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ABSTRACT

The properties and capabilities of the Gaussian Mixture Model–Dynamically Orthogonal filter (GMM-

DO) are assessed and exemplified by applications to two dynamical systems: 1) the double well diffusion

and 2) sudden expansion flows; both of which admit far-from-Gaussian statistics. The former test case, or

twin experiment, validates the use of the Expectation-Maximization (EM) algorithm and Bayesian In-

formation Criterion with GMMs in a filtering context; the latter further exemplifies its ability to efficiently

handle state vectors of nontrivial dimensionality and dynamics with jets and eddies. For each test case,

qualitative and quantitative comparisons are made with contemporary filters. The sensitivity to input pa-

rameters is illustrated and discussed. Properties of the filter are examined and its estimates are described,

including the equation-based and adaptive prediction of the probability densities; the evolution of the mean

field, stochastic subspace modes, and stochastic coefficients; the fitting of GMMs; and the efficient and

analytical Bayesian updates at assimilation times and the corresponding data impacts. The advantages of

respecting nonlinear dynamics and preserving non-Gaussian statistics are brought to light. For realistic test

cases admitting complex distributions and with sparse or noisy measurements, the GMM-DO filter is shown

to fundamentally improve the filtering skill, outperforming simpler schemes invoking the Gaussian para-

metric distribution.

1. Introduction

In Part I of this two-part paper (Sondergaard and

Lermusiaux 2013), we derived the GMM-DO filter: data

assimilation with Gaussian Mixture Models (GMMs)

using the Dynamically Orthogonal (DO) field equa-

tions. The result was an efficient, rigorous, data-driven

assimilation scheme preserving non-Gaussian statistics

and respecting nonlinear dynamics. In the present study,

we evaluate its performance against contemporary fil-

ters in a dynamical systems setting, including ocean and

fluid flows. In section 2a, we examine the application of

the GMM-DO filter to the double well diffusion ex-

periment (Miller et al. 1994; Eyink and Kim 2006),

which is based on a classic stochastic system, time de-

pendent but of zero dimension in space. We compare

our results with those of the ensemble Kalman filter

(Evensen 1994;Houtekamer et al. 1998) and themaximum

entropy filter (Eyink and Kim 2006). For clarity, the

latter filter is outlined in the appendix of this paper. In

section 2b, we consider flows that are more realistic for

coastal ocean or fluid dynamics. Specifically, we con-

sider dynamic jets and eddies that occur in sudden ex-

pansion flows (Cherdron et al. 1978; Fearn et al. 1990;

Durst et al. 1974) of two dimensions in space. We il-

lustrate and study the results of the GMM-DO filter,

including the evolution of probability density functions

(pdfs) and of their DO decomposition, the Bayesian

impacts of observations, and the overall capabilities

of the filter. We also compare the GMM-DO filter’s

performance to that of an error subspace statistical

estimation (ESSE) filter, scheme A (Lermusiaux and

Robinson 1999).

For each test case, we critically evaluate the proper-

ties of the GMM-DO filter and outline the advantages

that arise through its utilization. We illustrate and stress

its equation-based and adaptive characteristics, which

eliminate the need for heuristics or ad hoc choices. We

further conduct sensitivity studies in which we examine

the filter’s performance to variations in the following

independent parameters: the model error, the number

Corresponding author address: Pierre F. J. Lermusiaux, Massa-

chusetts Institute of Technology, 77 Massachusetts Ave., Cambridge,

MA 02139.

E-mail: pierrel@mit.edu

JUNE 2013 SONDERGAARD AND LERMUS IAUX 1761

DOI: 10.1175/MWR-D-11-00296.1

� 2013 American Meteorological Society



of observations and the observation error, and the

number of subspace realizations. We give our conclu-

sions in section 3. Table 1 provides the notation relevant

to this manuscript.

2. Applications

a. Double well diffusion experiment

The double well diffusion experiment has served as

a test case for several assimilation schemes (e.g., Miller

et al. 1994), recently among them the maximum entropy

filter (see the appendix). Because of the bimodal cli-

matological distribution of the double well, the experi-

ment lends itself to the evaluation of filters that aim to

capture and extract non-Gaussian features.

Given the experiment’s low dimensionality (specifi-

cally, the state is a scalar, i.e., n 5 1), the DO equations

are here not needed and are thus not used. A first pur-

pose of this test case is to evaluate the use of the

Expectation-Maximization (EM) algorithm and Bayesian

Information Criterion (BIC) with GMMs in a dynamical

systems setting. As described in Part I (Sondergaard and

Lermusiaux 2013), such validations—applied to different

test cases—were then used by Smith (2007), Dovera and

Rossa (2011), and Frei and Kunsch (2013). A second

purpose is to evaluate the sensitivities and capabilities of

the GMM-DO filter as one varies key parameters, spe-

cifically the model error, the observation error, and the

number of ensemble realizations.

1) DESCRIPTION OF EXPERIMENT

In the double well diffusion experiment, the goal is

to track the location of a ball X(t) located in one of

two wells. The ball is forced under ‘‘pseudogravity’’

and externally excited by white noise. Specifically,

the location of the ball evolves according to the fol-

lowing scalar stochastic differential equation (Miller

et al. 1994):

dX5 f (X) dt1kdG(t), G;N (g; 0, 1) , (1)

with

f (X)5 4X2 4X3 (2)

essentially acting as the gravitational force (see Fig. 1).

The strength of the stochastic forcing is tuned by the

diffusion coefficient k. We also note that X 2 R.

We occasionally get access to direct, but noisy, mea-

surements y of the ball location, modeled as follows:

pYjX(y j x)5N (y; x,s2
o) . (3)

From these measurements, we wish to infer the current

location of the ball. We are thus faced with a filtering

task.

This experiment is an ergodic Markov chain (e.g.,

Cover and Thomas 2006) and therefore possesses a

TABLE 1. Notation relevant to the GMM-DO filter. [While we

have primarily adopted notation specific to probability theory, in-

formation theory, and estimation theory, where possible we also

utilize the notation advocated by Ide et al. (1997).]

