assimilation of the two sound-speed profiles are 
clearly visible. On Fig. 10, it is interesting to see that the coupled assimilation improves 
the larger scales of the TL field, the higher loss in the surface thermocline and low loss in 
the sound channel over the shelf, but also some of the smaller scales (nulls, etc). 
Similarly, the impact of the sound-speed data (two CTDs) shows the effects of the mainly 
mesoscale ocean-ocean correlations and multi-scale ocean-acoustic correlations. 

 

Figure 10.  Sound-speed residuals before assimilation, after assimilation of the TL data, after assimilation of 
both the TL and C data, and error standard deviation estimate for this posterior sound-speed field 

 
Figure 11.  True TL, prior TL, TL after assimilation of TL data and TL after assimilation of both TL and C data 

The posterior ESSE ensemble properties (error variance, covariances, etc) 
importantly estimate the uncertainty reduction as a result of the coupled data assimilation. 
This is illustrated on Fig.11d. The impact of the 2 CTD profiles (on each side of the 
positive residuals ``pancake’’) is clearly visible. The posterior residuals (Fig. 11c) and 
posterior error estimates (Fig. 11d) agree on average, but the posterior error estimates are 
likely too small near the bottom of the summer thermocline (e.g. see residual pancake at 
about 2.5 db and posterior error at 0.6db). This is likely due to the small ensemble size. 

The error covariances utilized in the coupled assimilation are illustrated on Figure 12 
within the acoustic vertical section. The ESSE estimate of the covariance/correlation 
function between TL at a range r = 3km and depth z = 30m with the other TL values (top) 
and with the C field (bottom) are plotted. These fields correspond to a row of the coupled 
TL-C covariance/correlation matrix. The covariances (Fig 12a) are dimensional; the 



 

correlations are non-dimensional (Fig 12b). Looking at the covariances, for that (r, z) 
location, a positive change in the TL term at (r, z) is linked to a reduction of the TL term 
in the acoustic waveguide (cold pool) over the shelf and to a warming (higher sound 
speed) of the upper thermocline above the shelfbreak front and slight cooling in the 
bottom boundary layer  (e.g. a warming of the slope water and/or steepening of the front). 
Should a TL measurement be made at this (r, z) location, the coupled ESSE assimilation 
would influence the TL and C fields over whole section in accordance with these 
patterns; e.g. increase TL in red regions (more loss), reduce TL in blue regions (less loss). 
Similar comments can be made for the correlation fields (Fig. 12b). In general, 
correlation estimates tend to over-estimate the influences at large-scales and covariances 
are utilized for data assimilation. 

 
 

Figure 12.  ESSE estimate of the (a) covariance, (b) correlation, function between TL at a range r = 3km and 
depth z = 30m with the other TL values (top) and with the C field (bottom). 

 
Figure 13.  Four realizations of the variable-width running-range average TL field 

Broadband TL and impact of DA on the TL term of a passive sonar PPD 
To simulate the transfer uncertainties to a broadband sonar system (TL term in a sonar 
equation), the ensemble of single-frequency (224Hz) TL realizations are processed, using 
a variable-width running-range average (Figure 13). This is because a variable-width 
running-range average in space is approximately equivalent to a frequency average 
around a central frequency as a real sonar does.  Four realizations (out of the 79 
computed) of the broadband TL estimate are shown on Fig. 13. As expected, the length 



 

scales increase with range. The different realizations (ensemble members) have of course 
different modal couplings, reflecting the differences in the sound-speed realizations. 

To illustrate the impact of the coupled assimilation of physical and acoustical data on 
the performance of a simulated sonar predictions, the prior and posterior histograms of 
deviations from the mean broadband TL (i.e., the error PDF estimates) as a function of 
range and depth are shown on Figure 14. The estimated prior PDFs are found to be depth 
and range dependent (Fig. 14a). Near the depth (55 m) of the main wave-guide, the 
predicted error standard deviation is relatively constant with range and relatively large, 
around 3 to 4 (db). Above (30 m) and below (85 m), standard deviations tend to decrease 
with range (down to 2 db), leading to a higher PDF peak. After assimilation (Fig. 14b), 
the uncertainties are reduced to ± 1db and are more Gaussian at all depths. 

Figure 14.  PDF estimates of broadband TL as a function of range and depth, along a PRIMER acoustic path: (a) 
Prior PDF (predicted by ESSE); (b) Posterior PDF (after ESSE assimilation). 

5 Conclusion 

Transferring and forecasting uncertainties from the physics, through the acoustics, using 
ESSE, and processing these dominant error estimates to obtain TL uncertainties for a 
broadband sonar equation has been demonstrated for an idealized problem using 
Shelfbreak PRIMER data. ESSE nonlinear coupled assimilation recovered the fine-scale 
TL structures (10-100m) and the mesoscale ocean physics (10km) from coarse TL data 
and/or coarse C data. Broadband TL uncertainties were predicted to be range and depth 
dependent and coupled data assimilation sharpened and homogenized the broadband 
PDFs. 

We are entering a new era of fully interdisciplinary ocean science and ocean 
acoustics.  Ocean prediction systems for science, operations and management are now 
being utilized. These systems involve interdisciplinary estimation of state variables and 
error fields via multivariate physical-biological-acoustical data assimilation.  This 
provides novel and challenging opportunities for theoretical and computational acoustics. 
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