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1. Introduction

The coastal ocean is a complex system in which it can be difficult and costly to mea-
sure and predict quantities of interest for scientific and management purposes. The
estimation of a quantity of interest via data assimilation involves the combination
of observational data with the underlying dynamical principles governing the system
under observation. The melding of data and dynamics is a powerful methodology that
makes possible efficient, accurate and realistic estimations which might not otherwise
" be feasible. It is a methodology that can optimize the extraction of reliable informa-
tion from observations. Data assimilation has recently entered oceanography from
the related fields of meteorology and engineering. It is expected to provide rapid
advances in important aspects of both basic ocean science and apphed marine tech-
nology and operations. In this section we present the concepts of field estimation, give
an overview of the general methodology and goals of data assimilation, and discuss
implications for the coastal ocean in the context of marine science and technology
in general.
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1.1, Field Estimation

Ocean science, and marine technology and operations, require a knowledge of the
distribution and evolution in space and time of the physical, biological and chemical
characteristics of the sea. The functions of space and time, or state variables, which
charactenize the state of the sea under observation are classically designated as fields.
The determination of the distribution or evolution of the state variables poses prob-
lems of field estimation in three or four dimensions. The fundamental problem of
ocean science may be stated simply as: Given the state of the ocean at one time,
what is the state of the ocean at a Jater time? It is the dynamics (i.e., the basic laws
and principles of oceanic physics, biology and chemistry) that evolve the state vari-
ables forward in time. Thus, also from a practical viewpoint, predicting the present
and future state of oceanic variables for applications is intimately linked to funda-
mental acean science.

The physical state variables are usually the velocity components, the pressure, den-
sity, temperature and salinity. Examples of biological and chemical state variables
are concentration distributions of nutrients, plankton, dissolved and particulate mat-
ter, and so on. Because of the complexity of the marine biogeochemical systems and
ecosystems, the number of possible state variables is extremely large, and the limita-
tion o a finite subset of crifical state variables is an important contemporary research
problem (Flierl and Davis, 1995; GLOBEC, 1995). For example, life-stage classes
within individual species and size classes within particle types need to be considered.
However, we shall not be concerned with these issues here and will focus primarily,
but not entirely, on physical fields. A complexity with which we shall be concerned
is associated with the vast range of phenomena, and the multitude of concurrent
and interactive scales in space and time, which occur in the ocean. This complexity
has two important consequences. First, state variable definitions relevant to phenom-
ena and scales of interest need to be developed from the basic definitions. Second,
approximate dynamics that govern the evolution of the scale restricted state variables,
and their interaction with other scales, must be developed from the basic dynarmnical
model equations. A familiar example is the derivation of a primitive equation mode!l
for a thin film of fluid on a rotating spherical earth from the basic Navier—Stokes
equations of fluid dynamics (Batchelor, 1967; Le Blond and Mysak, 1978; Holton,
1992). By decomposing the fields into slow and fast time scales and averaging over
the shorter scales, these equations can be adapted to govern synoptic/mesoscale-res-
olution state variables over a large-scale oceanic domain, with faster smaller-scale
phenomena represented as parameterized fluctuation correlations (Reynolds stresses)
(Reynolds, 189%; Goldstein, 1965; Tennekes and Lumley, 1972; Landahl and Mollo-
Christensen, 1992). There is, of course, a great variety of other scale-restricted state
variables and approximate dynamics of vital interest in ocean science. We shal] refer
to scale-restricted state variables and approximate dynamics simply as siare variables
and dynamics. '

The use of dynamics 1s of fundamental importance for efficient and accurate field
estimation in oceanography. A field estimate obtained by melding observational data
with dynamics is referred to as a field estimation via data assimilation. It is perhaps
obvious that dynamics is of paramount importance for a forecast, or the evolution
of the state of the system forward in time. If the present siate of the system used to
initialize the forecast is estimated from observational data, we refer to the future esti-
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mate as involving assimilation via initialization. It is less obvious that dynamics can
be of paramount importance for efficient and accurate melded estimates of the present
state of the system {nowcasts). Today and in the foreseeable future, data acquisition
in the ocean is sufficiently difficult and costly so as to make field estimates by direct
measurements, on a substantial and sustained basis, and for state variables, sampling
rates, spatial domains, and measurement intervals of interest, essentially prohibitive.
However, data acquisition for field estimate via data assimilation is feasible, but sub-
stantial resources must be applied to obtain adequate observations.

A schematic of the data assimilation process is shown in Fig. 20.1. The insertion
of the reliable data into the dynamical model serves to adjust the data dynamically
and therefore to improve the quality and accuracy of the estimate. Dynamics pro-
vides linkages among the state variables and thereby extends the influence or impact
and value of the measurements. The model dynamically interpolates the data, which
allows for efficient estimation by the reduction of space/time sampling requirements.
Forward time extrapolation provides the forecast.
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1.2, Data Assimilation

Central 1o the concept of data assimilation is the concept of errors, error estima-
tion and error modeling. A data assimilation system consists of three COmponents: a
set of observations, a dynamical model and a data assimilation scheme or melding
scheme. The field of observations has errors arising from various sources, including
instrumental noise, environmental noise, sampling and the interpretation of sensor
measurements as state variables. All oceanic dynamical models are imperfect, with
errors arising from various sources, including the approximate physics (or biology or
chemistry), which govern the explicit evolution of the scale-restricted state variables;
the approximate closures, which parameterizes the interaction of the state variables
with smaller and faster scales, and the discretization of continuum physics into a com-
putational mode}. Several meiding schemes will be discussed, but an aspect commeon
to all of them is that the quantitative basis of melding is the relative uncertainties of
the dynamics and the observations. A well-constructed melded estimate agrees with
all observations within data error bounds and satisfies the dynamical model within
model error bounds (Ghil, 1989; Lermusiaux, 1997). Thus the melded estimate does
not degrade the reliable information of the observational data but rather, enhances
that information conient.

A guantitative assessment of the accuracy of the melded field estimate is highly
desirable but may be difficult to achieve because of the quantity and quality of
the data required for verification of the data assimilation system. Such verification
involves the quantitative assessment of the subcomponents, including the dynami-
cal model, the observational network, the associated error models and the melding
scheme. In our discussion of verification we introduce the concepts of validation and
calibration. Validation is the establishment of the general adequacy of the system and
its components to deal with the phenomena of interest. For example, avoid the use
of a barotropic model for baroclinic phenomena, and avoid the use of an instrument
whose threshold is higher than the accuracy of the required measurement. In real-
ity, validation issues can be quite subtle. Calibration involves the tuning of system
parameters to the phenomena and regional characteristics of Interest. Throughout the
verification process, sensitivity studies are extremely important.

At this point it is useful to classify types of estimates with respect to the time
interval of the data input to the estimate for time ¢ (Gelb, 1974). If only past and
present data are utilized, the estimation is a filtering process. A nowcast via filtering
provides the best possible initiafization for a real-time forecast. A hindcast is an a
peosteriori forecast. However, for an estimate to be made based on a time series of
data of duration {0,T) after the entire time series is available, the estimate for any
time 0 £ <7 is best based on the entire data set. Thus future as well as past data
are utilized, and the estimation is a smoothing process. In oceanography, an estimate
for all ¢ in the interval (0,T) by either a filtering or a smoothing process is referred
to as a data-driven simulation. _ _

Data assimilation in oceanography is only a few years old (Bennett and Mcln-
tosh, 1982; Mcintosh and Bennett, 1984; Robinson and Leslie, 1985; Mooers et al.,
1986). Data assimilation methods being used or adapted today for ocean science
have their roots in engineering (Gelb, 1974; Catlin, 1989) and meteorology (L.orenc,
1986; Ghil, 1989; Daley, 1991; National Research Council, 1991) and are generally
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based on estimation theory (Jazwinski, 1970; Sage and Melsa, 1971) or control the-
ory (Lions, 1971; Berkovitz, 1974; Boguslavskij, 1988). Estimation theory usually
involves a seguential estimation process with the melding scheme based on a mini-
mization of the expected error of the estimate in terms of the statistics of both model
and data errors. The application of Kalman filtering {Section 3.2) to oceanography,
with dynamics evolving bath the state of the system and the model errors, has been
explored extensively {e.g., Kalman, 1960; Miller, 1986; Bennett and Budgell, 1989;
Cohn and Parrish, 1991; Todling and Ghil, 1990, 1994). This approach is hindered
theoretically by its inherent linearity and practically by the enormous computational
resources required. Computation can be reduced drastically by the relaxation of the
exact error mimimization constraint. A common practice is to replace the dynami-
cal evolution of the forecast errors by an empirical, generally fixed error hypothesis,
thereby reducing an optimal estimate via Kalman filtering io a suboptimal estimate
via so-called optimal interpolation. Optimal interpolation has been commonly used
for operational weather forecasting (Bengtsson et al., 1981; Phillips, 1982; Lorenc et
al., 1991) and real-time at-sea ocean prediction (Robinson et al., 1996a,b).

Control theory methods are generally based on a variational principle and are
mostly smoothing processes. A cost or penalty function is defined that measures the
discrepancy (misfir) between the state of the system as estimated by dynamical evolu-
tion and the observed state. The time/space discrepancy is then minimized (e.g., in a
least-squares sense) in terms of the statistics of model and data errors. It is generally
an iterative process and computationally demanding; a good first-guess estimate is
necessary. A very important aspect of the control theory approach is that it can easily
be generalized to include parameter estimation. Uncertainties in internal parameters
of the dynamical model, and parameters characterizing external forcings and initial
and boundary conditions, can all be incorporated in the definition of the penalty func-
tion. If control weight assumptions can be adequately formulated, this can provide
a powerful method for exploiting the information content of feasible observations.
An important example is the generalized inverse method (Section 3.3; Bennett, 1992;
Bennett et al., 1996, 1997), including the adjoint method (Section 3.3; e.g., Le Dimet
and Talagrand, 1986; Thacker and Long, 1988; Daley, 1991). Finally, we mention
that, in practice, hybrid suboptimal methods (a combination of approximate meth-
ods) could be utilized for practical estimates (Section 3.6). An example is the use of
a simplified Kajman filter or optimal interpolation estimate to provide a first guess
for an adjoint or generalized inverse estimate.

1.3. The Coastal Ocean

The coastal ocean, together with its exchanges and connectivities with the deep seas
and estuaries, is a complex natural systern with a wealth of phenomena and variabil-
ities occurring over a wide range of space and time scales. The physical dynamics
may be dominated singly or in combination by wind, buoyancy, tidal or deep-sea
exchanges; open boundaries are always present. Complex and severe coastal geome-
wies and steep topographies exist and statistics must generally be expected o be
nonstationary and anisotropic. Thus, on the one hand, the coastal ocean is a very
challenging regime for the application of data assimilation methods. On the other
hand, data assimilation provides a powerful modern technology with which to work
efficiently in this difficult but critically important region of the global ocean.
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In the remainder of this chapter we develop and illustrate data assimilation con-
cepts with an emphasis on their application to coastal ocean science and management.
Section 2 deals with the goals and uses of data assimilations. Section 3 provides a
general overview of methodology. Section 4 introduces the special considerations
characterizing the coastal ocean problems. Reviews of some progress to date and
aspects of the present status of coastal ocean data assimilation are presented in Sec-
tion 5. Section 6 is an application to the Middle Atlantic Bight off the northeast coast
of the United States. Section 7 consists of the summary and conclusions. In the pre-
sentation an attempt has been made both to introduce the subject to scientists who
are not vet familiar with it, and to provide a useful summary overview at a more
advanced level. In particular, many of the mathernatical details of Section 3 are not
necessary in order to understand most of the subsequent material.

2. Goals and Applications

The specific uses of data assimilation depend on the relative quality of data sets and
models and the desired purposes of the field estimates. These uses include the control
of errors (predictability and model), the estimation of parameters, the elucidation
of real ocean dynamical processes, the design of experimental networks, and ocean
monitoring and prediction.

First consider ocean prediction for scientific and practical purposes, which is the
analog of meteorological numerical weather prediction (Bengtsson et al., 1981; Ghil,
1989). In the best-case scenario, the dynamical mode! correctly represents both the
basic mtemnal dynamical processes (e.g., synoptic/mesoscale) and the response mech-
anisms fo extemnal forcings (e.g., boundary conditions, surface forcings). Additionally,
the observational network is well designed and adequate to efficiently provide initial-
ization data of desired accuracy. The phenomenon of loss of predictability nonethe-
less inhibits accurate forecasts beyond the predicrability limit for the region and sys-
temn (Lorenz, 1963, 1975; Bergé et al., 1984; Tennekes et al., 1987; Palmer, 1993:
Sheinin and Mellor, 1994). This limit for the global atmosphere is 1-2 weeks (e.g.,
Houghton, 1691) and for the midocean eddy field of the northwest Atlantic, on the
order of weeks to months (Carton, 1987; Adamec, 1989; Walstad and Robinson,
1990). The phenomenon is associated with the nonlinear scale transfer and growth
of initial errors (uncertainties in initial internal and initial external conditions). The
early forecasts will accurately track the state of the real ocean, but longer forecasts,
although representing plausible and realistic synoptical dynamical events, will not
agree with contemporary nature. However, this predictability error can be controlled
by the continual assimilation of data, with adequate spatial coverage and at intervals
less than the predictability limit. This is a major use of data assimilation in meteo-
rology and oceanography.

Next, consider the case of a field estimate with adequate data but a somewhat defi-
cient dynamical model. Assimilated data can compensate for the imperfect physics
so as to provide estimates in agreement with nature. This is possible if dynamical
model errors are treated adequately. For instance, if a barotropic model is consid-
ered perfect {e.g., adjoint method), and baroclinic real ocean data are assimilated,
the field estimate will remain barotropic. In more realistic situations, forecast errors
are formed of both model deficiencies and predictability errors; consider the broad-
ening or breakdown of an intense current in long simulations without assimilation.
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Assimilation can keep the current system qualitatively correct. In a tropical Pacific
study, data assimilation corrected the tendency of the model to thicken the verticat
temperature stratification (Fisher and Latif, 1995). Melded estimates with deficient
models can be useful, but it is of course important to analyze the discrepancy in the
dynamics and to attempt to correct the model physics.