Descriptors

(�)f Forecast

(�)a Analysis

Scalars

i 2N Stochastic subspace index

j 2N Mixture component index

k 2N Discrete time index

n 2N Dimension of state vector

p 2N Dimension of observation vector

q 2N Dimension of dominant stochastic

subspace

r 2N Realization index

s 2N Dimension of stochastic subspace

M 2N Complexity of Gaussian Mixture Model

N 2N No. of Monte Carlo members

Fi 2N Random variable describing the pdf

for orthonormal mode ~xi

Vectors

X 2Rn State (random) vector

x 2Rn State realization
~xi 2Rn DO mode i: Dynamically

orthonormal basis for stochastic

subspace

x 2Rn Mean state vector

Y 2Rp Observation (random) vector

y 2Rp Observation realization

xj 2Rn Mean vector of mixture component

j in state space

mj 2Rs Mean vector of mixture component

j in stochastic subspace

F 2Rs Multivariate random vector,

[F1 . . . Fs]

f 2Rs Realization residing in stochastic

subspace

Y 2Rp Observation noise (random) vector

y 2Rp Observation noise realization

Matrices

P 2Rn3n Covariance matrix in state space

Sj 2Rs3s Covariance matrix of mixture

component j in stochastic subspace

Pj 2Rn3n Covariance matrix of mixture

component j in state space

R 2Rp3p observation covariance matrix

H 2Rm3n (Linear) observation model

X 2Rn3s Matrix of s DO modes, [~x1 . . . ~xs]

ffg 2Rs3N Set of subspace ensemble

realizations, ff1, . . . , fNg
fxg 2Rn 3N Set of state space ensemble

realizations, fx1, . . . , xNg
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stationary distribution (hereafter a climatological dis-

tribution), qX(x). It can be shown that this distribution

satisfies (Eyink and Kim 2006)

qX(x)} e2(2x424x2)/k2

, (4)

which can be approximated by a GMM of complexity 2,

that is,

qX(x)’ �
2

m51

wm 3N (x;mm,s
2
m) , (5)

with—by arguments of symmetry—the following

parameters:

w15w25 0:5, (6)

2m15m25m , (7)

s2
15s2

25s2 . (8)

For the particular case of k 5 0.40, Eyink and Kim

(2006) estimated the mean and variance of the GMM to

be around m5 0.98 and s2 5 0.011, respectively. This is

plotted against the exact distribution in Fig. 2.

The choice of k, the diffusion coefficient, de-

termines the average time that the ball spends in a

well before transitioning. For instance, according to

Eyink and Kim (2006), for k 5 0.40, this residence

time is tres ’ 105 with transitions from one well to the

other taking only ttrans’ 101. For small values of k, the

system thus behaves in a manner similar to a noisy

switch.

2) TEST PROCEDURE

We solve the governing stochastic differential equa-

tion (1) by application of the Euler–Maruyama scheme

(Higham 2001):

xi,k115 xi,k1 f (xi,k)Dt1 kgi,k

ffiffiffiffiffi
Dt

p
, i5 1, . . . ,N , (9)

where g is white in time and drawn from a normal dis-

tribution with zero mean and unit standard deviation,

and xi,k is the ith Monte Carlo realization at discrete

time k.

Our goal is to evaluate the performance of the GMM-

DO filter against the ensemble Kalman filter (EnKF)

and the maximum entropy filter (MEF) in its ability to

track the ball. We did so by repeating the experiment for

a large number of parameter values and, in Sondergaard

(2011), we report results for a subset of these evalua-

tions, specifically:

d Diffusion coefficient: k 5 f0.4, 0.5g.
d Observation error: s2

o 5 f0:025, 0:050, 0:100g.
d Number of realizations: N 5 f100, 1000, 10 000g.
In what follows, for the sake of simplicity, we primarily

focus on the results for the case ofN5 1000, k5 0.5, and

s2
o 5 0:100. We then summarize and briefly illustrate the

effects of varying the three aforementioned parameters.

For a fair comparison, all filters are initialized (at

discrete time k 5 0) with the same Monte Carlo reali-

zations, generated from the optimal Gaussian mixture

approximation for the climatological distribution [(5)].

Furthermore, the stochastic forcing applied to the in-

dividual ensemble realizations of any one filter is iden-

tical to that of the others.

3) RESULTS AND ANALYSIS

We show in Fig. 3 the results obtained for the case of

N 5 1000, k 5 0.5, and s2
o 5 0:100. Superimposed onto

the true solution we show the temporal mean and stan-

dard deviation envelope (6s) for each of three filters, as

well as the observations with associated error bars. We

have purposely centered the plot about a transition of

the ball from one well to the other, as this event is of

FIG. 1. Forcing function f(x). At any location o in the horizontal

x, the ball is forced under pseudogravity in the direction indicated

by the appropriate vector. The magnitude of the vector corre-

sponds to the strength of the forcing. We note that there exists an

unstable node at the origin, and two stable nodes at x 5 61, cor-

responding to the minima of the wells.

FIG. 2. Climatological distribution and Gaussian mixture ap-

proximation for k 5 0.40. In accordance with intuition, the distri-

butions are bimodal, appropriately centered on the minima of each

of the two wells.
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central interest to us. We have further framed the

transition within a suitable time window that will allow

for an appropriate filter evaluation.

Following the assimilation of the first observation, at

time t 5 2, all three filters initially capture the true lo-

cation of the ball (centered on x 5 1; hereafter the

positive well), as represented by their temporal means.

They continue to do so until time t 5 20, at which point

the ball transitions, through stochastic diffusion, into the

opposite well (centered on x 5 21; hereafter the nega-

tivewell). This transition is suggested by the observation

at time t 5 22. Both the MEF and the GMM-DO filter

transition accordingly, the statistics of the latter settling

completely to the negative well following the update at

time t 5 26. The EnKF, on the other hand, fails to rec-

ognize this transition despite observations at times t5 22

and t 5 26 suggesting otherwise. In fact, not until time

t 5 30, following three information-rich observations,

does it shift its course to the negative well. In what fol-

lows, we take a closer look at the mechanics of the three

filters. Particularly, we investigate the prior and posterior

distributions assigned by each filter as well as their

ensemble representations at observation times t 5 18,

t 5 22, and t 5 26. We graphically depict this in Fig. 4.

In Fig. 4a, we show the distributions assigned by each

of the three filters (based on their ensemble represen-

tations, also shown) at time t 5 18, at which point the

ball has not yet transitioned into the negative well. All

three filters correctly assign probability to the positive

well, both prior and posterior to the recorded observa-

tion. We note, however, that both the GMM-DO filter

and the MEF represent their estimates with greater

certainty than the EnKF, as indicated by the spread

of their respective distributions. This essentially derives

from the former two’s ability to differentiate between

realizations located in separate wells. To illustrate the

components of the GMM-DO algorithm, we also display

(Fig. 4a, left-hand side) the optimal mixture complexity

M obtained utilizing the BIC on the set of GMM-DO

ensemble realizations. At time t 5 18, this optimal com-

plexity is one (i.e.,M5 1). This is intuitively supported by

previous measurements, having repeatedly suggested the

true location of the ball to be in the positive well.

Figure 4b depicts the distributions assigned at time

t 5 22, at which point the ball has transitioned into the

opposite well. This is supported by the available obser-

vation. Through the EM-BIC procedure, the GMM-DO

filter optimally fits a GMM of complexity three to its

prior set of ensemble realizations. While difficult to

capture visually, one mixture component is centered on

the negative well due to the presence of two local re-

alizations (having diffused across from the positive well

since time t 5 18). As a consequence, following the

Bayesian update, the GMM-DO filter satisfactorily as-

signs the majority of its probability to the negative well.

