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ABSTRACT

This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent

stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs.

The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also

rigorously utilizes the governing dynamical equations with information theory and learning theory for

efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory

and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically

Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior

probabilities for the full dynamical state, effectively approximating the Fokker–Planck equation. At as-

similation times, the DO realizations are fit to semiparametric Gaussian Mixture Models (GMMs) using

the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’s law is then

efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is

illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with

comparisons with related schemes.

1. Introduction

Data assimilation (DA) is the process of quantitatively

estimating dynamically evolving fields by melding in-

formation from observations with that predicted by

computational models. Data assimilation has a long and

interesting history; thorough expositions include Daley

(1991), Ghil and Malanotte-Rizzoli (1991), Bennett (1992,

2002),Wunsch (1996),Malanotte-Rizzoli (1996), Robinson

et al. (1998), Kalnay (2003), and Evensen (2007). Most

schemes are derived from estimation theory (Jazwinski

1970; Gelb 1974), information theory (Sobczyk 2001;

Cover and Thomas 2006), control theory (Lions 1971;

Dimet and Talagrand 1986), and optimization theory

and inverse problem theory (Tarantola 2005). While

traditionally grounded in linear theory and the Gaussian

approximation (Kalman 1960), recent years have seen

the emergence of advanced DA schemes attempting to

shed such limitations. One research thrust has been the

development of efficient methods that respect nonlinear

dynamics and capture non-Gaussian features. Most such

methods are either challenging to employ with large

realistic systems or still based on some ad hoc approxi-

mations. Our motivation here is to allow for realistic

geophysical applications while rigorously utilizing the

governing dynamical equations with information theory

and learning theory for efficient Bayesian inference.

It is well known that geophysical dynamics can be

very nonlinear and intermittent. The importance of ac-

counting for nonlinearities in DA has also been known

for some time (e.g., Miller et al. 1994). Nonlinearities not

only affect prediction, but also the melding of measured

and predicted information. As a result, oceanic and at-

mospheric fields can be characterized by complex,

far-from-Gaussian statistics (Commission on Physical

Sciences,Mathematics, andApplications 1993; Lermusiaux

et al. 2002a; Auclair et al. 2003; Dee and Silva 2003;

Lermusiaux et al. 2006; Sura 2010). With the intro-

duction of the ensemble Kalman filter (Evensen 1994;

Houtekamer et al. 1998), error subspace schemes

(Lermusiaux andRobinson 1999), and square root filters

(Whitaker and Hamill 2002; Tippett et al. 2003) came

the adoption of Monte Carlo methods (Doucet et al.

2001) within the DA community. In addition to utilizing

the inherent nonlinearities of the governing equations,
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Monte Carlo methods allow exploration and exploi-

tation of probabilistic structures beyond the simple

Gaussian melding of information. One type of such

methods are particle filters, for example, Pham (2001)

and van Leeuwen (2009), which evolve probability den-

sity functions (pdfs) using a discrete set of models states

or particles and a corresponding mixture of ‘‘Dirac

functions.’’ Extensions include diffusion kernel filters

(e.g., Krause and Restrepo 2009) and parametric filters

(e.g., Kim et al. 2009). A related interest has been the

approximation of distributions by Gaussian Mixture

Models (GMMs; Bocquet et al. 2010). Examples include

Alspach and Sorenson (1972), Anderson and Anderson

(1999), Chen and Liu (2000), Bengtsson et al. (2003),

Kotecha and Djuric (2003), Eyink and Kim (2006), Smith

(2007),Hoteit et al. (2008), andDovera andRossa (2011),

many of which will be examined later in this work.As will

be shown, GMMs provide an attractive method for ap-

proximating distributions for the purposes of Bayesian

inference. When fit to Monte Carlo data using the

Expectation-Maximization algorithm (Dempster et al.

1977) and the Bayesian Information Criterion (Schwartz

1978), an accurate representation of the true pdf results.

This is to be developed in this work.

A concern with present nonlinear DA schemes is their

difficulty in handling the dimensionality of state vectors

commonly encountered in oceanic and atmospheric

applications, typically on the order of n ; 106–1010. A

common useful remedy has been the adoption of various

localization approximations (Bengtsson et al. 2003) and

heuristic arguments (Anderson and Anderson 1999). A

number of filters (e.g., Lermusiaux and Robinson 1999)

have opted to focus on a time-dependent dominant sub-

space of the full state space, thereby allocating compu-

tational resources solely to the states that matter most.

In a similar manner, we employ here the Dynamically

Orthogonal (DO) field equations (Sapsis andLermusiaux

2009; Sapsis 2010). The DO equations originate directly

from the governing dynamical equations (i.e., the sto-

chastic partial differential equations describing the evo-

lution of the full geophysical system). By applying an

orthogonality condition on the evolution of the stochastic

subspace, the governing equations are reduced to evolu-

tion equations for (i) the mean field, (ii) the stochastic

subspace, and (iii) the probabilistic variability contained

within the subspace. These DO equations efficiently

represent the true evolving pdf in between assimilation

times and effectively approximate the Fokker–Planck

equation.