In all ocean inverse problems, one should thus analyze the physical validity of
the estimated dynamical mode! characteristics. If the characteristics are very sensi-
tive and/or tend to have values quite different from their a priori given ones, it is
important to search for the sources of the discrepancy. Plausible causes are a wrong
estimation of the a priori parameters, a.dynamical model not adapted to the data set
collected, or a parameter estimation method that has converged to wrong parameter
values.

Parameter estimation via data assimilation should make an increasingly signifi-
cant impact on ocean science in the coming years. The general concept is traditional
in oceanography. Ekman (1905) used his original theory of the wind-driven surface
boundary layer spiral to estimate the vertical turbulent eddy diffusion of momentum.
For many vears thereafter, ocean models could be philosophically regarded predomi-
nantly as mechanisms for the determination of both vertical and horizontal eddy vis-
cosities and diffusivities (Sverdrup et al., 1942; Stommel, 1965; von Schwind, 1980).
Within the last 10 years, parameter estimation has been used successfully in meteorol-
ogy and oceanography for determining internal and external parameter values (Sec-
tion 5.2). Inverse models are an established important component of modern oceanog-
raphy {(e.g., Wunsch, 198%; Bennett, 1992; Martel and Wunsch, 1993a,b). Regional
field estimates can be improved substantially by boundary condition estimation. For
interdisciplinary ocean science, parameter estimation is particularly promising. Bio-
logical modelers have been severely hampered by the inability to directly measure in
situ rates (e.g., grazing and mortality). By this approach, feasible measurements of
guantities, such as concentration distributions of planktons, together with a realistic
coupled biologicalchemical-physical model, can be used for in situ rate estimation.

Data-driven simulations can provide four-dimensional time series of fully dynami-
cally adjusted fields that are realistic and governed by real ocean physical, biclegical
and chemical dynamical processes. These fields, regarded as (numerical) experimen-
tal data, can thus serve as high-resolution, accurate and complete data sets for dynami-
cal studies. Balance of terms studies can be carried out to determine fluxes and rates
for energy, voticity, productivity, grazing, carbon flux and so on. Case studies can
be carried out and statistics and general processes can be inferred for simulations
of sufficient duration. Of particular importance are observation system simulation
experiments (OSSEs), which first entered meteorology almost 30 years ago (Char-
ney et al., 1969). By subsampling the simulated “true” ocean, experimental networks
and monitoring arrays can be designed to provide efficient field estimates of requi-
site accuracies. Data assimilation and OSSEs develop the concepts of data, theory
and their relationship beyond those of the classical scientific methodology; Smith’s
{1993) schematic of these ideas is shown in Fig. 20.2.

For a period of almost 300 years, scientific methodology was powerfully estab-
lished on the basis of two essential elements: (1) experiments/observations and (2)
theory/models. Today, due to powerful computers and evolving concepts of informa-
tion, science is based on three fundamental concepts: experiment, theory and simu-
ation. Simulation with validated dynamics provide numerically generated databases
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Fig. 20.2.  Schematic of the different interactions between data and models: validation, assimilation,
OS8Fs and quality control. (From Smith, 1993}

for serious dynamical studies. Furthermore, since our best field estimates today are
based on data assimilation (i.e., the melding of observation and dynamics), our very
perception and conceptions of nature and reality require philosophical development,

It is apparent from the discussion above that marine operations and ocean manage-
ment must essentially depend on data assimilation methods for efficient and accurate
practical field estimates. Regional data-driven simulations should be coupled to mui-
tipurpose management models for risk assessments and for the design of operational
procedures. Regional multiscale ocean prediction and monitoring systems, designed
by OSSEs, should be established to provide ongoing nowcasts and forecasts with
predictability error controlled by updating. Both simple and sophisticated versions
of such systems are possible and relevant.
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3. QOverview of Data Assimilation Methods

The purpose of this section is to give an overview of most methods available for
data assimilation (DA) in ocean sciences. DA is an estimation problem by defini-
tion (Section 1), but the schemes for solving the assimilation problem have different
backgrounds. They can generally be related to either estimation theory or control the-
ory (Sections 3.2 and 3.3). For the methods that are not derived directly from either
estimation or control theory, or that can be used without distinction in both frame-
works, three other classes have been introduced: direct minimization, stochastic and
hybrid methods (Sections 3.4~3.6). In this overview, within each class, the schemes
have been ordered by increasing complexity, which generally implies increasing com-
puter resources required but also, hopefully, increasing assimilation guality. We dis-
tinguish between theoretically “optimal” and “suboptimal” schemes. Although opti-
mal schemes are preferred because they provide better estimates, in fact, suboptimal
methods are generally the ones in operational use in oceanography and meteorology
today (Todling and Cohn, 1994).

The three types of estimation problems are filtering, forecasting and smoothing
(Gelb, 1974). In the three cases, the problem is to estimate the state of the system
vnder study at a certain time t but with different use or availability of data (Section
1.2). The notions of dynamical model and measurement model are defined in Section
3.1. Common assumptions are made throughout to facilitate the theoretical under-
standing of the differences and similarities among DA schemes (Lermusiaux, 1997).
Here the description of the equations is kept to a mimimum and it is not expected that
complete understanding of the methods can be achieved from this presentation alone.
It 1s simply our intention to provide a guide to the methods available, with references
to facilitate exploring methods of possible interest. The presentation advances from
simple to complex methods and some readers may wish to look at complex schemes
first (end of Sections 3.2 and 3.3). The notation is uniform so as to provide the basis
for mathematical reference and intercomparisons. The assumptions made about the
generic true ocean, dynamical and measurement models as well as tables summa-
rizing the equations of the schemes addressed are also given for easy reference in
the Appendix. For comprehensive reviews or reports on theories and applications of
DA in atmosphere and ocean sciences as well as practical considerations on com-
. puter resources required, we refer to Bengtsson et al. (1981}, Haidvoge!l and Robin-
son {1989, Anderson and Willebrand (1989}, Ghil and Malanotie-Rizzoli (1991),
Daley (1991), Bennett (1992), Tellus (1993), Brasseur and Nihoul {1994}, Evensen
(1994b), Brasseur (1995}, Malanotte-Rizzoli (1996) and Wunsch (1996). We mention
again that some readers may wish to omit some mathematical details.

3.1. Dynamical and Measurement Models

The notions of dynamics of the ocean systern under study, of state variables associated
with that dynamics and of dynamical model were introduced in Section 1.1. To perform
an assimilation, one needs to meld the dynamics and the incoming data which are char-
acterized by a dynamical modei and a measurement model, respectively.

The dynamical model is a mathematical representation of the dynamics of the
ocean system which defines the continuous time/space evolution of the ste vari-
ables of the system {(e.g., the primitive equation model). State variables, however,
might not be measurable directly, and this must be taken into account.
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The measurement model is a time/space relation (physical, statistical) that links
dynamical model state variables to sensor data, It is, by definition, a directed map-
ping, from the state space to the space of observables or measurement space {Sage
and Melsa, 1971; Gelb, 1974; Yavin, 1983; Catlin, 1989), and the available sensor
data have 10 be filtered to the scales of interests. For a measurement model example,
consider the case where one measures temperature and salinity but uses a quasi-
geostrophic dynamical model. The measurement model is then a mode! that links
the gridded values of the quasi-geostrophic stream function, ¥, to the (T,5) data.
The measurement model does not necessarily involve all dynamical state variables. A
relationship that relates gridded salinity of a primitive equation model to temperature
observations (e.g., by a T-S relationship) is also a measurement model, In OCeanog-
raphy, the number of discrete state variables is generally much larger than the amount
of measurements (sparse, noisy data), and the measurement model strictly by itself
is formally not directly invertible; an additional criterion is needed (e.g., weighted
least squares). In DA methods, the measurement model should thus be perceived as
a weak constraint on the dynamics. It is the data-dynamics melding criterion that
determines how the data influence the state variables. In fact, even for the initial-
ization of a dynamical model from historical data, one should combine the set of
sparse measurements with dynamical considerations (e.g., basic state in geostrophic
balance) to infer the complete fields of state variables and their associated errors
(e.g., feature models, structured data models; Lozano et al,, 1996). The sole direct
least-squares inversion of the sparse data set would give in most cases a poor estj-
mate of the ocean state. Finally, the measurement constraint can be nonlinear and
time dependent since both the observation network and the measurement type may
vary in time. For a given observation, there are many possible measurement models,
even for the same dynamical model (e.g., altimetry data) and the determination of
efficient measurement models is an important issue. _

Once both the dynamical model and the measurement model have been defined
analytically by their respective equations, a discretized version in time and space
1s used in computer simulations. The discrete models used, as well as the assump-
tions made for easy comparisons of methods, are discussed in the Appendix. We no
longer use the adjective discrerized unless necessary to prevent confusion. Equation
1 describes the statistics of the generic true ocean dynamical model and equation 2
the rue measurement model:

U= Ap ol W (1)
d = Cpls + vy (2)

The classic deterministic versions of these models are obtained by canceling the ran-
dom noise w,_; and v;.

3.2, Estimation Theory (Sequential Estimation)

Estimation theory encompasses theories used to estimate the state of a system by
combining, usually with a statistical approach, all available reljable knowledge of
the system, including measurements and theoretical laws or empirical principles. In
oceanography, estimation theory first formulates crucial statistical hypotheses about
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the true ocean dynamical model, the measurement model and their respective uncer-
. tainties (see, e.g., the Appendix). An estimation criterion is then associated with those
hypotheses so as to determine the optimal melding of all reliable information. The
estimation or melding criterion is as crucial as the a priori hypotheses since it deter-
mines the respective influence of dynamics and data onto the ocean state estimate.

In practice, discrete estimation schemes are usually a succession of two steps. A
dynamical model is first employed to issue a forecast (i.e., state vector and error
forecasts) and a statistical criterion is then used to meld the incoming data with the
dynamical forecast (referred to as the analysis step). For simplicity, the analysis step
is usually chosen to be a linear combination of the data and the forecast (linear meld-
ing), and this will be the case in this generic discussion. The estimation schemes dis-
cussed hereafter mainly differ from each other by the respective coefficients of data
and dynamics in that linear combination.,

In estimation theory, an important part of the a priori hypotheses is the explicit
definition of the statistics of model noise and data uncertainties {(correlations, error
covariance matrices or the full probability density function}. Common sense and some
theoretical studies are generally used to characterize the uncertainties in the initial
conditions, dynamical mode] and measurement model. Error theory is in fact an area
of active research in data assimilation today {e.g., Balgovind et al., 1983; Lonnberg
and Hollingsworth, 1986; Phillips, 1986; Cohn and Parrish, 1991; Daley, 1992a—c;
Jiang and Ghil, 1993; Cohn, 1993; Bouttier, 1994). The more precise the error specifi-
cations, the greater are the potentials of data assimilation (e.g., Section 6.2}. Here, for
generic comparison purpoeses, classical assumptions were made (see the Appendix).
But assimifation results depend on the statistical hypotheses and one should study the
sensitivity of the estimate to those a priori cheices and definitions (Gelb, 1974). For
instance, most schemes presented here are refated in some fashion to least-squares
criteria, which are very useful andhave had great success. However, least-squares
or average solutions can sometimes be far from reality, especially in systems with
multimodal probability density functions and very noisy, sparse data. Other melding
criteria, such as the general maximum likelihood, the minimax criterion or associ-
ated variations, might thus be more appropriate in special situations (Boguslavskij,
1988).

Estimation of the model parameters is possible with sequential estimation meth-
ods. A common approach is to add to the initial model equations a simple stochastic
evolution equation for each parameter to be estimated. For each spatially (time} vary-
ing parameter, discretized on a three-dimensional grid, the size of the state vector is
increased by the number of grid points. To reduce this additional number of variables,
predetennined functional parameter expansions are used. Since the model characteris-
tics are model dependent and their estimation leads to a nonlinear estimation problem
(products of parameters and state variables), parameter estimation technigues will not
be discussed further in this generic section on estimation methods. Parameter estima-
tion in coastal ocean models is reviewed separately in Section 4.2. In the following
discussion, equation numbers refer to the tables in the Appendix, where all symbols
are also defined.

Drirect Insertion
At all data points, one replaces the forecast values by the observed ones; the direct
insertion estimate (3) is data at observation points (4),
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(=) = Aol () 3
with
ey =dp  idy = Celiy(+)] @

at the m data points and ﬁlk(-%) = li!k(w) eisewhere. The a priori statistical hypothesis
is that data are always exact. For a comparison with the Kalman filter (KF) scheme
(12-16), the direct insertion method assumes that Ry = 0 and CkaC{ = o with P,
= Q; = 0 elsewhere (model errors are infinite at the data points).

Blending
At all data points, the blending estimate (6} is a scalar linear combination of the
forecast (5) and data values:

Py (=) = Ap iy (+) (5)
with
(ds)a(+) = ady + (1 - )Culs, (-) (6)

at the m data points and aitk(+) = ljfk(——) elsewhere. Within the assumptions discussed
in the Appendix, it is an unbiased estimate. The parameter « IS a user-assigned param-
eter. For a comparison with the Kalman filter scheme (12-16), the blending method
assumes that R = (1 - o)l and CkPk(—)CE = ol with P, = 0 elsewhere (model errors
at data points = « and = 0 elsewhere).