This is depicted by its asymmetric bimodal posterior

distribution; only few particles remain in the positive

well. The MEF largely proceeds in a similar manner.

Meanwhile, because of the imbalance of prior variance

with measurement uncertainty for the EnKF, a Kalman

gain of less than a half results (i.e., K , 0.5), which

is insufficient to force individual ensemble members

across into the negative well. As a consequence, the

majority of its particles remain located in the positive

FIG. 3. Results of the three filters—GMM-DO filter (blue), MEF (yellow), and EnKF (red)—for the case of N 5
1000, k 5 0.5, and s2

o 5 0:100. The black curve denotes the true solution for the location of the ball, with the green

markers representing observations with associated standard deviation envelope. (a),(b),(c) The highlighted instances

are examined in detail in Fig. 4.
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FIG. 4. An analysis of the prior and posterior distributions assigned by each of the three filters—the GMM-DO

filter, MEF, and EnKF—at times t 5 18, t 5 22, and t 5 26 for the standard test case, displayed in Fig. 3, with

parameters N 5 1000, k 5 0.4, and s2
o 5 0:025. We also display the optimal mixture complexity for the prior dis-

tribution of the GMM-DO filter, as obtained by application of the EM algorithm and the BIC.
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well, albeit biased toward the center; the EnKF does not

capture the transition.

In Fig. 4c, at time t5 26, themajority of realizations of

each filter have—since the update at time t 5 22—been

forced under gravity into the nearest well, displaced

from its minimum only by stochastic diffusion. In par-

ticular, most of the GMM-DO filter’s realizations are

now centered on x521, consequently causing this well

to be probabilistically weighted during the GMM fitting

procedure. Following the Bayesian update, in which

information on the true location of the ball is extracted

from the observation, all of its realizations are satisfac-

torily located in the negative well, coinciding with the

true location of the ball. The posterior distribution as-

signed by the MEF agrees with the GMM-DO filter.

Again, however, the EnKF’s conservative estimate for

the Kalman gain is insufficient to completely force par-

ticles across into the negative well. Rather, after their

update, the ensemble members lie centered on x 5 0,

a state that—due to its instability (see Fig. 1)—is highly

improbable. The EnKF continues in this manner, grad-

ually forcing ensemble members across, and not until

time t 5 30 has it captured the transition (see Fig. 3).

In Fig. 5, we briefly investigate the filter sensitivity to

each of the three parameters: k, s2
o, andN. We vary each

parameter independently (holding the other two fixed)

and compare results with these of the standard test case

(Fig. 3). We then generalize the conclusions based on all

of our simulations, more of which are presented in

Sondergaard (2011).

(i) Filter sensitivity to the number of realizations N

In Fig. 5(i), we reduce the number of ensemble re-

alizations for each of the three filters to N 5 100. As

expected, we see a deterioration in performance for all

three filters. In particular, while the statistics in Fig. 3 of

the MEF and the GMM-DO filter settled at times t5 22

and t5 26, respectively, this settling is now postponed by

another observation period (i.e., four time units). The

EnKF, however, fails entirely to settle statistically within

the time window; while it correctly estimates the true

location for the ball following the assimilation at time

t5 34, it continues to exhibit large variance. In general,

based on our experience with varied dynamical systems

including results shown in Sondergaard (2011), we found

that the GMM-DO filter better handles the task of fil-

tering in the case of fewer realizations. The more limited

the number of ensemble realizations, the more important

it is to try to capture the proper shape of the pdfs.

(ii) Filter sensitivity to the diffusion coefficient k

In Fig. 5(ii), we reduce the diffusion coefficient to k5 0.4.

While this has little effect on the performances of the

GMM-DO filter and MEF, the EnKF again fails to

transition during the time interval of focus. This is con-

firmed in other cases (Sondergaard 2011). As such, for

models exhibiting low noise, the approximations made

on the prior distribution employed in a Bayesian update

become crucial. On the other hand, when the model

uncertainty is large, the model noise then dominates the

prior pdf and if that noise is Gaussian, aGaussian update

is warranted. An advantage of the GMM-DO filter is

that it adapts to all these situations as they occur, in part

by updating its shape (its complexity M).

(iii) Filter sensitivity to the observation error s2
o

In Fig. 5(iii), we reduce the observation error to

s2
o 5 0:025, with marked improvements for all three fil-

ters. In fact, here the GMM-DO filter andMEF become

indistinguishable, both transitioning at the first sugges-

tion by an observation (at time t 5 22). On the other

hand, when observation errors increase (Sondergaard

2011), we found that the GMM-DO filter significantly

outperforms the EnKF. This is because the prior distri-

bution then dominates the update (i.e., the posterior pdf

is influenced more by the prior pdf than by the obser-

vation pdf) and thus gains importance. As such, when

working with systems in which observations are sparse

or noisy—and therefore contain useful but relatively

limited information—the gain of moving beyond the

simple parametric Gaussian distribution becomes sub-

stantial.

4) DISCUSSION

For the parameter values investigated in the double

well diffusion experiment, the GMM-DO filter has been

shown to outperform the EnKF in its ability to track the

transitions of the ball. This enhanced performance is due

the former’s ability to capture and retain non-Gaussian

features during the updates. Moreover, for just a mod-

erate number of ensemble realizations, the performance

of the GMM-DO filter is comparable to that of theMEF

even though the MEF may be considered tailored to the

given test case (i.e., a solution that uses structural in-

formation not known by the other two filters).

The MEF shares a number of similarities with the

GMM-DO filter, particularly in its use of GMMs for

approximating the prior distribution. However, while

the MEF enforces its structure through an imposed cli-

matological distribution (see the appendix), the GMM-

DO filter infers this structure in real time by use of the

EM algorithm applied to its set of ensemble realizations.

As a consequence, the GMM-DO filter is substantially

more generic, needing no specification of a climatologi-

cal pdf and learning only from information contained

in the available data. Furthermore, the minimization
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procedure required by the MEF quickly becomes in-

tractable for systems of increasing dimensionality. In

any event, for cases in which the climatological pdf is

known or is well approximated with a pdf of low di-

mensions, the two schemes—GMM-DOfilter andMEF—

can be merged in a beneficial manner.