In Part I of this two-part paper, we develop and derive

the underlying theory and algorithms of the proposed

DA scheme: the GMM-DO filter. In section 2, we in-

troduce and define the filter’s core components. The

derivation of the filter with a key proof is completed in

section 3. Section 4 provides a simple example illus-

trating the filter’s update step, while section 5 places the

GMM-DO filter in the context of contemporary schemes

based on related ideas. Conclusions are in section 6. In

appendixes A and B, we present the EM algorithm and

outline variations of the filter, respectively. In Part II of

this two-part paper (Sondergaard and Lermusiaux 2013),

we apply the GMM-DO filter in a dynamical systems

setting. Specifically, we evaluate its performance against

contemporary filters when applied to 1) the double well

diffusion experiment and 2) the sudden expansion fluid

flow.

2. GMM-DO filter components

In this section, we introduce the core components that we

ultimately combine into the GMM-DO filter, specifically:

d Gaussian Mixture Models,
d Expectation-Maximization algorithm,
d Bayesian Information Criterion, and
d Dynamically Orthogonal field equations.

In each case, we provide definitions and briefly justify

the choices of these components in the context of oce-

anic and atmospheric DA. As a whole, the DO equa-

tions provide prior probabilities for a semiparametric

assimilation framework based on Gaussian Mixture

Models that are fit with an Expectation-Maximization

algorithm and a Bayesian Information Criterion, Bayes’s

law is then efficiently employed analytically to combine

the predicted and observed information. The objective is

to estimate the probabilistic properties of the dynamical

state of the system under study, denoted as random

state vector X. For ease of notation, expositions in this

section are completed in the corresponding dynamical

state space. However, in computations, all Bayesian

updates occur within the evolving subspace (see section

3). Table 1 summarizes the notation specific to this

manuscript.

a. Gaussian Mixture Models

The pdf for a random vector, X 2 R
n, distributed ac-

cording to a multivariate GMM is given by

pX(x)5 �
M

j51

pj 3N (x; xj,Pj) , (1)

subject to the constraint that

�
M

j51

pj 5 1. (2)
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We refer toM 2 N as the mixture complexity, pj 2 [0, 1]

as the mixture weights, xj 2 R
n as the mixture mean

vectors, and Pj 2 R
n3n as the mixture covariance ma-

trices. The multivariate Gaussian density function takes

the following form:

N (x; x,P)[
1

(2p)n/2jPj1/2
e21/2(x2x)TP21

(x2x) . (3)

GMMs provide an attractive semiparametric frame-

work in which to approximate unknown distributions

based on a set of ensemble realizations (McLachlan and

Peel 2000). They are a flexible compromise between

(i) a fully parametric (Gaussian) distribution for which

M 5 1 and (ii) a (Gaussian) kernel density estimator

(Silverman 1992) for which M 5 N, with N being the

number of realizations. A single parametric distribution,

while justified based on maximum entropy arguments

(Cover and Thomas 2006) often enforces too much

structure onto the ensemble set and cannot model highly

skewed or multimodal distributions. A kernel density

estimator, on the other hand, usually requires one to

retain all N realizations for the purposes of inference—

a computationally burdensome task. Furthermore, be-

cause of the granularity associated with fitting a kernel

to every realization, it often necessitates an heuristic

choice of the kernel’s shape parameter (see section 5).

Mixture models efficiently summarize the ensemble

set by a parameter vector, while retaining the ability to

accurately model complex distributions (see Fig. 1). In

fact, in the limit of large complexity and small covari-

ance, a GMM converges uniformly to any sufficiently

smooth distribution (Alspach and Sorenson 1972). Other

mixtures and expansions have been used to approximate

arbitrary probability distributions, among them theGram–

Charlier expansion, Edgeworth expansion, and Pearson-

type density functions (Alspach and Sorenson 1972).

While the former two suffer from being invalid distri-

butions when truncated (viz., that they must integrate to

1 and be positive everywhere), the latter does not lend

itself well to Bayesian inference. In contrast, GMMs

(1)–(3) are clearly valid.

An important property of GMMs is that they are

conjugate priors to the commonly used Gaussian

observation models: their Bayesian update then re-

mains a Gaussian mixture (Casella and Berger 2001;

Sondergaard 2011). Specifically, for a prior multi-

variate GMM,

pX(x)5 �
M

j51

p
f
j 3N (x; x

f
j ,P

f
j ) , (4)

and a multivariate Gaussian observation model,

pYjX(y j x)5N (y;Hx,R) , (5)

the Bayesian update remains a multivariate GMM,

TABLE 1. Notation relevant to the GMM-DO filter. [While we

have primarily adopted notation specific to probability theory, in-

formation theory, and estimation theory, where possible we also

utilize the notation advocated by Ide et al. (1997).]