Nudging or Newtonian Relaxation Scheme .
The nudging scheme (Anthes, 1974) can be seen either as a simplification of the KF
or as the dynamical model relaxed toward the observations. In discrete notation, both
points of view lead to the same equations, but the relaxation scheme is clearer in the
continuous notation. For the model forecast to relax to the data, one adds a term
propertional to (d — Cils) in the state continuous evolution equation, to obtain

~

aai: = Lals + NC*(d — Cdp)

where 1s is the vecior of state variables, C* € R"™*"isa generalized inverse of C and
N e R™" the diagonal matrix of nudging coefficients. In most cases, one only relaxes
the state variables that are, up to a scalar linear transformation, directly observed (direct
relaxation). In our notation, n—m diagonal elements of N are then zero and one can order
the equations so that the only nonzero elements of N, C*, and C are on their respective
diagonal. But if all state variables are relaxed, C* is the inverse mapping of the measure-
ment model. This should perform better than direct relaxation as long as C* is derived
from appropriate dynamical hypotheses such as feature- or data-structured models {e.g.,
Lozano etal., 1996); the Moore—Penrose generaiized inverse wonld be poor. The nudg-
ing coefficients contained in N are in s™1. They can be chosen to be time dependent but
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in our notation need to be positive for tft to relax to the observations d. They cannot
be too large, to avoid model disruption {Stauffer and Bao, 1993). They are related to
the relaxation time of the state variable and should ideally depend orn the evolution of
the basic state dynamics. They should also be a function of some a priori estimates of
dynamical model uncertainties and data errors. Obviously, this relaxation time must be
less than the predictability threshold or the e-folding time by which the data lose much
of their influence on the forecast state.

Using, for instance, the Euler scheme to discretize time, and evaluating the relax-
ation term at time ?;, the continuous nudging scheme becomes

= Aoty + KeCldi - Cepi ) 7

where the diagonal matrix K is the discretized analog of N. The elements of the diag-
onal K, are assigned a positive value. From the filtering point of view, the nudging
scheme is a simplification of the KF, where the Kalman gain is assigned and diagonal;
see (12) and (14) with R, Q, and P,(+) diagonal. Usually, the simplified diagonal
gain K; is chosen to be a constant, but in principle it could vary with time. Referring
to continnous-time relaxation and using the KF as the optimal scheme. the nudging
coefficients should be functions of simplified error hypotheses for the dynamics, the
maodel and the data, [ie., simple Pr(+), Q, and R,]. For nudging examples, we refer
to Zou et al. (1992) and Fukumori and Malanotte-Rizzoli (1995).

Optimal Interpolation or Statistical Interpolation 7

The term optimal interpolation (O1} is usually used in oceanography and statistical
interpolation (SI) in meteorology {Daley, 1991) but both terms refer to the same
melding method (9). The assimilation via OI is described by

By (=) = A il () (8)

and

s () = 5y (=) + Keldy — el (-] @)

with gains K, empirically assigned. The sequence of K; is user assigned and usually
- based on an empirical forecast error covariance matrix.

0l is a simplification of the KF scheme as shown by equations (12-16) and (8, 9).
In both schemes, the analysis step (9 or 14) is a linear combination of the dynamical
mode! forecast and of the difference between the actual observations d, and the model
predicted values for those observations, Cpls, (—). This difference is commonly called
the model-data misfits, the observation residuals or the innovation vector (Daley,
1691). The matrix weighting these misfits, K;, is called the gain matrix. In the KF
algorithm, the gain K, is computed and updated internally {15), whereas in the O
scheme it is empirically assigned. If the assigned gain is diagonal and kept constant in
time, the O {8, 9) and the constant gain version of the nudging scheme (7) are equiv-
alent. But the OI gain is not generally diagonal, as it is usually analytically expressed
as-a function of the nondiagonal field-ro-measurement-point correlation marrix and




554 ALLAN ROBINSON, P. LERMUSIAUX, AND N. SLOAN I}

of the measurement error covariance mairix (Bretherton et al., 1976; Daley, 1991;
Bennett, 1992). For instance, the operational Ol scheme at Harvard (HOPS, Section
6) first locally objectively analyzes (two-step OA) the data to produce a three-dimen-
sional gridded field and then blends this local OA three-dimensional gridded data with
the forecast fields, using the objectively analyzed data error covariance to empirically
determine the OI gain matrix (Robinson et al., 1996a; Lozano et al., 1996).

Method of Successive Corrections

Instead of correcting the forecast fiekds only once by linear combination of the data
and forecast as in the previous methods, multiple iterations are performed. The fore-
cast,

Bp(=) = Ayl () (10)

18 iteratively melded with the data,

) = W + Wdy - Coli )] (11

with Jti(-ﬁ-) = &;k(w—) and W/ assigned weight matrices, in general function of the
iteration j. In practice, only two or three iterations (11} are performed (Daley, 1991)
and the final estimate depends on the finite sequence of weights W/, For exam-
ple, one may choose to correct the scales or processes of interest one after the
other (e.g., geostrophic before ageostrophic, implicitly assuming that the data errors
of each of these processes are uncorrelated). W/ should then be a function of the
correlations between features (processes) of scales that are corrected at melding

J. In the infinite sequence limit, if (11) converges, then zisjkﬂ = I.EFJ:—( = zi;j: and {11)
converges to the data values at the observation locations, Ckzir:: = dy, regardless of
the sequence W/ chosen. The sequence W/ then only determines how the data are
extrapolated at nonobserved variable locations. To converge to the Kalman update
(14, 15), simple modifications of {11) are thus necessary {Bratseth, 1986; Daley, 1991;
Lorenc, 1992), Conditions for eguivalence and convergence are addressed by those
authors, but the exact update (14, 15} is still optimal in the least-squares sense only if
the covariances used are correct. In some cases these covariances are not well known,
and criteria such as computer time and/or sensible representation of observed features
have favored {11) over the update (14, 15).

Kalman Filter

For a linear system such as that we considered in (1, 2), the Kalman filter (KF) is the
sequential, unbiased, minimum error variance estimate based on a finear combination
of all past measurements and past linear dynamics (Kalman, 1960):

{J;k;n}m J;. = trace[Py(+)], using [d,, ... ,dk]}
Uy

The error variance of the KF estimate is less than or equal to that of any other unbi-
ased, linear filtering estimate. Only the error mean () and covariance (P;) need to
be known.
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The KF can be viewed as a simplification of the general Bayesian estmation.
Both Bayesian theory with the maximum entropy principle, and the direct minimum
£17T0r variance criterion with a linear estireate, lead to the same classical KF algorithm
(12~16). But the assumption of Gaussian probability density function is not necessary
in either approach. The implicit assumption that the probability density function of the
errors is well described locally by a mean and a covariance is sufficient. The deriva-
tion of the two steps of the KF algorithm, the forecast of the state vector and of the
81T0I,

(=) = Apm i, () | (12)
Pi(=)= A Pro i (DAL +Q, (13)

and the melding of the data with the two forecasts,

B () = s, (=) + Ky [dg ~ Crtsy ()] (14)
K; = Pi(-) CI [C Pi(~)CL + R, ]! (15)
Pi(+) = Py(-) — KiCiPy(—) (16)

are discussed in Gelb (1974), Daley {1991), Bennett {(1992) and Lermusiaux (1997).
In the light of (13) and (16), it is commonly said that the KF generates its own error
analysis. Two examples are given by Todling and Ghil (1990} and Miller and Cane
{198%).

Kalman Smoother

The Kalman smoother (KS) is also a linear, unbiased, minimum error variance esti-
mate. However, it solves a smeothing problem and uses all measurements available
within the complete assimilation period {fp, ty] to estimate the state of the system
at all times f;, where ty < t; < fy (fixed interval smoothing). If we denote i, N 88
a smoothed estimate at time f;, using all available data in [fo, 7v], the KS estimate
by is defined as follows:

{lifk/Ni min J; = trace{P,(+)] using {d;, ... ,dwy- ;]}

LT

There are different formulations of the fixed interval smoothing (e.g., Wunsch,
1996). A simple formulation is to use first the forward KF (12-16) and then back-
ward filtering with the inverse of the dynamical model to carry back to time #; the
information contained in the observations made after time f;. This requires running
the forward dynamical model backward in time. Even though this is possible the-
oretically, it is equivalent and usually easier from a practical point of view to use
the Rauch-Tung-Striebel (RTS) aigorithm (Gelb, 1974}, which does not require run-
ning the dynamical model backward, nor does it involve the backward processing
of actual measurement data. Future data information is propagated backward by the
error covariances and the adjoint dynamical transition matrix A]. Thus both the KF
state and error covariances need to be stored at all analysis times, which is in gen-
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eral very demanding on memory resources. The filter part of the RTS is identical to
{(12~16). The smoothing steps are given by

‘Lk/N = ‘i’k{“’“) + Ll N B, ()] (amn
Pin = Pe(+) + La [Py = Prar (5IL] (18)

with ILN N T II)N(+), L; = Pu(+) A{ P;i (=) and Py/w = Py{(+). Another example of
fixed interval smoothing is the Gelfand and Fomin (1963) sweep algorithm, which
requires the storage of the gains K but not the error covariances (e.g., Bennett, 1992;
Wunsch; 1996). To our knowledge, only simplified RTS algorithms have been used
in practice (Budgell, 1986; Fukumori et al., 1993). In (17) and (18}, Y, v and Py
represent, respectively, the smoothed state estimate and smoothed error covariance
at time f, using all observations up to time ty. Note that both are continuous; their
filtered versions (14) and (16) were not. For examples, we refer to (Bennett and
Budgell (1989} and Fukumori et al. (1993).

3.3, Control Theory (Calculus-of-Variation Approach, Variational Assimilation)

All variational assimilation approaches perform a global time/space adjustment of
the model solation to the complete set of available observations and thus solve a
smoothing problem. Except for the KS, all sequential estimation methods presented
in Section 3.2 solve a filtering problem. Theoretically, this means that each individual
observation is being used only once without feedback to earlier times. Real-time ship-
board assimilation can be performed with technigues presented in this section only
if for all new data acquired, a global time/space readjustment of the previous ocean
state estimate is made. In most realistic cases, this real-time smoothing is beyond the
computing power available today.

in the constrained optimization framework, the smoothing problem for oceanog-
raphy can be defined, in general, as the minimization of a cost function penalizing
the time/space misfits between the data and the ocean model state estimate which
is constrained by the dynamical model equations. The control theory approach inter-
prets the misfits as part of the unlmown controls of the ocean system (Lions, 1971;
Le Dimet and Talagrand, 1986), but still tries to solve a field estimation problem.
Additional penalty functionals can be added to the cost function, like a time/space
smooth field constraint or expressions restraining the variations of the a priori chosen
dynamical model’s parameters and forcings if these model characteristics are allowed
to vary, Variational assimilation (e.g., Courtier, 1995) thus allows the estimation of
model parameters, including initial and boundary conditions, subgrid scale processes
and uncertainties in forcing functions.

Estimation theory requires a priori statistical assumptions for the model noise and
data errors. Similarly, the control theory results are dependent on the a priori control
weights and on the expression of any added penalties such as a smooth estimate
constraint. In most cases, the cost function is naturally chosen to be quadratic. It then
measures the Euclidean time/space distance between the dynamical model solution
and the available observations (weighted least squares).

In the now-classical terminology (Sasakd, 1970), the dynamical model can be either
considered as a strong constraint (leading to the adjoint method) or as a weak con-
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straint {leading to generalized inverses) {(Reid, 1968; Daley, 1991; Bennett, 1992).
The strong constraint approach assumes the model to be exact and provides exact
consistency between the dynamics of the model and of the final smoothed estimate.
The evolution of all state variables is deterministic and fixed once the initial and
boundary conditions are given. In contrast to Section 3.2, the boundary variables
here are not explicitly part of the state vector, since the boundary conditions are
explicitly treated as separate constraints, The auxiliary conditions are thus the only
free variables of the problem; usually, the boundary values are fixed and the free
variables are the initial conditions only. On the other hand, the estimation of model
parameters is sometimes the only goal of the variational problem. The cost fupction
then comprises data-model misfits and parameter penalties, but the initial conditions
are fixed and the only free variables are the parameters to be estimated. We refer to
Section 5.2 for coastal ocean parameter estimation,

If the model is considered as a weak constraint, the final smoothed estimate is only
in approximate consistency with the dynamical model equation. At least implicitly,
one thus assumes dynamical model errors and implies stochastic “true” model state
equations as in sequential estimation (Section 3.2). The weak constraint approach
solves a “stochastic control” problem (Boguslavskij, 1988). The particular form of
the weak dynamical model constraint and 1is weight relative to the data constraint
defines the bounds of the approximate dynamical consistency.

In engineering, the weights and form of the cost function are determined by the objec-
tives of the control/optimization problem to be solved. Similarly, in occeanography, the
data and model weights and the shape of the cost function can be chosen as one pleases.
This freedom exposes the weak constraint formulation to the criticism that any desired
field estimate could be made a solution of the variational problem by manipulation of
the cost function. In fact, the strong constraint approach is just one of these particu-
lar manipulations, the limiting choice of infinite weights for the mode! equations. Due
to the approximate dynamics and the restrictions to relevant phenomena and scales of
interest (Section 1.1), the strong dynamical constraint formulation in ocean science cer-
tainly needs to be justified as much as any other weighted smoothed estimate. These
considerations are also applicable to estimation theory (Section 3.2). A rational choice
for the weights and form of the cost function is thus very important. Statistically, a nat-
ural selection is to pick the dynamical model (data) weight inversely proportional to an
a priori specified model (data) error, especially when the cost function has a weighted
least-squares form. The lower the specified model (data) errors, the higher the weight
given to the model (data). For such a quadratic cost function, where the data and model
weights are the inverses of the error covariances, the KS (Section 3.2) and the gener-
alized Inverse give exactly the same estimate for any n-dimensional linear dynamical
systemn {Lermusiaux, 1997). Finally, the remarks made in Section 3.2 on DA sensitivi-
ties to the hypotheses and melding criterion also apply here.