We have examined the effects of parametersN, k, and

s2
o on the performances of the three filters. With only

a few realizations, the GMM-DO filter satisfactorily

captures the ball transitions. Specifically, it only requires

enough ensemble realizations to sufficiently explore

the state space; the optimal fitting of the GMM in turn

completes the appropriate assignment of probability. As

we increase the number of ensemble realizations, we

expect the GMM-DO filter to converge to the optimal

Bayes’s filter. This claim is supported by the results

FIG. 5. A study of the filter sensitivities to variations in each of the three parameters k, s2
o and

N. (i) We reduce the number of ensemble realizations to N5 100, while holding the other two

parameters constant. (ii) We reduce the diffusion coefficient to k 5 0.4. (iii) We reduce the

observation error to s2
o 5 0:025. These results are to be compared with the standard test case,

shown in Fig. 3, with parameters N 5 1000, k 5 0.5, and s2
o 5 0:025.
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obtained for the case ofN5 10 000 (Sondergaard 2011).

For trials with increased observation error, we found the

GMM-DO filter substantially more capable than the

EnKF. This was also the case for a reduced diffusion

coefficient k. The extrapolation of these results to ocean

and atmospheric data assimilation is interesting. This is

because situations with limited number of realizations,

limited measurements, or reduced model errors fre-

quently arise, specifically 1) running realistic computa-

tional models remain costly and the number of DO

modes will remain limited even with distributed com-

puting; 2) the number of platforms and sensors remains

small compared to the scales of interest and data

errors of representativeness can be significant; and 3)

the sustained progress in computational models con-

tinues to reduce model errors (e.g., Deleersnijder and

Lermusiaux 2008; Deleersnijder et al. 2010). Taken to-

gether, these limitations highlight the need for refined

data assimilation schemes.

The bimodal distributions of the present experiment is

reminiscent of that which arises, for instance, in the

dynamics of theKuroshio (Sekine 1990;Miller 1997; Qiu

and Miao 2000; Schmeits and Dijkstra 2001). We con-

sequently hypothesize that many of the conclusions

drawn here may be extrapolated to larger systems with

more complicated dynamics. This is explored in the

following test case on sudden expansion fluid and ocean

flows.

b. Sudden expansion flows

In this section, we examine and discuss the perfor-

mance and results of the GMM-DO filter in more re-

alistic fluid and ocean dynamics with variable jets

and eddies. Specifically, we consider two-dimensional

sudden expansion flows. In fluid dynamics, such flows

have been of considerable interest (Durst et al. 1974;

Cherdron et al. 1978; Fearn et al. 1990) and continue to

do so. Because of the breaking of symmetries with in-

creasing Reynolds number and the consequent de-

velopment of at least bimodal statistics, it provides a test

case particularly well suited to the evaluation of data

assimilation schemes. In ocean dynamics, such flows are

analogous to a uniform barotropic jet (2D flow in the

horizontal plane) exiting a narrow strait or an estuary, in

the case of a width that is small enough for the effects of

the earth rotation (Coriolis acceleration) to be ne-

glected. Such strait or estuary flows are common in the

coastal ocean, generally leading to meanders and vor-

tices as the jet exits the constriction.

After describing the test case, we will outline the nu-

merical method used. As with the double well diffusion

experiment, we evaluate the performance of the GMM-

DO filter by application of ‘‘identical twin experiments’’

(Bengtsson et al. 1981; Ide and Ghil 1997a,b): we gen-

erate a simulated true solution over a suitable time

frame at a Reynolds number that allows for interesting

dynamics. Based on sparse and intermittent synthetic

measurements of velocities, we ultimately wish to re-

construct the true solution with knowledge only of initial

uncertainties.We compare theGMM-DOfilter against an

ESSE-DO scheme A [the ESSE scheme-A (Lermusiaux

and Robinson 1999) combined with the DO equations

for priors], using as performance metric the root-mean-

square difference between the true solution and their

respective mean fields. We further provide detailed re-

sults of the Bayesian update procedure at assimilation

times and conclude with an in-depth analysis of their

performances.

1) DESCRIPTION OF EXPERIMENT

It is a well-known fact that flows, seemingly symmetric

both in initial conditions and geometry, may develop

asymmetries with increasing Reynolds numbers Re;

a phenomenon sometimes referred to as the ‘‘Coanda’’

effect (Fearn et al. 1990). A classic example of such is the

development of the von Kármán vortex street in the

wake of a blunt body placed in a uniform flow (Kundu

and Cohen 2008). Vortex streets are also ubiquitous in

the ocean and atmosphere, especially around islands or

other geometric features with rapidly varying aspect

ratios. Sudden expansion flows exhibit similar behavior.

Sudden expansion flows, here limited to two spatial

dimensions, are perhaps most easily understood visu-

ally, see Fig. 6. A developed, symmetric flow of maxi-

mum inlet velocityUmax in a channel of height h expands

into a larger channel of height H, denoting H/h as the

expansion ratio. Depending on the Reynolds number,

Re5
(h/2)Umax

n
, (10)

where n is the kinematic viscosity, a number of phe-

nomena may occur. Experimental results show that, for

low Re, the flow is symmetric about the channel cen-

terline, with circulation regions formed at the corners

of the expansion (Durst et al. 1974). This is the case

depicted in Fig. 6, in which the flow is described by

streamlines. As theRe is increased, instabilities develop,

giving rise to asymmetric flows, steady or unsteady. In

this paper, we will consider the case of an intermediate

Re for which the two-dimensional flow develops asym-

metries, yet remains steady and laminar. Specifically, we

utilize an expansion ratio of 3 and Re 5 250, for which

Cherdron et al. (1978) suggested the onset of asymme-

tries (for the case of three-dimensional flows). We ex-

pect results similar to those predicted numerically and
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verified experimentally by Fearn et al. (1990) for the

case of Re5 140, as shown in Fig. 7. The symmetric inlet

velocity initially breaks to one side of the centerline.

Farther downstream, a second region of circulation

forces the flow to the opposite side before eventually

restoring its initial symmetry. Clearly, the favored di-

rection of breaking depends sensitively on perturbations

in the initial conditions, thus giving rise to at least bi-

modal statistics.

2) TEST PROCEDURE

(i) Physical setup

In Fig. 8, we present the setup for our test case. Placing

variables in a nondimensional form, we let h5 1/3, l5 4,

H 5 1, and L 5 16. We further impose a uniform inlet

velocity of Uin 5 1. By conservation of mass and as-

suming a steady, fully developed Navier–Stokes flow,

we obtain the velocity profile at the expansion, x 5 0

(Kundu and Cohen 2008):

U(x5 0, y)5
2

h3

�
h2

4
2 y2

�
(11)

and thus a maximum inlet velocity of Umax 5
U(x5 0, y5 0)5 3/2.