Descriptors

(�)f Forecast

(�)a Analysis

Scalars

i 2N Stochastic subspace index

j 2N Mixture component index

k 2N Discrete time index

n 2N Dimension of state vector

p 2N Dimension of observation vector

q 2N Dimension of dominant stochastic

subspace

r 2N Realization index

s 2N Dimension of stochastic subspace

M 2N Complexity of Gaussian Mixture Model

N 2N Number of Monte Carlo members

Fi 2R Random variable describing the pdf

for orthonormal mode ~xi

Vectors

X 2Rn State (random) vector

x 2Rn State realization
~xi 2Rn DO mode i: Dynamically orthonormal

basis for stochastic subspace

x 2Rn Mean state vector

Y 2Rp Observation (random) vector

y 2Rp Observation realization

xj 2Rn Mean vector of mixture

component j in state space

mj 2Rs Mean vector of mixture component

j in stochastic subspace

F 2Rs Multivariate random vector, [F1 . . . Fs]

f 2Rs Realization residing in stochastic subspace

Y 2Rp Observation noise (random) vector

y 2Rp Observation noise realization

Matrices

P 2Rn3n Covariance matrix in state space

§j 2Rs3s Covariance matrix of mixture

component j in stochastic subspace

Pj 2Rn3n Covariance matrix of mixture

component j in state space

R 2Rp3p Observation covariance matrix

H 2Rm3n (Linear) observation model

X 2Rn3s Matrix of s DO modes, [~x1 . . . ~xs]

ffg 2Rs3N Set of subspace ensemble

realizations, ff1, . . . , fNg
fxg 2Rn3N Set of state space ensemble

realizations, fx1, . . . , xNg
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pXjY(x j y)5 �
M

j51

pa
j 3N (x; xa

j ,P
a
j ) , (6)

with posterior parameters:

pa
j 5

p
f
j 3N (y;Hx

f
j ,HP

f
j H

T 1R)

�
M

m51

p f
m 3N (y;Hx f

m,HP
f
mH

T 1R)

xa
j 5 x

f
j 1Kj(y2Hx

f
j )

Pa
j 5 (I2KjH)P

f
j , (7)

where

Kj5P
f
j H

T(HP
f
j H

T 1R)21 (8)

is the Kalman gain matrix associated with mixture

component j.

Consequently, for Gaussian observation models with

GMMs as priors, the usually intractable Bayesian up-

date reduces to an update of the elements of the pa-

rameter set, fp1, . . . ,pM, x1, . . . , xM,P1, . . . ,PMg, given
by (7). Specifically, the individual mixture mean vectors

and covariance matrices are found to be updated in

accordance with familiar Kalman filter equations, the

coupling occurring solely through the mixture weights.

Having introduced GMMs as an attractive method for

approximating distributions for the purposes of Bayes-

ian inference, its optimal parameter values,

fp1, . . . ,pM, x1, . . . , xM,P1, . . . ,PMgoptimal ,

need to be estimated based on a set of N ensemble re-

alizations, fxg 5 fx1, . . . , xNg. Here, we seek the value

for the parameters that maximizes the probability of

obtaining the given realizations; the maximum likelihood

(ML) estimators. For this wemake use of theExpectation-

Maximization (EM) algorithm.

b. The Expectation-Maximization algorithm

The EM algorithm is an iterative procedure for esti-

mating the parameters ui of a target distribution that

maximize the probability of obtaining a given set of re-

alizations, fxg 5 fx1, . . . , xNg. While resulting ML es-

timators can be justified based on intuition alone, they

are also consistent and asymptotically efficient (Bertsekas

and Tsitsiklis 2008). For most cases, differentiating the

parametric probability distribution, pfXg(fxg; u1, . . . ,
uM), with respect to ui, and equating the result to zero

for maximization,

›pfXg(fxg; u1, . . . , uM)

›ui
5 0, i5 1, . . . ,M , (9)

results in nonlinear systems for uis that lack closed form

solutions. Such is also the case for GMMs. Hence, one

resorts to numerical methods for obtaining the ML es-

timate. While various hill-climbing schemes exist, the

EM algorithm takes advantage of properties of proba-

bility distributions.

FIG. 1. Gaussian (parametric) distribution, Gaussian Mixture Model, and Gaussian (kernel) density estimator based on 20 samples

generated from the mixture of uniform distributions: pX(x)5 (1/2)3U(x;28,21)1 (1/2)3U(x; 1, 8), where U(x; a,b)5 1/(b2 a) de-

notes the continuous uniform pdf for random variable X.
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Specifically, the EM algorithm (see section a in ap-

pendix A) is an iterative succession of expectation and

maximization steps for obtaining the ML estimate. It

successively estimates the weights with which a given

realization is associated with each of the M mixture

components. This is done based on present parameter

estimates, followed by optimizing these parameters

again using the newly calculated weights. Repeating

this, it ultimately arrives at an estimate for the ML pa-

rameter vector based on the set of ensemble realizations,

fxg. In section b of appendix A, we present the EM al-

gorithm for GMMs. The result is as follows:

Given the set of ensemble realizations, fxg5 fx1, . . . ,
xNg, and initial parameter estimate,

u(0) 5 fp(0)
1 , . . . ,p

(0)
M , x

(0)
1 , . . . , x

(0)
M ,P

(0)
1 , . . . ,P

(0)
M g ,

repeat until convergence:

d For all i 2 f1, . . . , Ng and j 2 f1, . . . , Mg, use the

present parameter estimate, u(k), to form

tj(xi;u
(k))5

p
(k)
j 3N (xi; x

(k)
j ,P

(k)
j )

�
M

m51

p(k)
m 3N (xi; x

(k)
m ,P(k)

m )