Adjeint Method

In the adjoint method, the dynamical modetl is a strong constraint. In this section we
omit forcing and internal parameter estimation. To simplify notations, the boundary
variables and associated conditions are included in the state vector evolution (1). The
only free variables are thus the initial conditions. The functional to be minimized is
the sum of two penalties. One penalty weights the initial condition uncertainty with
the a prior initial error covariance Pg. The other is the sum over all observation times
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fp of the measurement model errors {data-model misfits at observation locations),
balanced by measurement error covariances Ry. To optimize the functional, one may
take its derivative with respect to ¢, but this approach requires knowledge of the
dynamical model solution in closed form [i.e., the expression of all s, as a function
of f, using (1)]. Since this is not normally feasible for complex models, a classical
approach to solving the strong constraint minimization is to add to the cost function
the product of undetermined Lagrange multipliers (A, € R"} with the dynamical
constraints, leading to the expression

N-1

min Jy = €] P; em-z vIR; VL+2 AN Wi (19)
. k=1 k=1

The initial uncertainty is denoted by €5 = Wi, — Wy, where Wy is the initial guess at
the initial state conditions. All other notations use the same conventions as in previous
sections, A necessary condition-for an extremum of the quadratic form Jy is to set
to zero the derivatives with respect to all free vartables. This vields the following
Euler—Lagrange equations,

B, =Ap ol  k=1,... N (20)
i, = Wo + PoAl A (21}
Mot = AL M+ CI R~ by, k=1, .0 N-1 (22)
Av_1=0 ' (23)

defining a two-point boundary value problem in [z, #y] for the 2N+ 1 estimates ti:k
and Ag, both & R" (Lermusiaux, 1997). The Euler-Lagrange equation (22) is the
so-called adjoint equation and (23) its boundary condition (Brockett, 1970). The
Lagrange multipliers or adjoint variables measure the cost function sensitivity to
the dynamical effects of the reliable data, 2(EU N/OWy_1 = A¢_ 1. The physics of the
adjoint model (22) between time 1, and #; . is described by the backward adjoint
operator Al Even in linear ocean science, the dynamical model is in general not self-
adjoint, and the backward propagation of reliable data (22) can have quite different
physics from the forward model (20). The study of the adjoint model has received
much atiention for these and other reasons; fastest-growing error modes at 7 and
Iy, sensitivities to auxiliary conditions and identification of instability regions (Le
Dimet and Talagrand, 1986; Lorenc, 1986; Lacarra and Talagrand, 1988; Thacker
and Long, 1988; Derber, 1989; Farrell and Moore, 1992; Tziperman et al., 1992ab;
Bergamasco et al., 1993; and others).

The following iterative descent algorithm for solving the system (20—23) has often
been included in the term adjoint method. First, the dynamical model is integrated
from 1 to fy using a first guess 11’0 for initial condition. Next, the adjoint model
is integrated backward using (23} as initial conditon (no data at ry) to find Ay -1,

. Ag. By construction, the only component of VJy left is

1 aly

5 'a—%‘“ﬂ“Pﬁi(lbé—q’(l))“AgM
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which is equal to —A] Ag if 11;0, the estimate of s, is chosen equal to Pl If the ampli-
tude of the gradient is too big, 1) is too far from its optimum value and one needs
to iterate. A line search is made along the direction given by V.Jiy and the value of %
cancehng VJy is given by (21). A new iteration can then be started from ¥ = ﬁso =
¥l + Py AJ A and so on, until an acceptable value is reached for V.Jy. Sometimes,
other control algorithms (Boguslavskij, 1988; Daley, 1991; Wuansch, 1996} based on
adjoint equations have been calied adjoint methods by oceanographers, and readers
should carefully discern what this term means in each case.

Generalized Inverse Problem

Any problem where one tries to estimate the unknown canses of known consequences
is normally called an inverse problem. Classical finite-dimensional inverse methods in
oceanography solve such problems (Bennett, 1992), the consequences usually being
insufficient measurements, and the causes, hypothesized processes. Expanding this
approach to the simultaneous best fit of a data set with a complete time-space contin-
wous dynamical mode] leads 1o generalized inverses. The best fit is here again defined
in a least-squares sense as by Bennett {1992). In discrete terms, the quadratic penalty
to be minimized is given by

N~
min JN GOPG E0+Z V'{Rk Vk+2 Wk le IWk 1 (24)
e k=1 k=1

The last term in (24) now quadratically weights the white noise in time dynamical
model uncertainties, wy . ;, with a priori model efror covariances (. _ ;). Using equa-
tions 1 and 2, the free variables are the (N + 1) state vectors values 5, k=0, ...,
N,e R". The Euler-Lagrange equations 25-28 are obtained by setting to zero the
derivatives of Jy with respect to these free variables. Strictly for notational conve-
nience, the variables Az, £ = 0, ..., N ~ 1, are added and defined by the backward
evolution equation 27. This equation is the same adjoint modei as equation 22. It has
similar properties and the X’s are called adjoint variables:

J‘k:Ak—l{g’}cml"i'Qk—i)\k-lv k=1, ... ,N (25)
By = W0 + PoAd Ay (26)
M= AN +CIRId, - Calsl, k=1, ... ,N-1 7
Ay_:=0 (28)

Comparison of this Euler—Lagrange system (25-28) with (20-23) shows that the
generalized inverse estimates the dynamical model uncertainties by Q. hi-1. This
term couples the state vector evolution (25) with the adjoint evolution (27). Without
further manipulations, this coupling renders the iterative solution of the two-point
boundary problem (25-28) very difficult. For any linear system, this could be solved
by using the KS scheme (Section 3.2), which also minimizes Jy given by (24). Two
other approaches can also be used and are discussed next: the representer method
and the direct minimization methods.
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Representer Method

Our objective of uniform notation and common hypothesis (see the Appendix) have
led to a presentation of the representer method differing from the classic continuous-
discrete-time version reviewed by Bennett (Bengnett, 1992; Malanotte-Rizzol, 1996).
The essence is the same, however, and the representer method is an algorithm for
solving the system (25-28). First recall that for all linear systems (1), one can show
that /i in (24) has a unique global minimum. If a solution is found, it is the unique
solution. Using this fact. it can be shown (Bennett, 1992; Lermusiaux, 1997) that the
system (25-28) can be reduced to initial value problems by first decomposing ¥,
into the expression

§, = +Rub;, k=0, ... N (29)

This decomposition (29} and its developments could be simply stated as mathematical
tools to transform the systern (25--28) into initial value problems. However, to ease
comprehension, descriptive allusions will be used. The (N 1) time evolving matrices
of representers, Ry = [ry,,...,r0] € R"™ are matrices whose columms / contains
the value of the representer (i,/) at time #; at each grid point, r,; € R", The index i
=1, ..., m, numbers the m observations made at time ¢, with /= 1, .., N~ 1.Tn (29)
and hereafter the summation convention is used on the index ! only. In total, there
are m{N — 1) discrete representer vectors 1o be determined, one for each datum. The
continuous analog of a discrete representer vector, ry;, is a representer field ri(x, )
of Bennett (1992). The (N — 1) vectors b; € R™ are vectors of coefficients that need
to be determined from the system (25-28) in function of the data residuals, model
errors and measurement uncertainties. The vector b; balances the representer vectors
of the m measurements made at time #;. In words, it will be shown that the representer
r}; maps a weighted combination of alf forecast misfits, as seen from the position of
scalar datum /, available at time #;, onto the field estimate at time Iy, tbk (36).
Determining the Ry and by in (29) can be done by further assuming that the fol-

lowing initial value problems for the forecast t.Lr,C (30), the matrices of representers
Rk, (31} and the matrices of so-calied representers adjoints Iy (32) are satisfied:

W = A Wi with ¢ =W, (30)
Ri=Av Ry +Qu_Tior with Rg,=PoAlT, (31)
Tiori= ALy +Cl8y with Ty.p,=0 (32)

The (N - 1) backward time evolving I'yy € R™™™ are the matrices of the adjoints of
the representers. Their column 7 contains the adjoint to r},. In the adjoint evolution
(32), the operator 8y, is the classical Kronecker delta, equal to 1 if & = / and to zero if
not. Within the data time series, [ = 1, ..., N — 1, 8;,; selects the measurements made
at time ;. The matrix I';_, ; of representer adjoints, associated with the observations
- made at time ¢;, feels its data array C; at time 1, = #; only. The backward initial value
problem (32) is uncoupled from the two others. It is what renders the representers
method iteratively attractive when compared to (20-23) and (25-28).

Before solving (29) as a function of solutions to (30-32), it is useful to discuss an
interesting property of the representers r}; and their adjoints. For direct measurements
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of state variables, at isolated points in time and space {in our notation, each row of
C, € R™*" contains one element equal to 1, all others are null), the columns of
Iy in (32) are precisely discrete Green’s functions or influence functions for the
adjoint operator A] or fundamental solutions of the backward problem (27). Using
the symmeiry property of Green's functions of adjoint operators, they are also equal to
Green’s functions of the forward probiem (30, in which associated paired indices are
permuted (e.g., Roach, 1982). For the more general measurement model (2), one may
deduce the following illustrative relations from (30-32). The matrices of representers
adjoints are Green’s functions pmJected in the measurement space or “‘generalized”
Green’s functions; in discrete terms, I‘Q ¢ = CiAp.1 -+ Ay, or in general, I']_ o
CiAp.y - Appar, fork=0and £ 2 1. Thus, for all C; in (2}, one obtains

Cul, = I Ag¥g

and

k
- T T T
CiRyy = Ty jAgPoAg Ty s + Z | ISV O Y Wy
K=l

The (N - 1) matrices C;R;; & R"™™ are the discrete equivalents of the representer
matrix of Bennett (1992). From the last expression, each of these matrices is symmet-
ric, positive definite since initial and mode! error covariances satisfy these properties.

It can be shown (Lermusiaux, 1997; and the Appendix) that the following expres- .
sions for the by’s,

Cpoibr= Aoy {33)
=Ryt [d; - CI‘I‘I] (34)
b=[R+CRY - [d~ Ci'] (35)

are such that equations (29-32) satisfy the system (25-28). Since the representer
matrix CR was proven symmetric, positive definite and since data error covariances
'in R are symmetric, positive definite, the matrix [R+CR] is invertible. Hence equation
35 gives the unique solution t}:k for the Euler—Lagrange system {25-28). In summary,
the weak constraint estimate ¥, minimum of J in (24) can be expressed as a function
of the matrices of representers R, and of the forecast 11!{ by

b, = 4] + RyR + CR);' - [d - CW) (36)

Integrating (30-32) and inserting the solutions into (36), one solves the generalized
inverse problem. Notice that for linear systems, the field estimates given by (36) and
(17) are precisely the same. In practice, there 1s no need to use (36), which requires
the storage of the matrices of representers for all ;. In Bennett (1992) and Lermu-
siaux (1997) it is shown that the direct evaluation of (36}, well suited for paraliel
computations, is dominated by 2m(N ~ 1} + 3 dynamical model type of integrations.
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An iterative method for evaluating (36) is also described in Bennett et al. (1996).
Instead of solving (35) directly, which would require exact evaluation of the repre-
senters, it is solved iteratively. Preconditioning can be used by evaluating (R + CR]
for a coarse resolution numerical grid, requiring 2m(N — 1) coarse model integra-
tions. Then (35) can be solved and a first estimate Ys; evaluated by insertion of (35)
into (27) and integrations of (27) and (25), requiring three fine model integrations in
total. For other iterations, new b;’s can be estimated from (34), then inserted into the
adjoint model (27) to finally integrate the forward model, thus two additional fine
model integrations per iteration. The total count is 2m(N — 1) coarse and 3 + 2f fine
model integrations, where f is the number of iterations. Since ocean data sets usu-
ally have much smaller dimensions than ocean model state vectors, the representer
algorithm has at least a cost of order m/N smaller than a KS. However, the repre-
senter scheme as stated (29-36) does not estimate the a posteriori errors, which is a
major disadvantage compared to the KS. For ocean applications, we refer to (Bennett
(1992), Bennett and Thorburm (1992) and Bennett and Chua (1994).

34, Direct Minimization Methods

Direct minimization methods are all methods that directly minimize cost functions
similar to (24), generally without using the Euler—Lagrange system (25-28). Noniin-
ear penalty functionals, with derivative smoothing terms, and nonlinear dynamical
models are considered here. Direct methods can be modified for constrained min-
imization (e.g., Luenberger, 1984) and thus can limit the range of variables (e.g.,
nonnegative constraints for biochemical concentrations). There is a large literature
available on large-scale minimization in engineering and oceanography (e.g., Gill et
al., 1982; Schriter and Wunsch, 1986). Only the concepts are addressed here.

Descent Methods

Descent methods iteratively determine directions locally descending along the cost
function surface. At each iteration, a line search minimization (exact or approximaie)
is performed along that local direction and a new descending direction is found. In the
steepest descent method, the local direction is the opposite of the local cost function
gradient. This is the simplest, but siowest method (converges linearly). The search
directions of the confugate-gradient method are orthogonal with respect to the Jocal
Hessian matrix, the first direction usually chosen equal to the local steepest descent.
Only gradients of the cost function need to be evaluated and all conjugate-gradi-
ent methods have low storage requirements (a few gradients) for good convergence
rates. For linear ocean systems and for any quadratic penalty functionals of & total of
n free scalar variables, the conjugate-gradient converges exactly in at most » steps.
For nonlinear models or other convex functionals, the conjugate-gradient is an iter-
ative procedure and after » local conjugate-gradient searches, it is usually restarted.
Conjugate-gradient methods differ in the algorithm used to generate the initial guess,
the definition of the new search direction and the restart criteria. Well-established
schemes include the Fletcher-Reeves (1964) and the Polak-Ribiere (1969) algo-
rithms, Beale’s (1972) restart and Powell’s (1977) restart. Newron and quasi-Newton
methods iteratively approximate the general penalty functional by a local quadratic
form and explicitly try to minimize that local approximation. They can have guadratic
rates of convergence. The Newton method requires the evaluation and storage of the
focal (nx n) Hesslan of the cost function, which makes it very expensive to use in
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ocean DA. The guasi-Newton methods only evaluate an approximation of the Hes-
sian, generally by building up curvature information from local cost function and
gradient evaluations. The storage requirements are similar to the Newton method, but
the computational efficiency is better {only first derivatives evaluated). The most pop-
ular scheme are the BFGS (Broyden—Fletcher—Goldfarb—Shanno) quasi-Newton and
its modifications, such as the Shanno (1978) Iimited-memory quasi-Newton method.
To spesd up the convergence, a preconditioning matrix can be applied to the cost
function or its local quadratic approximation, leading to preconditioned conjugate
gradient or preconditioned quasi-Newton methods (Zupanski, 1993),

For new developments of large-scale minimization problems, we refer to Navon
and Legler (1987) and Lt et al. (1994). The major drawback of all descent methods
is that they are initialization sensitive. For nonlinear cost functions (e.g., a nonlinear
coastal model), they must be restarted many times to avoid local minima. Nonlocal
methods such as simulated annealing and genetic algorithms then become attractive.