(ii) Initialization of DO decomposition

d Mean field, x: the x component of the mean field

velocity is everywhere 1 in the inlet and 1/3 at any point

in the channel, in accordance with continuity; the y

component of the mean field is initially zero every-

where.
d Orthonormalmodes, ~xi: following Sapsis andLermusiaux

(2009), the orthonormal modes are generated by re-

taining the dominant eigenvectors of the correlation

operator C(�, �), defined by

C(r1, r2)5M(r1, r2)C(r) , (12)

where r is the Euclidean distance between points r1
and r2, and M(�, �) is a mollifier function globally

taking the value 1 apart from solid boundaries, at

which it vanishes smoothly. We let C(r) take the fol-

lowing form (Lynch and McGillicuddy 2001):

C(r)5

�
11 5r1

52r2

3

�
e25r . (13)

We initialize the stochastic subspace X0 by retaining

the 20 most dominant eigenvectors (i.e., s 5 20)

and hold this size constant throughout the GMM-

DO simulations. We note that we have also run cases

where s varies in time, as governed by the system

dynamics and an adaptive criterion (Sapsis and

Lermusiaux 2012).
d Ensemble members, ffg5 ff1, . . . ,fNg: we generate
N5 10 000 subspace realizations fi from a zero mean,

multivariate Gaussian distribution with diagonal co-

variance matrix. We thus initialize the modes as being

uncorrelated with marginal variances proportional to

the eigenvalues of the matrix defined by correlation

in (13).

In general, both N and s evolve but N remains much

larger than s to capture the unknown dynamic structure

of the pdf in the evolving subspace. This is feasible be-

cause the cost of evolving the scalar coefficients ffg is

much smaller than that of the evolving the modes Xk.

(iii) Generation of the true solution

We initialize the true solution by generating an arbi-

trary field according to the aforementioned initial pdf,

restricted, however, to the five most dominant modes.

Since the true solution is generated from the same sta-

tistics as the one imposed by the initial pdf, we ensure

that our initial statistics capture the true solution. We

note that we have also studied cases where this is not the

case and the results remain similar; here, we focus on

FIG. 6. Setup of the sudden expansion test case (Fearn et al. 1990).

FIG. 7. Calculated streamlines at Re 5 140 (Fearn et al. 1990).
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evaluating assimilation schemes, so we assume the sta-

tistics is representative of the unknown truth.

The true solution is propagated deterministically for-

ward in time under the governing Navier–Stokes equa-

tions for a total time of T 5 100, after which the

simulation settles into its steady state.

(iv) Observations

Wemake a total of three sets of measurements of both

u and y velocities of the true solution at timesTobs5 f50,
70, 90g at the locations indicated in Fig. 9. The mea-

surements are independent of each other and are made

with an observation noise distributed according to a zero-

mean Gaussian with variance s2
obs 5 0:1. This variance is

comparable to that expected at themeasurement locations

during the first assimilation, T 5 50. We note that other

data errors were also employed (not shown here).

(v) Numerical method

Based on Ueckermann et al. (2013), we solve the DO

decomposition of the stochastic Navier–Stokes equa-

tions numerically, using a flexible and efficient finite

volume framework:

d Geometry: The sudden expansion geometry is discre-

tized on a uniform, two-dimensional, structured grid

of 40 by 30 elements in the x and y direction, respec-

tively. A staggered C grid is utilized to avoid spurious

pressure modes.
d Discretization in space: The diffusion operator is

approximated using a second-order central differenc-

ing scheme; the advection operator makes use of a

total variationdiminishing schemewith amonotonized

central limiter (van Leer 1977).
d Discretization in time: For the modes, a first-order

accurate, semi-implicit projection method is employed,

where the diffusion and pressure terms are treated

implicitly, and the advection is treated explicitly (for

details see Ueckermann et al. 2013). In all cases we

limit the time step in accordance with the Courant–

Friedrichs–Lewy (CFL) condition. For the scalar co-

efficients, a Runge–Kutta scheme is employed.
d Boundary conditions: As depicted in Fig. 8, we assume

no-slip boundary conditions at all solid boundaries,

while imposing a uniform velocity of 1 across the inlet

opening. At the open outlet boundary we restrict

the flow by eliminating the first x derivative of the y

velocities and the second x derivative of both pressure

and u velocities:

›y

›x
5 0;

›2u

›x2
5 0; and

›2p

›x2
5 0: (14)

3) RESULTS AND ANALYSIS

In what follows, we focus on the results of the GMM-

DO filter at times T5 f10, 50, 70, 100g. These show the

DO evolution, two assimilation times, and the final time,

respectively. They allow us to appreciate the mechanics

of the filter, both prior and posterior to the assimilation

of data. We refer to Sondergaard (2011) for complete

analyzes every 10 time units.

At each of these times, we display in

d Panel (a): The true field xt;
d Panel (b): The mean field x;
d Panels (c),(d): The two most dominant modes ~x1
and ~x2;

d Panels (e),(f): The marginal pdfs of the stochastic

coefficients F1 and F2, approximated using a kernel

dressing method (Silverman 1992);
d Panel (g): A scatterplot of the ensemble set, ffg 5
ff1, . . . , fNg, projected in the two-dimensional plane

defined by the pair of modes: (~x1, ~x2);

FIG. 8. Sudden expansion test setup.

FIG. 9. Observation locations: (xobs, yobs)5 f(4, 21/4), (4, 0), (4, 1/4)g.
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d Panel (h): A time history of the variances of all the

stochastic coefficients Fj; and
d Panel (i): A time history of the RMS error of both the

GMM-DO filter and the ‘‘ESSE-DO filter,’’ the latter

being equivalent to the GMM-DO filter with a forced

mixture complexity of one (i.e., M 5 1).

These series of figures illustrate the way in which the

flow and its uncertainties develop, ultimately settling

into a steady mean state. It also shows the manner in

which the DO equations evolve the state representation

and how the GMM update is completed.

At the two assimilation times shown (i.e., T 5 f50,
70g), we further display the following:

d the optimal fitting of the GMM to the set of ensemble

realizations within the DO subspace based on the EM

algorithm and the BIC; and,
d the spatially local Bayesian updates at each of the

measurement points.

From here on, all figures depicting the fluid flow will

be described by streamlines overlaid on a color plot

denoting the magnitude of velocity.

(i) T 5 10

After 10 nondimensional time units (Fig. 10), the

initial perturbations in the true solution (Fig. 10a) have

not yet broken the symmetry of the flow, ultimately

causing the appearance of eddies as shown in Fig. 7. The

symmetric mean field (Fig. 10b) consequently still pro-

vides a good approximation for the true solution, as

quantified by the low RMS error (Fig. 10i). We note that

as no data has yet been assimilated, the GMM-DO filter

and ESSE-DO scheme provide identical solutions (the

two schemes differ mainly in their manner of carrying

out the update). TheDO statistics (only two of 20modes

shown here) have seemingly evolved little from the initial

Gaussian seeding, as represented by the scatterplot (Fig.

10g) and marginal pdfs (Figs. 10e,f). The corresponding

modes (Figs. 10c,d) further give an indication of the initial

correlations and probabilistic structures that exist in the

flow by combinations with the coefficients (Fig. 10g).