. (10)

d For all j 2 f1, . . . ,Mg, update the parameter estimate,

u(k11), according to

p
(k11)
j 5

N
(k)
j

N
(11)

x
(k11)
j 5

1

N
(k)
j

�
N

i51

tj(xi; u
(k))3 xi (12)

P
(k11)
j 5

1

N
(k)
j

�
N

i51

tj(xi; u
(k))3(xi2x

(k11)
j )(xi2x

(k11)
j )T,

(13)

where

N
(k)
j [ �

N

i51

tj(xi; u
(k)) . (14)

Inspection of the above satisfies intuition. In the E

step of the EM algorithm [(10)], we calculate the proba-

bility of mixture component j having generated re-

alization xi based on the present parameter estimates.We

do so across all possible pairs of realizations and com-

ponents. In the M step of the EM algorithm [(11)–(13)],

the parameter values are updated in accordance with

their weighted averages across all realizations [similar in

form to (A2)–(A4) for the complete dataset]. As proved

in section b in appendix A, repeated iterations of the

above ensures that a local maximum for the ML param-

eter estimate is met. We thus arrive at an optimal fit of

a GMMof complexityM to the set ofN realizations, fxg.
c. The Bayesian Information Criterion

Until now, we have assumed the mixture complexity

M to be fixed and known. Such is rarely the case in

practice, however. Determining the optimal complexity

of a GMM can be a complicated task, particularly given

limited a priori knowledge, and is often guided by em-

pirical evidence, namely, the set of ensemble realizations.

Such a task is formally referred to as ‘‘model selection.’’

While numerous schemes exist (e.g., Eisenberger 1964;

McLachlan and Peel 2000; Duda et al. 2001), here we

focus on the Bayesian Information Criterion (BIC).

Introducing a Bayesian framework, the parameter

vector u is assumed random and M is considered con-

stant but unknown. We denote pQ(u; M) as the (ar-

bitrary) prior distribution for u at a given M, and

pfXgjQ(fxg j u; M) as the distribution for the ensemble

set conditioned on a u at a given M. In this work, the

latter is a GMM.

The goal is to select the model complexity M that

maximizes the likelihood of obtaining fxg. In other

words, by the assumed independence of the realizations,

we seek M for which

pfXg(fxg;M)5P
N

i51

pX
i
(xi;M) (15)

is a maximum. A derivation of this optimum M is given

in Sondergaard (2011). In summary, Laplace’s approx-

imation is applied to the left-hand side of Bayes’s law

(MacKay 2003),

pQjfXg(ujfxg;M)5
pfXgjQ(fxgju;M)pQ(u;M)

pfXg(fxg;M)
, (16)

evaluated at theML estimate for the parameter vector u.

Ultimately, we obtain

1

N
LN
x (M)5

1

N
LN
x (ûML,M)1

1

N
log pQ(ûML;M)

1
KM

2N
log2p2

KM

2N
logN2

1

N
logjJx(ûML)j ,

(17)

where KM denotes the length of the parameter vec-

tor, Jx(ûML) defines the expected Fisher information
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(Bishop 2006) in any one realization xi evaluated at the

ML estimate for the parameter vector u, and where we

have defined the loglikelihoods:

LN
x (M)5 �

N

i51

logpX
i
(xi;M) (18)

LN
x (ûML,M)5 �

N

i51

log pX
i
jQ(xijûML;M) . (19)

For largeN, however, we keep only the order one terms

of (17) to arrive at the BIC:

BIC5 min
M

f22LN
x (M)g

’ min
M

fKM logN2 2LN
x (ûML,M)g , (20)

where N is the number of realizations, M is the mixture

complexity,LN
x (M) is the log-likelihood of the ensemble

set integrated across all possible parameter values,

LN
x (ûML,M) is the log-likelihood of the ensemble set

evaluated at the ML estimate for the parameter vector,

andKM is the number of parameters. The complexityM

needs to be chosen to minimize the BIC.

The BIC is a quantitative equivalent of the ‘‘Occam’s

Razor’’ (MacKay 2003; Duda et al. 2001), namely, that

one should favor the simplest hypothesis consistent

with the ensemble. Here, a balance is struck between

underfitting—and thus imposing too much onto the

data—and overfitting, for which we limit our predictive

capacity beyond the ensemble. This is done by penalizing

the fit of the realizations, quantified by twice the log like-

lihood of the ensemble set evaluated at theML parameter

vector, 2LN
x (ûML,M), with a term proportional to the

mixture complexity, KM logN.

At this point, what remains for our DA scheme is an

efficient method for evolving the probabilistic description

of the state in time. For this, we employ theDOequations.

d. The Dynamically Orthogonal field equations

TheDO equations (Sapsis and Lermusiaux 2009; Sapsis

2010), are a closed reduced set of evolution equations for

general stochastic continuous fields, X(r, t; v), described

by a stochastic partial differential equation (SPDE):

›X(r, t;v)

›t
5L[X(r, t;v);v] , (21)

with initial conditions

X(r, t0;v)5X0(r;v) (22)

and boundary conditions

B[X(r, t;v)]jr5j 5 h(j, t;v) , (23)

where r denotes the position in space; t is time; v is

a random event; L[�] is a general, potentially nonlinear,

differential operator (presently, an ocean or fluid flow

model); B is a linear differential operator; and j is the

spatial coordinate denoting the boundary. Two main

assumptions are made in the derivation of the DO equa-

tions. First, a generalized, time-dependent Karhunen–

Loeve decomposition of the fields (Lermusiaux 2006;