Sirpultated Annealing

Simulated annealing is suitable for large-scale optimization problems (Press et al.,
1989, Aart and Korst, 1991). The scheme is based on an analogy to the way that
siowly cooling solids arrange themselves into a state of perfect crystal, with a mini-
mum global energy. To achieve a perfect crystal, the solid is heated untjl it becomes
an amorphous liquid, in a nearly random state. The liguid is then cooled very slowly
using a specific scheme of decreasing temperatares such that thermal equilibrium is
reached at each temperature. From a statistical point of view, the Boltzmann distribu-
tion (proportional to e #/4T) gives the probability of the solid having a certain energy
E at thermal equilibrium at temperature 7. During the cooling there is thus the possi-
bility for a configuration with higher energy to be accepted. For simulating this evo-
Tution, Metropolis et al. (1953) introduced the imporfance sampling algorithm, which
generates a sequence of states such that new states with higher energy (AE > () are
accepted with probability ¢ 2%/¥T, If the new state has jower energy (AE < 0), this
probability is greater than 1 and the system always accepts a new, lower-energy con-
figuration. However, if AE > 0, the Metropolis algorithm allows the system to get out
of a local energy minimum. As indicated by the Boltzmann disiribution, the lower
the temperature, the less likely are “uphill” choices. A random number generator is
needed to define the possible options available fo the system. Importance sampling is
a means to generate, from successive options, a sequence with a desired asymptotic
distribution (Bennett, 1992).

In optimization using simulated annealing, the cost function plays the role of
energy and temperature is replaced by a control parameter. An gnnealing schedule
defining how and at what speed the control parameter (7'} is decreased needs to be
determined. For sufficiently slow schedules {too slow in practice), convergence to the
global minimum is guaranteed for an infinite number of iterations. A jump routine is
also necessary to reach through the space of possible free variables. Given a set of
cost function arguments, the jump routine gives another set. Both the annealing sched-
ule and jump routine are problem specific and need to be tuned to the problem. Kirk-
patrick et al. (1983) introduced the method as a combinatorial optimization scheme.
For ocean applications, we refer 1o the array design of Barth and Wunsch (1990)
and to the fit to data of a steady-state solution of a nonlinear Q-G model (Kriiger,
1993). The advantages of simulated annealing are its origin in verified physical the-
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ory, which leads to convergence criteria, and its independence of the specific structure
of the cost function and initial guess, allowing for a nonlocal minimum search. Its
main disadvantages are its large computer requirements and, for affordable annealing
schedules, an uncertain convergence to the global minimum.

Genetic Algorithms

Genetic algorithms are direct methods based on searches generated in analogy to the
genetic evolution of natural organisms. Barth (1992) describes the philosophy as sim-
ilar to nature’s survival of the fittest. At each iteration or generation of the search
for the optimum, the genetic scheme keeps a population of approximate solutions.
The population is evolved by manipulations of past populations that mimic genetic
transformations (i.e., breeding, offspring, etc.) such that the likelihood of producing
better data-fitted generation increases for new populations. The more complex the
penalty functional, the larger the population expected to be necessary. Genetic algo-
rithms allow nonlocal minimum searches, but convergence to the global minimum is
not assured. The major disadvantage is the lack of a theoretical base. In fact, almost
any minimization method is a genetic one and the problem of determining a genetic
algorithm physically adapted to ocean problems is still unresolved. Like simulated
annealing, it has generally high computer requirements, but it has been found to be
faster in some cases (Barth, 1992).

3.5, Stochastic Methods

In this section we consider methods directed toward a nonlinear stochastic dynami-
cal model and stochastic optimal control. The ideas are new in ocean DA and fur-
ther investigations are required. Once a stochastic cost function is defined, brute-
force methods such as simulated annealing or genetic algorithms could be used for
optimization. That can be very expensive and one could instead fry to solve the
conditional probability density equation (Fokker-Planck equation) associated with
nonlinear versions of (1, 2). Minimum error variance, maximum likelihood or mini-
max estimate can, for instance, be determined from the probability density function
(Boguslavskij, 1988; Kloeden and Platen, 1992; Carter, 1993). No assumptions are
required, but for large-dimension problems, the cost can also be prohibitive, since the
Fokker—Planck integration is generally implemented by large Monte Carlo ensemble
calculations {Evensen, 1994ab; Lermustaux, 1997; van Leeuwen and Evensen, in
press). Even for low-dimensional realistic models, parallel machines with large stor-
age capabilities are necessary.

3.6. Hybrid Methods

Hybrid methods are different combinations of previously discussed data assimila-
tion schemes. This is a new concept that requires further research. An example is
as follows. A method based on the Kalman filter idea, but better adapted to ocean
dynamical models, can be used initially to obtain a first estimate of the evolution
of the state variables within the observation interval. This suboptimal first estimate
can then be used as a first “good” guess in a smoothing cost function, suboptimal
filtering being prerequisite to smoothing with nonlinear models. The technique called
error subspace statistical estimation (ESSE), presented briefly in Section 6.2, i1s such
an example (l.ermusiaux and Robinson, in preparation}. The cost function can also
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be minimized by one of the methods described earlier, such as a variational inverse
method or a direct nonlinear mininization method. For parameter estimation, one
can always add to the smoothing cost function an additional term based on the dif-
ference between the parameters used for the first guess and the smoothed param-
eter values sought. Hybrid methods appear promising for oceanographic applica-
tions.

4. Coastal Ocean Data Assimilation

Ocean prediction systems, composed of an observational network, a dynamical model
and a data assimilation (DA) scheme, are useful for the coastal oceans, for both scien-
tific and practical purposes. Such systems can contribute to important societal require-
menis for management of multiuse coastal zones. The DA methods were reviewed in
Section 3. Coastal processes, observations and models are now discussed and specific
concerns for coastal ocean prediction systems addressed. A comprehensive system
must account for a variety of disciplines (physics, biology, chemical and geological,
and their mutual interactions), a multitade of time and space scales, and the complex
geometries (land/sea boundaries, topography) of coastal and ocean regions. In this
section we discuss the processes and scales of coastal oceans (4.1) and the issuves
and complexities particular to the coastal oceans that need to be addressed in the
observational network and dynamical model components for a coastal ocean moni-
toring and prediction system (4.2). The final subsection (4.3) on the third component,
the data assimilation schemes, relates the issues presented here to the overview of
methodologies presented in Section 3.

4.1.  Processes and Scales

To predict, monitor and simulate the coastal oceans, it is necessary to consider a particu-
larly large range of phenomena and scales in both time and space. The coastal ocean, in
its broadest definition, inciudes estuaries and the region between the shersline and the
beginning of the deep ocean or abyssal plain, Therefore, most processes that occur in
the ocean in general must be studied to understand coastal oceans. Many of the physical
processes are reviewed in other chapters of this volume. A comprehensive summary is
presented in Table I These include the effect of tides, both internal and external; tem-
perature and salinity fronts caused by a variety of processes; waves with scales ranging
from seconds to years and from meters to thousands of kilometers; currents and eddies
arising from many processes, both internally and externally driven; boundary layers, at
the surface, the bottom and near shore; surf zone phenomena, including storm surges
and rip tides; sedimentary processes; and estuarine processes.

The scales on which these processes occur ranges from very small {(millimeters) to
very large (thousands of kilometers). Each process has a different range of scales that
is important. A particular coastal ocean region will be affected by various combina-
tions of processes (Table I). Which ones are most important can depend on, among
other factors, latitude, geological particulars (of both the land and ocean), weather
and climate, and the orientation and location relative to the deep-ocean general cir-
culation. Often, a given region can be dominated by one type of forcing for a short
period of time (e.g., a hurricane), and later dominated by a completely different type
of phenomena (e.g., internal baroclinic instability of a tidally mixed front).
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TABLE
Physical Processes Occurring in the Coastal Oceans

Tides
Barotropic, internal, overtides {harmonic generation)
Fronts
Upweliing, shelfbreak, buoyancy, topographic, mixing, tidal, deep-ocean
Waves
Surface, internal-inertial, edge and infra-gravity, planetary,
Frontal-trapped and shear, coastal-trapped, topographically trapped
Currents and eddies
Wind driven, buoyancy driven, squirts, filaments,
eddies, exernal pressure gradients, boundary currents, and undercurrents,
tidal rectification, topographic or geometrical eddies, gravity-wave
rejated
Boundary layers
Mixing layer, atmospheric and river fluxes,
Ekman transport, stratification, entralnment, ice interactions, surface
films and microlayer, bottom shear stress, shear dispersion,
topographic and roughness interactions, sediment transport
Surf zone effects
Sediment transport, rip currents, mean flow generation, storm
surges, surf beat
Estuarine processes
Entrainment, layered circulations, salt wedges, tidal fronts

As an example, consider the Middle Atlantic Bight (MAB), off the east coast of the
United States. The shelf is about 100 km wide, extending from Hatteras northward
toward the Canadian shelf. Variability on the inner and middle shelf is dominated by
winds and tides, while closer to the shelf break, deep-ocean interaction becomes more
important. Tidal processes can be large scale, O(1000 km), or they can be smaller
scale, O(1 km), such as intermal wave breaking on the shelf forced by udal inter-
actions with the shelf break (Brickman and Loder, 1993). Wind events can also be
large scale, generating forced and free shelf waves of O(1000 km), or smaller scale,
generating strong currents locally. Due to the geometry of sheives such as the MAB,
many processes have different scales in the cross-shelf versus long-shelf direction;
upwelling events on the inner shelf can be long in the long-shelf direction, O(100
km), but much shorter in the cross-sheif direction, O{10 km). At the shelf break,
interactions with the Gulf Stream and its warm-core rings, as well as the instability
of the shelf-break front itself, generate meso- and submesoscale variability, G(10 km)
(e.g., Churchill et al., 1986; Garvine et al., 1988; Gawarkiewicz, 1991; Sloan, 1996).
Other scales are imposed by atmospheric fluxes and river runoff. Different time scales
result from these processes. Table II shows processes that have been studied in the
MAB, ordered from longest to shortest time scale. Nonlinearity also transfers energy
from one scale to another.

Such complexities present a challenge for data assimilation. Different methods
may be appropriate for some processes but not for others. Desirable observations need
to be defined, but the best use of available observations should also be identified. A
schematic of this twofold problem is shown in Fig. 20.3. One way to consider the
problem is to ask: Given a set of processes that one wishes to monitor, what are the
observational tools and models needed to capture those processes? Another view is
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TABLE H
Some of the Operative Physical Processes on the Middle Atlantic Bight Shelf

Process

Reference

Mechanism/Notes

Interannial shelf water
variability

Mean shelf circulation

Seasonal stratification
Cotd pool

Shelf-break front

Estuarine forcing of
inner shelf (e.g,,
Delaware coastal
current)

Hudson shelf valley
steered flow

Atlantic coast north-
easter storms

Subtidal coastal sea-
ievel fluctuations

Shelf waves, Kelvin
and edge waves

Coastal shelf up-
welling front

Shelf-break
exchanges

Gulf Stream water
penetration

Tides

Internal waves, tides,
solitons

Suspended particulate
matter

Mountain (1991},
Manning (1991}

Beardsiey and Winant
(1979

Beardsley et al. (1981}

Houghton et al. (1982)

Houghton et al.
(1988)

Munchow and Gasvine
(1993)

Mayer et al. (1982)
Davis et al. (1993)

Noble and Butman
(1579)

On et al. (1981),
Huthnance (1986)

Crowley and Glenn
£1994)

Garvine et al. (1988)

Gawarkiewicz et al.
(1992}

Moody et al. (1983)

Zheng et al. (1993),
Flagg (1988),
Brickman and
Loder (1993)

Glenn (1994),
Palanques and
Biscaye (1992)

Volume of shelf water (<34 psu) correlated
to upstream inflow; salinity correlated
to river discharge and precipitation.

Mean southwestward flow driven by along-
shelf pressure gradient,

Driven by wind and buoyancy fluxes,

Resides in deep shelf waters between 50-
and 80-m isobath; “remnant” of winter-
cooled water,

Water mass front beiween cold fresh shelf
waters and warm saline slope waters.

Delaware Coastal Current 20 cm 57!
forced by Delaware River discharge.

Topography steers cross-shelf currents of
up o 25 cm s~

Phenomenclogy of ammospheric synoptic
pattermns.

Strong correlation between along-shelf winds
and coastal sea Ievel in synoptic band
{2- to 10-day period),

Shelf waves have ¢ < f; Kelvin and edge
waves have ¢ > f.

Along-shelf winds drive upwelling, forming
surface thenmal fronts,

Shelf-break phenomenctogy includes inter-
leaving, calving, ring eatrainment and
smali-scale shelf-break eddies.

Intrusion to 60 km north of Hatteras, to
the 25-m isobath during summer.

Dominant constituents are M2 and K.

Barotropic tidal motion of stratified fluid
over sloping topography generates
internal waves,

Strong offshore sediment transport observed
during winter storms due 1o wind, tides,
waves.

to ask: Given a set of observations, what are the processes that can appropriately be
monitored? The latter recognizes that only when a particular observational network is
in place is it possible to determine fully which processes can be modeled successfully.
In addition, historical observations might be useful for new purposes.

4.2. Coastal Geean Monitoring and
FPrediction Systems: Measurements and Models

A complete coastal ocean monitoring and prediction system is made up of three com-
ponents: an observational nerwork, consisting of a wide variety of platforms and sen-
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Processes

Observations

1) Given a vector of processes P, what observations are
necessary and what models?