(ii) T 5 50—Prior distribution

At the time of the first assimilation of data, dynamics

has drastically broken the symmetry of the true solution,

as visualized in Fig. 11a. Meanwhile, the DO mean field

has remained symmetric (Fig. 11b), thus causing a sub-

stantial increase in the RMS error, as shown in Fig. 11i.

Fittingly, the filter uncertainty has increased accord-

ingly, witnessed by the inflation of variances of each of

the stochastic coefficients in Fig. 11h. Moreover, the

marginal distributions of the two most dominant modes

(Figs. 11e,f) suggest the presence of at least bimodal

statistics, reflecting the ambiguity of direction with which

the sudden expansion flowmay break. As such, we expect

that the prior DO distribution still statistically encom-

passes the true solution. Figure 11g also shows that the

dynamical system manifold leads to 2D marginal pdfs

with seemingly ‘‘harder boundaries,’’ in part due to the

limited width of the physical domain and size of the

eddies and meanders.

(iii) T 5 50—Fitting of GMM

We show the fitting of the GMM using the EM

algorithm to the prior set of ensemble realizations,

fffg5 fff
1, . . . ,f

f
Ng, in Fig. 12. Based on the BIC, we

determine the optimal mixture complexity to beM5 29.

We display the one standard deviation contours of the 29

mixture components (shown in red) marginalized across

pairs of modes (2D joint pdfs), considering only the four

most dominant modes. We further project the optimal

GMM onto the domain of each of the stochastic co-

efficients, thus giving their respective 1D marginal dis-

tribution. We find that the GMM-DO filter successfully

captures the complicated, multidimensional and non-

linear features present in the set of 10 000 DO re-

alizations. For example, the 2D projections of the GMM

clearly identify the localized regions of the subspace

(and thus of the state space) where solutions are dy-

namically possible while the 1D projections differ little

from themarginal distributions predicted by a 1D kernel

dressing method (shown in blue). Finally, while not

shown in the figure, any other scheme (e.g., ESSE-DO)

that fits a single Gaussian to the set of DO realizations

undoubtedly results in a severe loss of dynamical in-

formation. This is supported by the ESSE-DO perfor-

mance at later assimilation times.

(iv) T 5 50—Local Bayesian update in the data
space

Based on the GMM-DO filter’s optimal GMM fit, we

display in Fig. 13 the localBayesian updates projected at

each of the observation locations (indicated in Fig. 11a).

Shown are the local true solution, obtained observa-

tions, and prior and posterior GMM-DO distributions,

computed in exact accordance with Bayes’s law. The

local prior distributions are logically more bimodal for

u than for y and more uniform near the center of the

flow. Overall, they are found to consistently capture the

true solution, as particularly evidenced in Fig. 13a. Had

we instead used a Gaussian approximation for the prior

distribution, the true solution would have been within

the tail of the Gaussian and thus inadequately repre-

sented. Of further notice is the shape of the GMM-DO

filter’s posterior distribution, generally placing greater
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FIG. 10. Time T 5 10: (a) True solution; condensed representation of DO decomposition including the

(b) DO mean field; (c),(d) first two DO modes; and (e),(f) their marginal pdfs; (g) scatterplot; (h) the variance of

the coefficients from time 0 to 10; and, finally, (i) root-mean-square errors (between the DO mean and the de-

terministic truth), also up to time T 5 10.
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weight on the mixture components surrounding the true

solution. This is again clearest for the Bayesian update in

Fig. 13a, in which the left lobe of the bimodal distribu-

tion encompasses the true solution.

(v) T 5 50—Posterior distribution

We show the resulting posterior state description

in Fig. 14. The GMM-DO mean estimate has slightly

FIG. 11. As in Fig. 10, but for the prior DO decomposition at time T 5 50, which is the first assimilation time step.
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smaller RMS error than the ESSE-DO scheme mean.

However, in accordance with the significant data un-

certainty, both filters show limited improvements in

their estimates for the true solution, as indicated by the

small reduction in the RMS error in Fig. 14i. Meanwhile,

the stochastic subspace—here just visualized by modes
~x1 and ~x2—has remained unchanged, as explained in

Part I (Sondergaard and Lermusiaux 2013). Yet, the two

filters differ in one crucial aspect: while the posterior

statistics of the ESSE-DO scheme A is Gaussian (not

shown), the GMM-DO filter has retained an accurate

description of the true statistics of the flow. As such, we

expect a superior performance of the latter at the next

assimilation step at T 5 70.

(vi) T 5 70—Prior distribution

By the time of the second assimilation (Fig. 15), the

prior state estimate of the GMM-DO filter still suggests

the presence of at least bimodal statistics, most notably

reflected in the marginal distribution of the most dom-

inant stochastic coefficient (Fig. 15e). The RMS error

has, since the first assimilation at time T 5 50, further

FIG. 12. Marginal prior distributions (in one and two dimensions) for the DO stochastic coefficients at time T5 50

(first assimilation time step) focusing on the first four DOmodes only. The complete prior distribution is obtained by

fitting theGMMusing theEMalgorithm andBIC to the ensemble of realizations in theDO subspace. This leads to an

optimal complexity estimate ofM5 29. TheGMMscalarmarginals (1D pdf) and planarmarginals (2D joint pdfs) are

illustrated by the red plain curves and red standard ellipses, respectively. The DO realizations are plotted in blue,

using a kernel dressing scheme in 1D and a scatterplot in 2D. We note that the GMM marginals shown are only

projections of a complex GMM distribution of 20D (i.e., s 5 20).
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FIG. 13. Data space at time T5 50: True solution, observation and its associated Gaussian distribution, and the prior

and posterior distributions at the observation locations, all at that time.
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increased for both filters, the GMM-DO filter providing

a slightly superior estimate over the ESSE-DO scheme.

The variances of the stochastic coefficients (Fig. 15h)

have also slightly increased.

(vii) T 5 70—Fitting of GMM

In Fig. 16, we show the fitting of theGMM to the set of

realizations in theDO subspace at timeT5 70. Here, we

FIG. 14. As in Fig. 11, but for the posterior GMM-DO estimates at time T 5 50.
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determine the optimal mixture complexity to beM5 20

based on the BIC, reflecting the multidimensional struc-

tures of the true probability distribution.As before, we note

the satisfactory representation of the non-Gaussian features

by the GMM, both in one- and multidimensional space.

(viii) T 5 70—Local Bayesian update in the data
space

In Fig. 17, we show the local Bayesian updates pro-

jected at each of the observation locations, using the

FIG. 15. As in Fig. 11, but for the prior GMM-DO estimates at time T 5 70.
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optimalGMM just determined. The local priorGMM-DO

pdfs at these data points are now more bimodal than at

T 5 50. This is in part because at T 5 70, the data points

are right at the location of a wide meander. Overall, we

again note that the prior pdfs capture the true solution

relatively well, especially for the lower data points, see

Figs. 17d–f, which are in a recirculation eddy (see Fig. 15).