Sapsis and Lermusiaux 2009) is used,

X(r, t;v)5 x(r, t)1 �
s(t)

i51

~xi(r, t)Fi(t;v) , (24)

where x(r, t)5E[X(r, t;v)] are the mean fields with E[�]
being the expectation operator over v; ~xi(r, t) are or-

thonormal modes spanning the time-dependent sto-

chastic subspace; and Fi(t; v) are zero-mean, stochastic

coefficients. The decomposition (24) defines generalized

empirical orthogonal functions. In addition to ~xi(r, t), the

dimension of the subspace s also varies with time, but in

what follows, for ease of notation, we omit t next to s.

Second, after insertion of (24) into (21), a DO condition

is imposed (i.e., the rate of change of the stochastic

subspace basis is orthogonal to itself over the physical

domain):

*
›~xi(�, t)

›t
, ~xj(�, t)

+
5 0 " i, j 2 f1, . . . , sg . (25)

With these assumptions, the original SPDE is reduced to

DO equations (see definition below):

1) a PDE (26) for the evolution of the mean field, x(r, t);

2) a family of s PDEs (27) for the evolution of the

orthonormal modes ~xi(r, t) describing a basis for the

time-dependent dominant stochastic subspace; and,

3) a system of s stochastic differential equations (28)

for the coefficients, Fi(t; v), which define how the

stochasticity evolves within the stochastic subspace.

Mathematically, for the governing dynamics (21), with

initial and boundary conditions (22) and (23), the cou-

pled DO evolution equations are (using Einstein nota-

tion, Siaibi [ aibi)

›x(r, t)

›t
5E[L[X(r, t;v);v]] , (26)

›~xi(r, t)

›t
5P?(E[L[X(r, t;v);v]fj(t;v)])C

21
F

i
(t)F

j
(t) , (27)
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dFi(t;v)

dt
5 hL[X(�, t;v);v]2E[L[X(�, t;v);v]], ~xi(�, t)i ,

(28)

where

P?[F(r)][F(r)2 hF(�), ~xk(�, t)i~xk(r, t) (29)

is the projection of F(r) onto the null space of the sto-

chastic subspace; and,

CF
i
(t)F

j
(t) [E[Fi(t;v)Fj(t;v)] (30)

is the correlation between random variablesFi(t; v) and

Fj(t; v), with the inverse of the correlation matrix being

used in (27). The associated boundary conditions take

the following form:

B[x(r, t)]jr5j 5E[h(j, t;v)] , (31)

B[~xi(r, t)]jr5j 5E[h(j, t;v)Fj(t;v)]C
21
F

i
(t)F

j
(t) , (32)

and the initial conditions are given by

x(r, t0)5 x0(r)5E[X0(r;v)] , (33)

~xi(r, t0)5 ~xi0(r) , (34)

Fi(t0;v)5 hX0(�;v)2 x0(�), ~xi0(�)i, (35)

where i5 1, . . . , s and ~xi0(r) are the orthonormal modes

for the stochastic subspace at t0.

With the DO equations, both the stochastic subspace

and the stochastic coefficients are dynamically evolved

in time. They are initialized based on the initial pdf and

thereafter evolved in accord with the SPDE governing

X(r, t; v) and its boundary conditions. This evolution is

an advantage when compared to the proper orthogonal

decomposition (Papoulis 1965; Holmes et al. 1996) and

polynomial chaos (Ghanem and Spanos 1991), which

both fix in time parts of their truncated expansion, the

former the stochastic subspace and the latter the form

of the stochastic coefficients. We note that s can also be

evolved based on the dynamics and external observa-

tions (Sapsis and Lermusiaux 2011), as done in error sub-

space statistical estimation (ESSE) (Lermusiaux 1999b).

3. The GMM-DO filter

Combining the components described in section 2,

and building on the foundations of classical assimilation

schemes, we now complete the derivation of the GMM-

DO filter: data assimilation with GMMs using the DO

equations. The result is an efficient, data-driven scheme

that preserves non-Gaussian statistics and respects non-

linear dynamics.

The GMM-DO filter consists of a recursive succession

of two distinct steps: a forecast step and an update step.

The Bayesian assimilation is the update step. As will be

proved, this update is efficiently computed within the

evolving subspace and the result is equivalent to the

Bayesian update in the dynamical state space. For today’s

ocean and atmosphere simulations, the subspace update is

computationally feasible.We refer toTable 1 for notation.

a. Initial conditions

We initialize the state vector at discrete time k 5 0 in

a decomposed form,

X05 x01 �
s
0

i51

~xi,0Fi,0(v) , (36)

that accords with the DO equations. The initial state

mean x0, orthonormal modes ~xi,0, and stochastic co-

efficients Fi,0(v), are chosen so as to best represent the

initial probabilistic state. Various representations and

discretizations for the coefficients, Fi(t; v), exist (Sapsis

and Lermusiaux 2009; Ueckermann et al. 2013), several

of which can be employed with our GMM-DO scheme.