2} Given a vector of observations and model, what processes
can be observed?

Fig. 20.3. Twofold adequacy of processes and observations for data assimilation. © PFIL, NQS.

sors measuring all aspects of the ocean state (observable variables); a set of dynami-

cal models, which predict the ocean state (dynamical state variables) into the future;

and a data assimilation scheme, which combines the observations with the dynamical
models 10 accomplish the variety of goals mentioned in Section 2. It is challenging to
combine all three elements and to include all the processes and scales necessary for

desired purposes. Much progress has been made in recent years in the development of

coastal ocean monitoring and prediction systems. Several preliminary systems have

been implemented (e.g., Johannessen et al., 1993; Gerritsen et al., 1995). An opera-

tional forecast system is under development for the U.S. east coast that will include

data assimilation (Aikman et al., 1996}, A schematic of the Harvard Ocean Prediction

Systern (HOPS) (Lozano et al., 1996) is shown in Fig. 20.4. HOPS is an interdis-

ciplinary system, including physical, acoustical, biological and chemical dynamics

(Fig. 20.4¢), which is modular and flexible. HOPS assimilates a variety of data types

(Fig. 20.4h), zither directly or via structured data models including feature models

and EOFs (Lozano et al., 1996). It can be set up in any region of the world ocean

{deep sea, coasial and across the shelf break) and has been utilized and verified in

several regions, in very simple or quite complicated configurations (Robinson, 1996;

Robinson et al., 1996a,b).
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Fig. 20.4. (Continued) (b} startup module of HOPS.

Observational Networks

An observational network is a collection of platforms and sensors for field measure-
ments (see Chapters 12-15), The measured quantities include physical variables (e.g.,
temperature, salinity, velocity), biological variables (e.g., phytoplankton, zooplank-
ton, fish stocks), chemical constituents (e.g., oxygen, nutrients) and geclogical vari-
ables (bathymetry, sediments). Both internal budgets and boundary fluxes are impor-
tant, so some of the measured quantities are internal variables of the system, while
others are measured as fluxes from outside the coastal system: atmospheric fluxes,
river fluxes, deep-ocean exchange, bottom interactions. The wind field is a partic-
ularly crucial variable for the coastal oceans. Bathymetry is a particularly impor-
tant variable to measure; recent coastal ocean programs have discovered that tradi-
tional bathymetric data contains error levels that are too high for the purpose at hand.
In some cases, models allow bathymetry to be adjusted as a parameter, which can
improve the model results.

The sensors monitoring these variables include CTD/XBT/XCTD, which mea-
sure temperature and salinity (conductivity); acoustic devices, which can measure
velocity (ADCP), integrated temperature and velocity (tomography), particles and
biomass, and bathymetry; passive and active electromagnetic devices {e.g., color
(SeaWiFS), infrared (AVHRR), LIDOR]. The number of oceanographic sensors is
large and rapidly growing.

A variety of platforms deliver the sensors to their desired location. The plat-
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forms can be manned or unmanned, remote or in situ, stationary or moving. Present-
day platforms include satellites, ships, aircraft, moorings, free-floating instruments,
remotely operated vehicles, autonomous underwater vehicles and fixed stations on
land. Various platforms offer advantages and disadvantages. Moored instruments
have the most nearly continuous measurements below the surface but cover only
one data point in the horizontal. Satellite remote sensing offers the advantage of
fine resolution and large coverage in space and time, but only for near-surface fields
or surface height. Ships and aircraft can provide high resolution in all three spatial
dimensions, but often only at discrete stations which are not simultaneous. Most plat-
forms are affected by other considerations, such as weather, sea state, and interaction
- with local fishing activity. A cost-benefit analysis of the optimal sampling system is
very difficult. In general, the mix of platforms and sensors chosen should attempt to
minimize the resources required for a given purpose. In GLOBEC (1994), methods of
sampling are reviewed in the context of physical and biological interactions. Calibra-
tion and interpretation, especially for novel systems, remains an important issue, and
management and archiving of data are important concerns presently being addressed.
Observing systems are generally divided into operational systems, for management
and monitoring purposes, and research systems, which are used to further the study of
the basic ocean science, which have somewhat different requirements. The optimal,
efficient distribution of sensors is a research topic, which can be addressed through
the use of observational system simulation experiments. OSSEs can help design the
components of a prediction/observation system, optimize the use of resources, and
improve and validate the system performance (GLOBEC, 1994).

An example of a multicomponent research network is the one maintained by Rut-
gers University (Fig. 20.5). It includes a remote semsing receiver, a meteorological
tower, a research vessel and a long-term ecosystem observatory (LEQ) (Grassle et
al., 1996). The remote sensing receiver has access 1o AVHRR and will access Sea-
WIFS ocean color when it becomes availabie. The meteovological tower records air
temperature, pressure, humidity, wind and shortwave solar radiation. The ship main-
tains a CTD, transmissometer, fluorometer, surface and underwater radiometer. The
surface platform (the ship} can be used to calibrate and validate the satellite platform.
The LEOQ is located 10 km offshore at 15 m depth. It presently has current meters
and optical backscatter sensors, and benthic acoustic stress sensors. Plans include
remotely operated vehicles or autonomous underwater vehicles to measure pressure,
temperature conductivity, optical backscatter, fluorometer, radiometer, hydrophonics
and ADCP current measurements.

Dynamical Models :
A wide variety of dynamical models have been employed to tackle the problem of
estimating fields in the coastal ocean. Due to the variety of processes and scales
mentioned above, different models have been developed for different purposes. The
models vary according to the different physical assumptions (for resolved scales),
subgrid-scale parameterization for unresolved scales, computational methods, bound-
ary conditions and geometry. One can divide the models into general models such
as primitive equation or shallow waier, which attempt to resolve a wide range of
processes, and special-purpose models, such as tidal and storm surge models, and
surface and bottom boundary layer models,

Complex, fully three-dimensional models have been developed and refined
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Fig. 20.5. Rutgers multicomponent research network. (Drawing by L. Henderson; from Grassle et al.,
1996.)

recently which can handle many processes in a single model. Some, like primitive
equation models, resemble deep-ocean models but in addition must handle the com-
plexities of the coastal ocean: coastal geometry, different resolution requirements for
different regions, steep and variable topography. Haidvogel and Beckmann (see Chap-
ter 17) have reviewed the present status of many of these models.

A receni review of the problem of validation of coastal ocean models (Lynch and
Davies, 1993) demonstrates the large number of models that are presently in use for
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operational and scientific use and elucidates verification issues. Test problems have
been developed to validate and compare models to models and models to data (for
tidal problems, Davies and Xing, 1995; for convection and diffusion problems, Bap-
tista et al., 1995; for steep topography, Chapter 17, this volume). These benchmarks
provide an important starting point, but more work is required. Validation, calibration
and verification are essential for data assimilation models and systems.

Geometrical complexities manifest themselves primarily in two ways. The com-
plex geometry of coastlines has often motivated the use of curvilinear coordinates. A
research topic of interest today is the generation of grids and the accuracy of differ-
ent meshes (Carey, 1995). Variable terrain (both steep and high topography) has led
to the development of different techniques for vertical coordinates, such as terrain-
following coordinates (sigma) (e.g., Gerdes, 1993). One problem that has received
much attention with these types of grids are truncation errors that different vertical
coordinate systems introduce (e.g., Haney, 1991; McCalpin, 1994).

Open boundary conditions continue to present vexing problems for coastal ocean
modelers. The deep ocean influences shallow seas at many time and space scales
{waves, tides, boundary currents, etc.). Equally important, signals generated in the
coastal domain must be able to propagate outward. For example, Johnsen and Lynch
(1995) apply a second-order radiative open boundary condition for a shaltow-water
mode] forced by both winds and tides, with useful results. In general, the efficacy
of different open boundary conditions depends on the pamcuia_r problem (Chapman,
1985}.

Sea-surface height has been one of the principal concerns for many coastal pop-
ulations. Among the most advanced coastal ocean dynamical models are those that
predict tides and storm surges. The North Sea-Baltic warning system provides oper-
ational forecasts based on the shallow-water equations. The model inciudes triply
nested domains with a 3 : 1 ratio. Calibration, verification and validation techniques
have been applied, such as tuning the bed friction, horizontal eddy viscosity and
bathymetry. Model results compare well with data and provide useful forecasts
(Lynch and Davies, 1993),

The shallow shelves and seas are often dominated by atmospheric fluxes, wind,
heat and fresh water. Therefore, many attempts have focused on the vertical mixing
component, and special bottom boundary layer and surface boundary layers have
been employed. Turbulence closure schemes have been studied extensively and form
an important part of any modeling system (Davies et al., 1995; Davies and Xing,
1995).

As mentioned above, processes occur at many scales, especially in the coastal
oceans, but computer power limits resolution of the explicitly resolved dynamical
model. Therefore, it becomes necessary to choose which models will be used and at
what resolution. Variable resolution grids and nested grids are employed to achieve
higher resolution in particular regions. For example, by using nested grids, a large
domain can provide boundary conditions for a domain with higher grid resolution.
Different dynamical assumptions can even be used in the nested models (Sloan,
1996). Drawing from the meteorological experience, nested ocean models have been
applied successfully (Spall and Holland, 1991; Oey and Chen, 1992). Recent progress
has been made in applying similar nested models in the coastal oceans. Two-way
communications between the grids is often essential, as it allows information to prop-
agate both into and out of the domain. A telescope of relocatable nested grids can
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allow efficient, small coastal and estuarine models to be employed while still ben-
efiting from an accurate representation of the larger-scale processes. The complete
set of models (e.g., wave, tidal, primitive equation, biological chemical, geological)
forms a hierarchy of models that can be employed. For the future, a more general
system of coupled, nested models with physics, biology, chemistry and geological
processes is foreseen. :

4.3, Coastal Ocean Monitoring and Prediction Systems: Assimilation Schemes

The monitoring of coastal sea level has been the dominant component of the special-
purpose assimilation studies. Within the last decade, such simulations have been suc-
cessfully achieved, generally with parameter estimation. Relatively complex two- or
three-dimensional models but simplified DA methods (adjoint method with diagonal
weights, constant-gain KF, OI), or, simplified, usually one-dimensional dynamical
models, but advanced methods (generalized inverse, EKF) have lead to significant
improvements (Sections 5.1 and 5.2). For complete coastal circulation studies, it is
only very recently that DA has been used.

The lack of sufficient coastal data coverage and the complex coastal dynamlcs

advises against the simplest methods, like the classical versions of the direct insertion,
blending and nudging methods (Section 3.2}, which assume a one-to-one measure-
ment model and a diagonal gain matrix. Those methods rely on the internal dynamics
1o propagate the local data impact, which can thus be transferred too slowly to the
rest of the state vector. However, for an increased time/space data coverage and reli-
able observations, these techniques have a good cost-benefit ratio and are simple to
implement.

Successive corrections and Ol assimilation (Section 3.2) are better as long as their
Ol gain is based on a careful design of the forecast and data error covartances. Most of
today’s OI schemes have isotropic and homogeneous covariances, but other schemes
(e.g., KF) have shown that this assumption is not generally correct (Cohn and Parrish,
1991; Daley, 1992a-c; Todling and Ghil, 1994). Since coastal variability is usually
nonhomogeneous and nonisotropic, and since the forecast errors should be mainly in
that variability, one expects nonhomogeneous and anisotropic forecast error covari-
ances. The application of KF ideas with three-dimensiona] realistic coastal circulation
models is still very expensive teday. Parallel computers with gigabyte memories are
the only hope for the strict KF in realistic modeling. Less costly, suboptimal KF ver-
sions have been investigated (e.g., Todling and Cohn, 1994; Evensen, 1994a; Fuku-
mori and Malanotte-Rizzoli, 1993), some of which might be appropriate for coastal
flows. In principle, the KF is valid only for linear models, but its extended or lin-
earized version could be used. However, both extensions are based on a second-order
trancation in the series of error moments, which precludes noniinear saturation of the
errors and can produce unbounded forecast errors (Evensen, 1993). Some nonlinear
filters also exist, but they appear too expensive for most ocean models (Daum, 1994).
Finally, in nonlinear dynamics, the ocean state probability density can have multi-
ple maxima, and least-squares criterta for model-data melding are only appropriate
locally; even the assumption of unbiased estimate might have to be reconsidered.

The variational smoothing methods based on control theory (Section 3.3) have
the cost advantage that the a posteriori errors do not need to be computed to get
the final estimate, even though some error information should be computed for con-
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fidence assessment. Coastal flow nonlinearities are aiso a problem in all of today’s
smoothing methods, which were originally derived for linear systems (e.g., represen-
ter method). All concerns mentioned for today’s filtering methods apply for control
theory—based methods. The cost functions have multiple minima and convergence is
not guaranteed (e.g., Tziperman, 1992a.b). In low data coverage, the global minimum
might not even be physical, and it can be hard to determine the proper minimum.
Global search algorithm such as simulated annealing and genetic algorithms could
be used (Section 3.4}, but they are very expensive and require parallel computers for
realistic studies. Hybrid methods (Section 3.6), taking the advantages of both esti-
mation and control theory without the disadvantages, might thus he the only choice
for high-dimensional. nonlinear coastal flows, with a low data coverage. For param-
eter estirnation, simple smoothing techniques based on the adjoint method have been
used more than schemes based on estimation theory. First, stochastic modeling is
still in its infancy, and second, with fillering techniques, past data do not improve
previous parameter estimates. Finally, specific issues relevant to coastal DA are the
open boundaries and geometries (Benneit and McIntosh, 1982; Miller, 1986; Shul-
man and Lewis, 1994; Bennett and Chua, 1994; Zou et al., 1995; Evensen, 1993,
1994a,b; Evensen and van Leeuwen, 1996); the convection and imnternal processes
{e.g., Miller et al., 1994b), the nonlinearities (e.g., Miller et al., 1994a; Evensen,
1994b; Lermusiaux, 1997) and the best use of observations {e.g.. JYiang and Ghil,
1993; Malanotte-Rizzoli and Young, 1992, 1995).