Considering the GMM-DO posterior estimate at data

points, the local probability densities have increasedwhere

the observations were most expected; this is most clearly

visible from increased lobes close to the observations.

(ix) T 5 70—Posterior distribution

Based on the prior fitting and analysis, we show the

global Bayesian update and corresponding posterior

distribution at time T5 70 in Fig. 18. We now note how

the updated mean field adequately captures the true

solution, in particular having determined the direction

of the main meander. The RMS error has been reduced,

see Fig. 18i. An added strength of the GMM-DO filter is

its ability, again, to retain the bimodal structure, as

witnessed in Figs. 18e–g. As such, it stores the possibility

that the flowmay in fact havemeandered in the opposite

direction.

(x) T 5 100

At the final time, T5 100, the true solution is settling

into a steady state, exhibiting the characteristic asym-

metric flow (e.g., Fig. 7). This is nearly perfectly cap-

tured by the GMM-DO filter. In particular, the RMS

FIG. 16. As in Fig. 12, but at the secondGMM-DOassimilation timeT5 70: when compared to the priors atT5 50,

the optimal complexity is now found to be a bit smallerM5 20, the 2Dmarginals of the stochastic coefficients remain

complex, while the 1D marginals are either more bimodal (coefficients 1 to 3) or relatively unimodal (coefficient 4).
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FIG. 17. As in Fig. 13, but for the data space at time T5 70: when compared to the local updates at T5 50, the local

GMM-DO pdfs are more bimodal.
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error of the GMM-DO mean has been reduced to that

at which it started, at time T 5 0, before the perturba-

tions in the true solution were dynamically evolved. The

bimodal structure of the GMM-DO filter, while still

present, is much reduced, suggesting an added con-

fidence in its estimate for the mean. This is further

supported by the reduced variances of the stochastic

coefficients, displayed in Fig. 18h. As such, we conclude

FIG. 18. As in Fig. 15, but for the posterior GMM-DO estimates at time T 5 70.
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that the GMM-DO filter has accurately captured the

true solution, exhibiting little uncertainty in its estimate.

4) DISCUSSION

We have examined the application of the GMM-DO

filter to fluid and ocean dynamics with variable jets and

eddies. The illustration consisted of a two-dimensional

sudden expansion flow of aspect ratio 3 and Re5 250, at

which the true solution becomes asymmetric. Given the

sensitivity of the meanders and eddies to the initial

perturbations, the corresponding stochastic flow admits

complex, far-from-Gaussian distributions and as such is

well suited to evaluate the performance of the GMM-

DO filter.

Based on the root-mean-square errors between the

filter mean and true solution, we found the GMM-DO

filter to significantly outperform the ESSE-DO scheme

A, the latter referring to the GMM-DO filter with

a forced mixture complexity of M 5 1. Specifically, as-

similating temporally and spatially sparse measure-

ments, the GMM-DO filter accurately predicted the

structure of the true solution at timeT5 100 (Fig. 19). In

particular, based on the RMS error, the GMM-DO filter

showed a fourfold improvement over the ESSE-DO

scheme. (While these results naturally depend on the

chosen truth and observations, similar conclusions were

drawn based on many other runs not shown here.)

We found the performance of the ESSE-DO scheme

to be comparable to that of the GMM-DO filter up

until the second assimilation step (i.e., T 5 70), after

which the latter showed marked improvements. This is

because the GMM-DO filter accurately captures and

retains the inherent far-from-Gaussian statistics, both

prior and posterior to the melding of data, in exact ac-

cordance with Bayes’s law. With this, the statistical rep-

resentation of the state following the first assimilation of

data remains accurate, reflected in the successful updates

at later assimilation times. AtT5 70, the dynamics is well

captured by the data locations and the GMM-DO filter

compellingly corrects the mean and uncertainties.

A further strength of the GMM-DO filter is its ability

to adapt to the complexity of the subspace realizations at

assimilation times. In particular, for the illustrated case,

the optimal mixture complexity at the first update was

found to be M 5 29, at the second, M 5 20, and at the

third, M 5 14, each as determined by the BIC. The ac-

curacy of the fitting procedure is illustrated by Figs. 12

and 16. This adaptation suggests that Bayes’s law is ac-

curately carried out during the update, neither under

nor overfitting the true prior pdf.

Finally, by adopting the DO equations, we render

computationally tractable the optimal fitting of GMMs.

Rather than working in n-dimensional space, the focus is

the s-dominant subspace (with s � n) defined by Xk.

The minor loss of information incurred by the reduced

dimensionality is more than counterbalanced by the

optimal GMM fitting: the complex pdf structures can be

captured in the subspace. The subsequent non-Gaussian

GMM update in this subspace is then also computa-

tionally efficient. Ultimately, the result is an accurate

estimation of the posterior pdf, in some sense the central

goal of data assimilation.

3. Conclusions

In Part II of this two-part paper, we evaluated the

performance of the GMM-DO filter in a dynamical

systems setting, applying it to 1) the double well diffu-

sion experiment and 2) sudden expansion flows. We il-

lustrated the overall capabilities of the filter including:

equations-based and adaptive characteristics; dynamical

evolution of the pdfs and DO decompositions, estima-

tion of the GMM parameters in the DO subspace using

the EM algorithm and Bayesian Information Crite-

rion (BIC), and efficient Bayesian updates and the

corresponding data impacts. We also compared re-

sults to those of contemporary filters including the en-

semble Kalman filter, maximum entropy filter, and

ESSE-DO filter. Results clearly showed the advantages

of respecting nonlinear dynamics and preserving non-

Gaussian statistics.

With the double well diffusion experiment, we vali-

dated the use of the EM algorithm and BIC with GMMs

in a filtering context. In particular, we have shown the

GMM-DO filter to outperform the ensemble Kalman

filter in its ability to track the transition of the ball from

one well to the other. We attribute this skill to the for-

mer’s ability to capture and retain non-Gaussian fea-

tures during the data assimilation update. We have

further suggested the benefits of adopting the GMM-

DO filter over the otherwise novel maximum entropy

filter; the GMM-DO filter is adaptive, generic, and

substantially more efficient, learning from information

contained in the dynamics and available data. We also

examined the sensitivity to variations in the input pa-

rameters, finding the GMM-DO filter especially superior

for cases of few realizations, sparse and noisy measure-

ments, and moderate model errors—all commonly en-

countered in ocean and atmospheric applications.