Here, we adopt a Monte Carlo approach: we draw

N realizations of the multivariate random vector,

fF1,0(v), . . . ,Fs0,0(v)g, to obtain the following matrix:

ff0g5 ff1,0, . . . ,fN,0g . (37)

We emphasize that the fr,0 2 R
s0 represent realizations

residing in the initial stochastic subspace of dimension

s0. With this, we rewrite (36) in its Monte Carlo en-

semble form:

xr,05 x01X0fr,0, r5 f1, . . . ,Ng , (38)

where X0 2 R
n3s (Table 1) is the matrix of modes

forming an orthonormal basis for the initial subspace.

This X0 is evolved in time by dynamics and random

forcing in (27).

b. Forecast

Starting from either the initial DO conditions or the

posterior state description following the assimilation of data

at time k 2 1 (i.e., the Bayesian GMM update at k 2 1),

xar,k215 xak211Xa
k21f

a
r,k21, r5 f1, . . . ,Ng , (39)

we use the stochastic DO equations [(26)–(28)] to effi-

ciently evolve the probabilistic description of the state
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vector in time, arriving at a forecast for observation

time k:

x
f
r,k5 x

f
k1X f

kf
f
r,k, r5 f1, . . . ,Ng . (40)

This forecast is efficiently computed using the numerical

schemes derived by Ueckermann et al. (2013). Spe-

cifically, for the mean and modes, we employ a second-

order finite-volume spatial discretization andDO-specific

projection method, and for the stochastic coefficients, a

second- or fourth-order integration scheme in time.

As (39) and (40) indicate, all of the mean, orthonor-

mal modes and coefficients are evolved during the

forecast from tk21 to tk. In particular, the span of the

modes X f
k differs from that of Xa

k21: the subspace

evolves with time in between data assimilation.

c. Observation

Common to oceanic and atmospheric applications, we

employ here a linear (or linearized) observation model:

Yk 5HXk 1Yk, Yk ;N (yk; 0,R) , (41)

HereYk2R
p is the observation randomvector at time k,

H 2 R
p3n is the linear observation model, and Yk 2 R

p

the corresponding random noise vector, assumed to be

of a Gaussian distribution. We denote the realized ob-

servation vector by yk 2 R
p and realized noise vector by

yk 2R
p. This observation model could be generalized to

other forms, which would lead to variations in the fol-

lowing update scheme.

d. Update

The whole update occurs at fixed discrete time instant

and, in what follows, we thus omit the subscript time

index k. In the update, the subspace is for now assumed

unchanged by the observations1: the notation (�)f or (�)a
is thus not used on themodesX . Of course, observations

affect the subspace evolution after each assimilation

since the DO equations (26)–(28) are coupled. In con-

clusion, starting from the prior, here the DO forecast,

xfr 5 xf 1Xff
r , r5 f1, . . . ,Ng , (42)

the goal is to update the mean state xf and set of re-

alizations, fffg5 fff
1, . . . ,f

f
Ng, in accordance with

(41) and realized observations y, to obtain the posterior

GMM-DO estimate:

xar 5 xa 1Xfa
r , r5 f1, . . . ,Ng . (43)

To do so, we first optimally fit aGMM (section 2a) to the

forecast set of realizations in the stochastic subspace.

This prior GMM estimate is then updated within the

subspace, in accordance with observations and Bayes’s

law, ultimately leading to the posterior GMM-DO es-

timate (43). In what follows, we derive and describe this

GMM-DO update algorithm.

1) GMM REPRESENTATION OF PRIOR SET OF

ENSEMBLE REALIZATIONS

At the time of a new set of measurements y, we use the

EM algorithm and BIC to determine theGMM that best

represents the set of ensemble realizations within the

stochastic subspace, fffg5 fff
1, . . . ,f

f
Ng. We denote

the parameters of the GMM by

p
f
j ,m

f
j ,§

f
j , j5 1, . . . ,M ,

wherep
f
j 2 [0, 1],mf

j 2 R
s, and§f

j 2 R
s3s.Weagain stress

that the GMM efficiently resides in an s-dimensional

subspace of the n-dimensional dynamical state space,

with s � n, thus making the prior estimation procedure

computationally feasible.

We determine the optimal mixture complexity by

application of the BIC [(20)] successively fitting GMMs

of increasing complexity (i.e., M 5 1, 2, 3, . . .) with the

EM algorithm, until a minimum of the BIC is met. The

final result is a GMM optimally fit to the ensemble of

realizations in the stochastic subspace. We write the re-

sulting prior pdf of this GMM as

pFf (ff )5 �
M

j51

p
f
j 3N (ff ;m

f
j ,§

f
j ) . (44)

Because of the affine transformation (42) linking the

stochastic subspace with the state space, we may expand

the previously determined GMM into the state space

according to the following:

x
f
j 5 xf 1Xm

f
j (45)

P
f
j 5X§

f
jXT . (46)