For all oceanographic studies, a good DA system should report a minimal infor-
mation on the error evolution of the ocean state estimate. An error estimate should
thus be combined with the description of the direct insertion, blending, nudging and
adjoint method given in Section 3.2, Second, one should study the sensitivity of the
estimate to the a priori melding assumptions and parameters (weights); the less sen-
sitive the estimate, the better the scheme. Finally, the numerical complexity and cost,
as well as the cost dependence with the state vector’s size, are issues to consider in
choosing the ideal DA scheme.

5. Progress to Date

It is only during the last decade that, for scientific as well as management and opera-
tional purposes, progress has been made in data-driven modeling and prediction of all
energetically important coastal processes at once, with realistic coastal geomnetries,
shelf-break topographies, sheif-deep sea interactions and adequate parametrization
of subgrid-scale coastal physics. Most earlier realistic estuarian and coastal models
were centered on specific processes such as the prediction of the sea-surface height,
tides and storm surges. Thus many of the early coastal assimilation studies were nat-
urally targeted at those specific processes and scales (Sections 5.1 and 3.2). Today,
for coastal regions that have many energetically important processes, the develop-
ment of a comprehensive assimilation approach is an important research subject.
This includes, importantly, the determination of data impacts, and matched data and
model sets which are adequately accurate for their specific purposes, but also efficient
enough to be run routinely.

In the remainder of this section we present some selected examples of progress to
data for tides, circulation, parameter estimation and real-time forecasting,
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5.1, Early Examples

The earliest important example of coastal assimilation is the modeling of tides in open
coastal straits or bay (Bennett and Mclntosh, 1982; McIntosh and Bennernt, 1984). The
authors argued (1982) and confirmed (1984) that for the Bass Strait, the classical inte-
gration of a linear barotropic shallow water wave model of the M, tide could not be in
agreement with tide gauge and current meter data available at interior stations if the
mode] were driven only at the open boundaries by local sea level data. A weighted
least-squares variational formalism was used to obtain a solution satisfying, within
the respective error bounds, the dynamics, the coastal and open boundary conditions,
and ail the data. The results thus verified the consistency of the linearized shallow-
water theory with all available measurements. Budgell (1986) combined simulated
tide gange data with a one-dimensional, nonlinear, shallow-water model for branched
channels. The filtering techniques used were an EXF, or for weakly nonlinear cases,
an incremental covariance simplification of the EKF. Nonlinear modeling improved
the representation of coastal processes, including momentum dissipation, interaction
of storm surges with tides, and shoaling of long waves in shaliow waier. Heemink
and Kloosterhuis (1990) also developed simplified KF techniques to assimilate sea
level data in a nonlinear two-dimensional shallow-water tidal model of the North Sea
shelf. The model noise was expected to be large scale and was approximated on a
coarse grid. To reduce the computationat burden further, model nonlinearities were
assumed to be weak and a constant-gain EKF was used. In an example of assimilation
via initialization, Walstad et al. (1991) analyzed dynamical processes occurring in
late spring of 1987 in the coastal transition zone (CTZ) inshore edge of the Northern
California Current system. The authors used a regional baroclinic quasi-geostrophic
maodel, initialized by objectively analyzed hydrographic and ADCP data and forced at
the boundaries by a linear interpolation between the initial and final data sets. Baro-
tropic instabilities and eddy-jet interactions in the CTZ were identified and supported
the characterization of the CTZ flow as a meandering jet that gradually propagates
offshore. This example confirms that when combined with a trial-and-error parameter
estimation, even a very simple melding of data with realistic dynamics both improves
the description of the field and allows for a realistic dynamical analysis.

3.2, Parameter Estimation

The approximate dynamical equations and foreing functions for governing the scale-
restricted state variables of the coastal ccean (Sections 1.1 and 4.2) contain many
parameters, the values of which are not given directly by fundamental dynamical
considerations or are uncertain (eddy and drag coefficients, deformation radii. inittal
and boundary conditions, biclogical and chemical rates, etc.). Coastal parameter tun-
ing by trial-and-error comparisons with data is both combersome and suboptimal for
complex coastal models. Parameter estimation via data assimilation is thus important
for calibration and verification of coastal models and for accurate coastal simulations
and predictions.

Parameter estimation has always been of great interest to engineers. The relaied Lit-
. erature (Ljung and Soderstrém, 1987) and meteorological examples (e.g., Navon and
Legler, 1987) provide valuable guidance. Some applications in general oceanography
are {Thacker and Long, 1988; Yu and Q’Brien, 1991; Smedstad and O’Brien, 1991;
Tziperman, et al., 1992a.b; Egbert et al., 1994; Bogden et al., 1995; Lawson, et al.,




DATA ASSIMILATION 577

1995), Coastal parameter estimation has received much attention and some studies
are discussed here. In most cases, the computer requirements preclude the estima-
tion of parameters as field functions of (x,y,z,1), since it ieads to the estimation of a
value per grid point and per parameter. To reduce the number of degrees of freedom,
prechosen profiles (linear, quadratic) in the vertical or finite-element representations
have been examined. Unless important to the application considered, those technical
issues are not discussed here.

To test the calibration of a one-dimensional shallow-water model of the eastern
Scheldt Estuary, ten Brummelhuis (1990) estimated the friction coefficients from sim-
ulated data. A simple stochastic evelution equation for the parameters was addad to
the equations and an EKF was used to estimate the water levels, velocities and friction
coefficients. The technique was very useful for one-dimensional tidal prediction, but
in the two-dimensional study, for computer limitations, the estimated state variables
were restricted to the boundary values and friction coefficients.

The assumption of exact dynamics also reduces the number of free variables (Sec-
tion 3.3). With this approach, Das and Lardner (1991) estimated bottom friction coef-
ficients and water depths in a one-dimensional shallow-water channel model.. The
adjoint equation was used to construct the gradient of the functional to be minimized.
The authors compared different minimization algorithms and all estimated values
were in good agreement with the exact ones. For piecewise linear parameter profiles,
the authors empirically conciuded that for a reliable smooth estimation, the number
of data stations had to be at least half of the number of parameter nodal values. Ten
Brummelhuis et al. (1993) also applied the adjoint method with parameter estimation
to a shallow-sea model of the entire European continental shelf. Along with the initial

- and open boundary conditions, estimations of the space-varying bottom friction coef-
ficient and of the parameterization of the wind stress coefficient as a function of the
surface wind speed were made. Considering the open boundary conditions as uncer-
tain variables greatly improved the robustness of the estimation and produced realistic
estimates. Lardner (1993) also addressed the estimation of open boundary conditions
for such a tidal model. Panchang and Richardson (1993) and Lardner and Das (1994)
used an adjoint method to estimate the vertical eddy viscosity profiles of a two-and-
a-half-dimensional linear coastal circulation model (three-dimensional PE equations
split into the standard two-dimensional shallow-water mode! and Ekman equations
for the vertically varying part of the horizontal velocities) from simulated current
data. Since the vertical eddy viscosities appear only in the vertically varying equa-
tions, the adjoint of the barotropic mode is net needed and the computer requirements
are greatly reduced. To reduce the number of data necessary for a reliable, smooth
parameter estimation, a smoothing term for the parameters was added to the cost func-
tion. This restricted the possible parameter profiles, and the resulting eddy coefficients
were good for both a wind-driven and a tidally driven test problem. Lardner and Song
{1995, in preparation) used the same model, but they jointly estimated all parame-
ters to which currents are sensitive: the eddy viscosities, water depth, and wind-drag
and bottom friction coefficients. The barotropic mode then enters the minimization,
and computer requirements are increased. For a 16 x 16 horizontal domain, one or
two current meter stations, with two or more vertical observations, and one or two
tide ganges were sufficient for a good estimation. They found no evidence that fore-
casts with the estimated parameters were betfer near data points than at other points.
The adjoint method was aiso used by Song and Lardner (submitted) to estimate the
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eddy viscosity, wind drag and bottom friction coefficients of two-dimensional along-
shore averaged and linearized PE equations from model-simulated current meter and
tide gauge data. The method was tested on a typical across-shelf coastal topogra-
phy, using generalized tefrain-following coordinates (S-coordinate). To reduce the
effective number of parameters, uniform, linear and quadratic across-shelf finite-ele-
ment expansions were tested. For their idealized problem, the authors concluded that
the number of data stations needed to be at least equal to the number of parameter
nodal values, which is a stronger criterion than the one obtained by Das and Lardner
(1991).

It appears evident that parameter estimation is very important for the understanding
and modeling of coastal processes, as well as for model validation, calibration and
verification. However, the development of efficient techniques for real-time coastal
ocean parameter estimation is an ongoing research topic.

5.3. Real-Time Prediction

Real-time forecasting with data assimilation for the coastal and shelf oceans, for a
variety of scientific and practical purposes, is feasible and has been initiated, The
coastal ocean prediction systems (OPSs) required for many applications are guite
complex to construct and can require large computational resources for real-time
usefulness. Thus at the present early stage empirical and heuristic assumptions and
some modeling compromises are commorn. Robinson et al. {1996b) overview the
general problem of the development and verification of regional systems. We cite
four examples as an introduction to this topic: the Scotian shelf off Canada, the
Iceland Faeroe Islands Fromt (IFF), the Seto Inland Sea of Japan and the coast of
Norway. _ '

Some operational applications are most effectively carried out at sea on board
a data-gathering vessel. Bowen et al. (1995} used a relatively sophisticated adjoint
scheme aboard the MV Perrel V on the outer Scotian shelf in November 1992 for
nowcasts and short forecasts of the circulation and related dispersion. The purpose
was to track a cohort of cod larvae for a 3-week period in order to avoid advec-
tive bias in the sampling of the population. The observational network consisted of
surface drifters, telemetering moorings, hydrographic and ADCP measurements, and
towed nets and plankton counters. Computational efficiency was achieved by sim-
plifying the dynamics via linearization and simplified decomposition into wind-drift,
geostrophic and tidal components. The success of this real-time exercise in predict-
ing the location of the larvae, including after a storm event, provides an important
demonstration of the power of this approach. Robinson et al. {1996) carried out real-
time operational forecasts of the IFF system in August 1993 aboard the NATO RV
Alliance using the primitive equation dynamics and optimal interpolation scheme of
HOPS (Section 4.2). The purpose was to verify quantitatively the skill of a regional
forecast system for accurate and efficient prediction of fronts and eddies in general
and with application for acoustic propagation {Carman and Robinson, 1994). There
was significant success in predicting the development over a few days of a highly
nonlinear deep sock meander from a straight current. '

Two attempts at practical management modeling are provided by Yanagi er al.
(1995) for the Seto Sea and by Johannessen et al. (1993} for the Norwegian coast.
These are simulation and process studies directed toward the development of coastal -
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OPSs. The purpose of the former is to predict red tide formations in order to pro-
tect agriculture fish stocks, and of the latter is to develop a general monitoring and
prediction system for algal blooms, water quality and oil spills, The Seto Sea study
constructed and utilized an end-to-end system with coupled models and schemes for
hydrodynamics, thermodynamics, biological dynamics and iracers. An engineering
approach was adopted with many compromises and a successive correction method
for data assimilation. Care must be exercised in the interpretation of such an ad hoc
and compiex system, and some sensitivity studies were carried out for this purpose.
The Norwegian stady presents a useful conceptual analysis of some detailed con-
siderations necessary for the construction of a general OPS for coastal management,
with examples of hindcasts and assimilations.

6. Middle Atlantic Bight Studies

The Middle Atlantic Bight (MAB) shelf break marks a dramatic change, not only in
water depth but also in the dynamics of the waters that lie on either side. Shoreward
of the shelf break, the shelf-water variability is dominated by wind forcing. Seaward
of the shelf break, wind effects are much less and mesoscale variability is often dom-
inated by Gulf Stream rings. Eddies are frequently observed in the shelf break, and
their dynamics are not well understood.

In this section we summarize some recent results with the Harvard Ocean Pre-
diction System for the MAB 1o illustrate the capability of data-driven simulations
1o provide realistic field estimates in the presence of steep topography, stratification,
multiscales and nonlinearities. Two-way nesting is illustrated and optimal interpola-
tion 1s intercompared with a new quasi-optimal assimilation scheme.

6.1. Dynamics ar the Shelfbreak

Data-driven experiments have been performed to study shelf-break dynamics, with a
focus on meso- and submeso-scale variability driven by internal instability as well ag
Gulf Stream ring forcing. The numerical experiments are performed in a 500 x 400
km domain south of New England. An ocean prediction system is employed, which
includes a primitive equation model, data assimilation, grid nesting, and initializa-
tion and update methods (feature models, data fusion, objective analysis; Lozano
et al., 1996). The experiment assimilates three types of data that were gathered in
1984: satellite IR to identify the size, location and strength of a Gulf Stream ring;
hydrographic coastal survey data (MARMAP); and CTD data collected as part of the
shelf-break eddies experiment (Garvine et al., 1988). The purpose of the experiment
is to use the models, climatology and synoptic data to generate four-dimensional
“data sets to study the physical processes at the shelf break. Intercomparative studies
are used to examine the influence of various factors, such as proximity of rings and
shelf-break jets strength and structure.

The HOPS PE model is initialized from a combination of climatology and fea-
ture models. The feature models are tuned to reproduce dynamical behavior (wave
growth, eddy generation) that is consistent with historical synoptic observations. This
aliows the model to be initialized without spin-up from rest. Data are then assimi-
lated into the model when and where it is available. The mode! uses topography fol-
lowing sigma coordinates in the vertical. To compute with high accuracy over steep
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topography, the pressure gradient is computed on geopotential surfaces. To remove
computational noise, without inordinate amount of mixing on the sigma surfaces, a
filter is applied so as to remove only high-wavenumber signals (Lozano et al., 1994).
To increase efficiency of computations, two-way grid nesting is employed. The larger
domain, with coarse 5-km resolution is 500 x 400 km. The smaller 1.66-km grid is
167 km by 133 km and is contained within the coarse grid. The coarse grid provides
the boundary conditions for the fine grid, while the fine grid averaged quantities are
passed back io the coarse grid. Resuits after 15 days’ integration from the MAB shelf
to beyond the Gulf Stream are shown on Fig. 20.6a.b. Surface MAB temperature has
evolved due to both ring interactions and instability of the front itself. Figure 20.6¢,d
shows another data-driven simulation in the shelf-break front region, without the Gulf
Stream but with a nested grid. Future experiments will be performed with data sets
that have synoptic high-resolution survey at different times, which will allow vali-
dation and verification of the prediction system, similar to the studies of the Iceland
Faeroe Islands Front (Robinson et al., 1996a).