With the sudden expansion flows, we showed the

properties of the GMM-DO filter in problems of non-

trivial dimensionality, specifically flows with dynamic

jets and eddies. By focusing on the evolving dominant

subspace of the full stochastic state space, the GMM-

DO filter enables an otherwise computationally in-

tractable procedure. Specifically, it allows the prediction
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of prior uncertainties using nonlinear differential equa-

tions, the optimal fitting of GMMs to large sets of re-

alizations in the subspace, and the subsequent efficient

non-Gaussian update of the GMM pdfs by Bayesian data

assimilation. We found the GMM-DO filter to consis-

tently capture the non-Gaussian features of the flow un-

certainties, and, critically, preserve them through the

Bayesian update. As a consequence, the GMM-DO filter

FIG. 19. As in Fig. 15, but for the prior GMM-DO estimates at time T 5 100.
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gave a fourfold improvement over the ESSE-DO scheme

at the final time step for the given test case. We note that

we have obtained similar results with systems of lower

(e.g., the Lorenz-95 model) and higher dimensionality

(other 2D flows with larger state vectors and more com-

plex features).

A research direction that is now feasible is the study of

the dynamics and evolution of the GMMs: they identify

the localized nonlinear regions of the stochastic sub-

space that correspond to dynamically realizable solu-

tions of the uncertain governing equations. Such studies

would also be useful for data-model comparisons,

adaptive sampling, and learning of model errors. If the

pdfs of real ocean or atmospheric fields are complex and

far from Gaussian, we showed that refined data assimi-

lation schemes such as the GMM-DO filter are needed.

Should these pdfs be Gaussian, an advantage of the

GMM-DOfilter is that it automatically adapts to a linear

Kalman update. Another obvious next step is the effi-

cient implementation of the GMM-DO filter and its

variations to a full, 4D ocean model, evaluating its

performance in a multiscale ocean setting (Haley and

Lermusiaux 2010).
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APPENDIX

The Maximum Entropy Filter

The maximum entropy filter (Eyink and Kim 2006)—

developed to handle far-from-Gaussian distributions in

a dynamical systems setting—is based on aMonte Carlo

approach and is applicable to cases in which a climato-

logical distribution for the system of interest exists,

is known, and further can be well approximated by

a (semi)parametric distribution that allows for tractable

Bayesian inference. For simplicity, in what follows we

restrict our attention to univariate distributions. We

note, however, that the analysis generically extends to

the multivariate case.

We assume that our system is defined such that a cli-

matological distribution, qX(x), exists and is known.

While the method holds for arbitrary distributions, we

restrict our attention to a GMM of complexity M:

qX(x)’ �
M

m51

wm 3N (x;mm,s
2
m) . (A1)

For a systemmodeled as a nonperiodic Markov Chain

with a single recurrent class (Bertsekas and Tsitsiklis

2008), it can be shown that any distribution, pX(x),

forced under the transition kernel (i.e., model) con-

verges to the stationary (i.e., climatological) distribution

of the system, qX(x) (Cover and Thomas 2006).Wewrite

this as

lim
k/‘

DX( p
kkq)5 0, (A2)

where k is a discrete time index, and DX(pkq) denotes
the Kullback–Leibler divergence (Kullback 1968) be-

tween probability density functions pX(x) and qX(x):

DX(pkq)5
ð
X
pX(x) log

pX(x)

qX(x)
dx . (A3)

Adopting this framework, an ensemble of forecast re-

alizations (or particle forecasts) is assumed available at

the time of a new observation y. The prior probability

density function of the system is then fit to these re-

alizations using an information projection:

p̂X
k(x)5 argmin

p2S
k

DX(pkq) , (A4)

where Sk denotes a chosen set of distributions consis-

tent with Monte Carlo moment constraints on the set of

forecast realizations, fxg 5 fx1, . . . , xNg. Qualitatively,

we understand (A4) as finding the distribution, pX(x),

that satisfies the moment constraints given by Sk and

that is ‘‘closest’’ to the climatological distribution, qX(x),

having chosen the Kullback–Leibler divergence for

measure of distance. A hat is used on the prior pdf,

p̂X(x), to note that it has arisen through an information

projection.

For the purposes of tractability, we will concern our-

selves only with the first and second moments of the

particles:

Sk5

(
pX(x):E[X j pX(x)]5

1

N
�
N

i51

xi [ xk ,

var[X j pX(x)]5
1

N
�
N

i51

(xi 2 x)2[ s2k

)
, (A5)

although, the analysis holds for arbitrary constraints.We

note that xk and s2k refer to the sample mean and vari-

ance, respectively, at discrete time k. When limiting our
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attention to the first two moments of the set of re-

alizations, fxg 5 fx1, . . . , xNg, we will show that the

prior distribution, too, takes the form of a GMM.

With Sk defined as in (A5), it can be shown that p̂kX(x)

is a member of the following exponential family (Cover

and Thomas 2006):

p̂kX(x)5 qX(x)
el1

x1l
2
x2

Z(l1, l2)
, (A6)

with l1 and l2 chosen such that (A5) is satisfied [i.e.,

l1 5 l1(xk, s
2
k) and l2 5 l2(xk, s

2
k)], and where Z(l1, l2)

is the partition function ensuring that p̂kX(x) is a valid

distribution. By substituting (A1) into (A5), and com-

pleting the square (dropping the explicit notation of

time with the understanding the update occurs at dis-

crete time k), it can be shown (Sondergaard 2011) that

p̂X(x) takes the form of a GMM:

p̂X(x)5 �
M

m51

ŵm 3N (x; m̂m, ŝ
2
m) (A7)

with the following parameters:

ŵm 5
wm 3 e

2 1

2s2m

"
m2

m2
(mm1s2

ml1)
2

122s2
ml2

#

Z(l1,l2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2s2

ml2

q , (A8)

m̂m 5
mm 1s2

ml1
12 2s2

ml2
, (A9)

ŝ2
m 5

s2
m

12 2s2
ml2

, (A10)

where wm, mm, and s2
m are assumed known (parameters

of the fixed background or climatology pdf). Having

determined the prior pdf [here, left as a function of

l1(x, s
2) and l2(x, s

2)], we proceed with the Bayesian

update based on observation y. We showed in Part I

(Sondergaard and Lermusiaux 2013), however, that for

a Gaussian observation model,

pYjX(y j x)5N (y; x,s2
o) , (A11)

with a GMM as prior, the posterior distribution equally

takes the form of a GMM. We specifically arrive at

pXjY(x j y)5 �
M

m51

~wm 3N (x; ~mm, ~sm) , (A12)

with the following parameters:

~wm 5
ŵm 3N (y; m̂m,s

2
o 1 ŝ2

m)

�
M

i51

ŵi 3N (y; m̂i,s
2
o1 ŝ2

i )

, (A13)

~mm 5 m̂m 1
ŝ2
m

s2
o 1 ŝ2

m

(y2 m̂m) , (A14)

~s2
m 5

ŝ2
ms

2
o

ŝ2
m 1s2

o

. (A15)

At this point, we generate a new set of realizations,

fxg 5 fx1, . . . , xNg, from the updated GMM and

evolve these in time using the governing equation for

the system.
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