This is a key property of our GMM-DO filter. The

mixture weightspj
f naturally remain unchanged.We note

that xfj and P
f
j now refer to the mean vector and co-

variance matrix, respectively, for mixture component

1As an aside, in ESSE (Lermusiaux 1999b), the update consists

of two parts: data assimilation in a fixed-subspace followed by

a correction of the subspace based on the innovation vector and

posterior misfit. This results in prior and posterior subspaces that

differ. We can generalize this subspace learning scheme to the

present Bayesian GMM-DO framework, but this is not done here.
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j in the state space. We thus arrive at the prior distribu-

tion for the state vector in state space, taking the form of

the following GMM:

pXf (xf )5 �
M

j51

pj
f 3N (xf ; x

f
j ,P

f
j ) . (47)

We emphasize that because of the affine transformation

(42), this distribution would equally have been obtained

had we performed the prior fitting of the GMM directly

in the state space based on the set of realizations

fxfg5 fxf1, . . . , xfNg.
2) BAYESIAN UPDATE

Since the uncertainty of the state is restricted to the

stochastic subspace, we prove next that the Bayesian

update can be performed therein. In doing so, we again

make use of the affine transformations (42)–(43) linking

the stochastic subspace with the state space. We re-

emphasize that presently, this subspace, described by

the matrix X , is assumed to remain unaffected by the

assimilation. The result of the theorem, of course, pro-

vides an efficient implementation of the GMM-DO fil-

ter’s update step, with significant computational savings

due to the reduced dimensionality, s � n. For realistic

modeling with large state vectors, only this update is

computationally feasible.

(i) Theorem 1

Given the GMM fit (47) to the DO forecast as prior

distribution and the realized observation vector y with

the observation model (41) of Gaussian distribution, the

posterior distribution pXa(xa) of the state vector in the

state space is obtained by Bayesian update of (44) car-

ried out in the stochastic subspace. The result pFa(fa) is

equivalent to updating pXf (xf ) directly. Specifically, the

update equations for the mean xf and parameters p
f
j , m

f
j

and §f
j are as follows:

xa5 xf 1X �
M

j51

pa
j 3 m̂a

j , (48)

5 xf 1X �
M

j51

pa
j 3 [m

f
j 1

~Kj(~y2
~Hm

f
j )] , (49)

pa
j 5

p
f
j 3N (~y; ~Hm

f
j ,
~H§

f
j
~HT 1R)

�
M

m51

pf
m 3N (~y; ~Hmf

m,
~H§f

m
~HT 1R)

, (50)

ma
j 5 m̂a

j 2 �
M

j51

pa
j 3 m̂a

j , (51)

§a
j 5 (I2 ~Kj

~H)§
f
j , (52)

with the following definitions:

~H[HX , (53)

~y[ y2Hxf , (54)

m̂a
j 5m

f
j 1

~Kj(~y2
~Hm

f
j ) .

~Kj[§
f
j
~HT(~H§

f
j
~HT 1R)21[XTKj . (55)

(ii) Proof

Bayesian update in the state space. Applying the

Bayesian update equations (4)–(7) of section 2a to the

GMMprior (47) and the observationmodel (41), we first

obtain the posterior distribution for the state vector in

the state space:

pXa(xa)5 �
M

j51

pa
j 3N (xa; xaj ,P

a
j ) (56)

with

pa
j 5

p
f
j 3N (y;Hx

f
j ,HP

f
jH

T 1R)

�
M

m51

pf
m3N (y;Hxfm,HP

f
mH

T 1R)

, (57)

xaj 5 x
f
j 1Kj(y2Hx

f
j ) , (58)

Pa
j 5 (I2KjH)P

f
j , (59)

where

Kj 5P
f
jH

T(HP
f
jH

T 1R)21 (60)

is the Kalman gain matrix associated with mixture

component j.

With this, we can derive the expression for the pos-

terior mean field in the state space:

xa5 �
M

j51

pa
j 3 xaj (61)

5 �
M

j51

pa
j 3 [x

f
j 1Kj(y2Hx

f
j )] , (62)

as well as for other moments in the state space (see the

remark hereafter). This completes the Bayesian update

in the full state space, with the posterior mean vector xa

and GMMparameters all expressed in terms of the state

space quantities and realized observations y.
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Bayesian update in the stochastic space. Now, we show

that the Bayesian update in the state space defined by

(56)–(59) and (62) is equivalent to a Bayesian update in

the stochastic DO subspace. We first remark that using

(53) and (55) is computationally efficient. To derive

(55), we use identity (46), orthonormality of the modes,

and definition (53):

~Kj [§
f
j
~HT(~H§

f
j
~HT 1R)21

5§
f
jXTHT(HX§

f
jXTHT 1R)21

5XTP
f
jH

T(HP
f
jH

T 1R)215XTKj .

Deriving next the update equation (50) for the mix-

ture weights, we start from (57) and use (45) and (46), to

obtain the following:

pa
j 5

p
f
j 3N (y;Hx

f
j ,HP

f
jH

T 1R)

�
M

m51

pf
m 3N (y;Hxfm,HP

f
mH

T 1R)

(63)

5
p
f
j 3N [y;H(xf 1Xm

f
j ),HX§

f

j
XTHT 1R]

�
M

m51

pf
m 3N [y;H(xf 1Xm

f
j ),HX§f

mXTHT 1R]

.

(64)

which becomes by simple rearranging of terms:

5
p
f
j 3N (y2Hxf ;HXm

f
j ,HX§

f

j
XTHT 1R)

�
M

m51

pf
m 3N (y2Hxf ;HXmf

m,HX§f
mXTHT 1R)

.