6.2. ESSE: A Hybrid Approach

The most important defect of data assimilation via OI is its empirical error model
{Section 3.2). Bven for an advanced Ol accounting for error growth, the error covari-
ances are generally constructed from isotropic and homogeneous covariance func-
tions, with parameters constant in time and independent of the evolution of the vari-
ability. On the other hand, for realistic, complex estimations with sufficient data, the
KF, KS and generalized inverse (Sections 3.2 and 3.3) are still very expensive.

A rational approach was used to identify a new efficient statistical estimation (SE)
scheme for DA in realistic nonlinear ocean models. The criterion used is based on-an
optimal reduction of the dimension of multivariate error covariances and has lead to
the notion of evolving error subspaces (ESs), characterized by singular error vectors
and values or, in other words, by error EOFs and coefficients. The ideal ES spans and
tracks the three-dimensional scales and processes where the dominant, most energetic
errors occur. The resulting general concept of error subspace statistical estimation
(ESSE), along with its specific objectives and its mathematical details, are discussed
by Lermusiaux (1997). Applications of ESSE are efficient three-dimensional objec-
tive analyses, real-time filtering assimilations and data-driven smoothing simulations.
Importantly, the three-dimensional multivariate ESSE melding occurs in the ES and
is thus much less costly than a full error covariance update. The time propagation
of the ES is based on an ensemble forecast that uses the full nonlinear model. The
members of the ensemble are chosen to optimally sampie the current dominant three-
dimensional multivariate ES. The implementation of ESSE, with scalable parallel
computing for the ensemble forecast, was made compatible with HOPS and periph-
erals, aiming for a realistic, portable coastal and nonlinear ocean estimation system.

Identical twin experiments were designed for comparing the retrieval of the true
ocean via OI and via BSSE, in the ideal exact dynamical model conditions. The experi-
ment discussed here is an idealized MAB shelf-break-front simulation in summer con-
ditions (Sloan, 1996). The domain extension is 100 km meridionally by 112.5 km zon-
ally, with the depth varying from approximately 120 m on the shelf to 230 m in the deep-
est southern part, leading to 107,502 state variables. The main direction of the flow is
east-west. A PE run of 39 days is defined as the true ocean evolution. Subsampled tracer
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Panel {a): Salinity at | m from day 15 of a data-driven
simulation of the Northwest Atlantic from the Middle
Atlantic Bight continentai sheif to beyond the Guif
Stream. A streamer of shelf water is extracted by a
warm core ring; shelfbreak eddies exchange shelf and
slope water; shelf water is entrained into the Gulf
Strearn near Cape Hatteras. Data-streams for initializa-
tion and assimilation include MARMAP/NMES shelf
hydrography, satellite sea-surface temperatuere, and fea-
ture medels for the Guif Smeam, Warm Core Ring, and
Shelfbreak Front.

Panel (b): Cross section of temperawre at day 13 of
the same simulation as (a). From left to right, the
cross-section shows the shelfbreak front, the leading
edge of a Warm Core Ring, and the Gulf Stream.

Panels (¢} and {d): Near surface temperature from a nested-grid. dasa-driven simulation of shelfbreak eddies and
rng interactions. The coarse grid (c) is 7.5 km, while the fine grid (d} is 2.5 km. Data-streams for initialization
and assimilation into the model include MARMAP/NMES hydrography, a Teature model Warm Core Ring and
a feature mode} for the shelfbreak front. Events include shelfbreak eddies, in which shelf water is drawn off
the shelfbreak and slope water is pushed up onto the shelf; and a sheif streamer interacting with 2 warm core
ring.

1
o

A

ring et Tntbman

Fig. 20.6. MAB data-driven simulations.

data are extracted from that run, every 3 days, starting at day 18 up 1o day 36, with a low
10-km horizontal resolution. The initial conditions (ICs) of the false ocean are created
by adding to the true ocean ICs both geostrophically balanced and white-noise pertur-
bations. The OI and ESSE runs start from these same ICs; they only differ starting at
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day 18, when the first baich of hydrographic data ate assimilated. In ESSE, atotal of 16
Sparc 10 Sun stations were used in parallel to propagate the ES.

As shown on Fig. 20.7, the ESSE improves the quality of the retrieval of the
true ocean. Root-mean-square error and pattern correlation coefficient (Robinson et
al., 1996a) analysis confirm qualitative arguments, The general gross features of the
field have also been improved by OI. However, some of the physical characteristics
and parameter ranges (frontal width, front position, eddy orientations, frontal wave
packet variability) have been modified by the OI scheme. The obvious nonhomoge-
neous, nonisotropic and nonuniform properties (shape, locations and scales) of the
frontal wave packets and cold eddies in the surface stratification are not considered.
Everywhere in space and time, the same eliipsoidal error length scales are applied.
The OI has difficulties coping with fields that have many scales that are not uniformly
distributed. On the other hand, the forecast variability on panel (@) has statistically
correct physical properties, but its sample path is different from the true one (5).
Finally, the ESSE scheme (d) has kept the statistical properties of the true tracer
and flow fields variability while correcting most of the erroneous components of the
forecast. Another obvious advantage of ESSE is the singular decomposition of the
multivariate error covariance, which facilitates the physical understanding and study
of the dominant variabilities and uncertainties. We refer to Lermusiaux (1997) for a
discussion on the ES evolution.

7. Conclusions

In this chapter we have presented the conceptual basis of field estimation via the
meiding of data and dynamics (i.e., data assimilation) and its several goals and appli-
cations. The mathematical basis, drawn primarily from estimation and control theories
and rooted in error analyses for both the dynamics and the measurements, has been
sketched in a uniform mathematical notation and with follow-up references. A field
estimate via data assimilation both agrees with the observations within observational
error bounds and satisfies the dynamical model within model error bounds. The con-
cept of an ocean prediction system composed of an observational network, dynamical
model set and data assimilation scheme has been introduced in general, and the spe-
cial considerations for coastal ocean systems discussed. The progress and status of
data assimilation for the coastal ocean, as well as opportunities and directions for
research, have been illustrated by a few selected examples.

Data assimilation and ocean prediction systems today provide novel and feasible
methodologies for fundamental ocean science and applied marine operations and
management. A range of schemes and systems, from simple to complex, are now
available. Application opportunities abound over a rich spectrum of needs. The use
of data assimilation methodologies should significantly accelerate the advancement
of coastal ocean science and technology over the next decade.
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Panel (a) shows the false ocean forecast at day 18, panel {b} the true ocean from which the day 18
hydrographic data are subsampled, panel (¢} the result of the Ol assimilation and panel (d} the
result of the ESSE,

The ESSE (d) unstable intrusions of warm slope water inte the cold shelf water have the
proper (b) length scales, orientations, locations and magnirudes. The. same remark applies to the
sheif intrusions into the slope waters. The center field, cold surface baroclinic submesoscale eddy
has been reinforced, refocated and reshaped by ESSE as it cught to be. The absolute position and
tightness of the ESSE front (d) are appropriate: it is very narrow in the center of the domain and
on the upstream side of warm slope water intrusions, while it has broader scales downstream of
all warm intrusions into the shelf water.

The O scheme (¢) tends to create spatially uniform, ellipsoidal-like eddy structures, as it was
designed to do. For instance, the wesiernmost coid infrusion into the slope water (b) has been
almost estimated as a cold eddy by Of (¢). Note that the southwest cold eddy present in the true
ocean {b) is outside of the subsampled data domain and is thus not in the O (¢) nor in the ESSE
estimate {d). The length scales of the OI wave packets are in agreement with the true ocean, but the
QI front is wider than the true front and its position is not as accurate as the ESSE one.

Fig. 20.7. ESSE/O! MAB assimilation comparisons.
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Appendix: DA Methods under Common Generic Assumptions

In ocean modeling, the discrete dynamical model’s state variables are usually the
nodes or grid point values of the continuous state variables. Here the dynamical state
vector at time #; is denoted ¥, € R”, k = 0, ..., N. The number m of observations
at time f; could depend on k, but for simplicity we assume m time-invariant, All
data available at time 7, are contained in the vector d; € R™. For ease of notation,
it is assumed that dy = dy = 0 (no data collected ar initial and final times). The
time I is the time at which measurements & are collected. The interval Aty =1 -
7y is the time lag between the batch of synoptic measurements & and (k - 1) and
should not be mistaken with the dynamical model time step 6t. To simplify notations
and ease comparisons of DA schemes, the model evolution during Az, is assumed
linear and the known (deterministic) forcing term has been omitted since it only adds
some complexity. In fact, external forcings could be assumed part of the dynamical
state vector ¥, since they may evolve with time and feedbacks between external and
internal forcings exist.

Al Generic Assumptions: Statistical True Ocean (¥,) and Measurement Models

In assimilation methods one usuaily defines, explicitly (estimation theory) or implicitly (control theory),
the statistics of a “true” ocean dynamical system and a “true” measurement model, These models are here
restrained by the following limitations. The sample path evolution of the stochastic true ocean system
between two assimilation time steps is assumed to be described by the classical linear dynamical mode}
evolution equation, l.b,( = Ap jl’]k_ 1> forced by a model random noise wy_ :

d,L:Ak*llb;cmlﬁ“Wk'i (”

The discrete boundary conditions can be seen as diagnostic relations between boundary state variables at
time #;. Unless otherwise mentioned, the state vector contains the boundary variables and the boundary
conditions are thus part of equation 1. The associated lingar true measurement mode! is

dg = qu!;( + vy [A]

where 4, = Ckajjk is the classical deterministic measurement model and v} its random noise.

The sample path (1} of the true ocean is thus hypothesized to be a linear vector Markov process
stochastically forced by Wiener processes (Kioeden and Platen, 1992). Classical notations and assump-
tons are used; for extended discussions we refer 1o Gelb (1974), Daley (1991) and Lermusiaux (1597).
In particuiar, we have:

. l!;fi A R: and dg, v € B (n state variables, m meas. with m << 1)
o Ap1e R " and Cp e R™"
o wi ~(0,Q) and v; ~ (0. Ry) with

f(wkw}"}=z{vkvf}:0forkaéj and E{wpv] 1=0 k)

If we denote by U5, the estimate of thi, the white random process wy .| is also uncormelated to the initial
estimate’s error at time 7 - 1, (5, _ | ~ lbi - 1)- The probability density functions of the random forcings
are not required to be Gaussian even though enly their respective mean {0y and covariances {(Q;ﬁ; Rz}
need o be specified. The estimate’s error covariance matrix at time z; is denoted by Py € R"**" and
is defined by Py = £{(, ~ ¥, - Y7 . Its value at time 79, Pg. represents the initial cordition
SITOr covariance,
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Smoothed Estimate
(Backward in Time)

Smoothed Error Covariance

‘5’¢<—l> = Ar i) .
G, () = i, (4 Wtdy — Cli ()

o, 30 ; . .
with WF, {+) = ¥, () and W/ assigned function of j in general.

'[zikk;xr‘iin Ty = trace[Py(+)] using (81, ... ,dgl}
)

W)= Al ()

Pi(-) = Ap_ P (DAL +Qp

() = i, (o) + Kyfdy — Casy ()1

Ky = Pr(-)CL [CePy(-)C] + Ry]™!

Pp(+) = Pr(-) - KpCpPr(~)

{ai;k/m min J; = trace[Py(+)] using [d1, ... ,dy 1}
e

See equations [2-16.

Wiy = b+ Ledsy YN by -

with 5y = 5 (+) and Ly = PeenyaAl 7L 0.
iy = Prl+) + Ly Proypy = Prar (=) L]

with Py/n = Py(+).
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A.3. Control Theory (Calculus of Variation Approach, Variational Assimilation)
Adjoint Method

min JN:engleMNZj VIR v, +i OAT L wp (19)
Wy k=1 k=t

Dynamical Model Up=arls,_,,  k=1,....N _ (20}

Initial Condition dsy = Wo + PoAT Ao @1

Adjoint Model Mi-1= ATR +CIR odg - Colsy), k=1, . N -1 (22)

Initial Condition An.1=0 o3
Generalized Inverse Problem

N-1 N
min Jy = €[P; €0+ ¥ VIRg'e+ > Wi Qil Wi (24)
U, o1 k=1

Weak Dynamical Model s, = Ap- 105, | +Quo1Re—y. k=1, ... N (25)

Initial Condition lifo =W+ P()Aghg (26)

Adjoint Model Aot = Al N +c{ng‘idkmcknisk], k=1, ... ,N-1 27

Initial Condition Av_1=0 (28)

Representer Method for Solving the Generalized Inverse Problem

b, =] + Ry (29)

Forecast U= a0 with ) = (30)

Representers Evolution ﬁk; = Ap. 1Ry 1,0+ Qe ]F;c —1! with Ry = PUA%-TO; 31)

Adjoint Evolution Tioi=alTy+CI8y  winIy. ;=0 (32)

Representers Coefficient | LB = N (33)

br=R;" - (¢ - Crlsy) 34)

b={R+CRI" - (d-CY') 33)

where b is the m(N — 1} block vector of the by’s; R is an m{N - 1) block diagonal square matrix, with
the data error covariances Rg, k= 1, ..., N - 1, on its diagonal; CR is the equivalent of the representer
matrix of Bennets (1992} and is an m{N ~ 1} block square matrix, which square block &/ is the size m
matrix CxRyy; and id ~ Cs’ 1 is the méN — 1) block vector of the forecast misfits [dy, — C,;-kf!{].

= Ol + RulR + CR7' - 1d - CY) (36)
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