(65)

Then, applying definitions (53) and (54) leads to

pa
j 5

p
f
j 3N (~y; ~Hm

f
j ,
~H§

f

j
~HT 1R)

�
M

m51

pf
m 3N (~y; ~Hmf

m,
~H§f

m
~HT 1R)

. (66)

With this, we obtain an efficient update equation for the

mixture weights using vectors and matrices specific to

the subspace, all the while retaining the familiar struc-

ture of (57).

In a similar manner, to derive (48), (49), and (51) for

the posterior mean xa and mixture means ma
j , we start

with (62), use (45), and apply definition (55) to obtain

the following:

xa 5 �
M

j51

pa
j 3 [x

f
j 1Kj(y2Hx

f
j )] (67)

5 �
M

j51

pa
j 3 fxf 1Xm

f
j 1X ~Kj[y2H(xf 1Xm

f
j )]g ,

(68)

which becomes, using �M
j51p

a
j 3 xf 5 xf and applying

definitions (53) and (54),

5 xf 1X �
M

j51

pa
j 3 [m

f
j 1

~Kj(~y2
~Hm

f
j )] . (69)

As a result, we obtain the following:

xa[ xf 1X �
M

j51

pa
j 3 m̂a

j , (70)

where we have defined ‘‘intermediate’’ mean vectors in

the stochastic subspace:,

m̂a
j 5m

f
j 1

~Kj(~y2
~Hm

f
j ) . (71)

These intermediate vectors, when adequately combined

and weighted, are the contribution of our Bayesian

GMM-DO update to the conditional mean state xa from

the forecast mean state xf . We refer to these M vectors

as intermediate means from the fact that our DO

framework requires that the parametric distribution

describing the stochastic subspace is of mean zero (i.e.,

�M
j51p

a
j 3ma

j 5 0). This condition is obviously not satis-

fied by m̂a
j . The actual means of the posterior mixture

components in the subspace can be obtained by a reset

of these intermediate means:

ma
j1m̂a

j 2 �
M

j51

pa
j 3 m̂a

j . (72)

Rather than merely stating this as a matter of fact,

however, we now derive this result. Similarly to (45), we

first write the following:

xaj 5 xa1Xma
j . (73)

By subtraction of xa and left multiplication by XT, we

then obtain the following:

ma
j 5 (XTX)21XT(xaj 2 xa) (74)

5XT(xaj 2 xa) , (75)

where (75) results from the orthonormality of the modes

(i.e.,XTX 5 I).Wenowhave, inserting (58) and (70) in (75),
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ma
j 5XT(xaj 2 xa)

5XT

"
x
f
j 1Kj(y2Hx

f
j )2 xf 2X �

M

j51

pa
j 3 m̂a

j

#
, (76)

and then using (45), definition (55), and the ortho-

normality of the modes,

5XT

"
Xm

f
j 1X ~Kj(y2Hx

f
j )2X �

M

j51

pa
j 3 m̂a

j

#

5m
f
j 1

~Kj(~y2
~Hx

f
j )2 �

M

j51

pa
j 3 m̂a

j . (77)

Hence, we derive (51):

ma
j 5 m̂a

j 2 �
M

j51

pa
j 3 m̂a

j . (78)

Finally, to derive (52) that expresses the updated

mixture covariance matrices, §a
j , in terms of DO sub-

space quantities, we proceed similarly. As in (46), we

expend Pa
j :

Pa
j 5X§a

jXT (79)

and then equate (79) to (59), inserting (46), to obtain the

following:

Pa
j 5X§a

jXT 5 (I2KjH)P
f
j 5 (I2KjH)X§

f
jXT .

We then left multiply by XT and right multiply by X ,

and use definition (55), to obtain the following:

§a
j 5XT(I2KjH)P

f
jX

5XT(I2X ~KjH)X§f
jXTX

5 (I2 ~Kj
~H)§

f
j . (80)

Here the orthonormality of themodes and the definition

in (53) have been used.

With the above theorem, we have derived efficient

expressions (48)–(52) for the GMM-DO update in the

time-dependent stochastic subspace. To conclude, we

note the similarity of these GMM-DO filter equations

for a Bayesian update with the corresponding ESSE

equations for Gaussian update, both of which occur in

the stochastic subspace.

(iii) Remark

Although strictly unnecessary for the GMM-DO fil-

ter, we can also obtain all updated state space quantities.

For example, the full posterior covariance matrix in the

state space can be obtained using the law of total vari-

ance (Bertsekas and Tsitsiklis 2008):

Pa5 �
M

j51

pa
j 3Pa

j 1 �
M

j51

pa
j 3 (xaj 2 xa)(xaj 2 xa)T . (81)

3) GENERATION OF POSTERIOR SET OF ENSEMBLE

REALIZATIONS

We complete the update step, as with ESSE schemeA

(Lermusiaux and Robinson 1999), by generating a pos-

terior set of realizations within the stochastic subspace,

ffag5 ffa
1, . . . ,f

a
Ng, according to the posterior multi-

variate GMM, pFa(fa), with parameters:

pa
j ,m

a
j ,§

a
j , j5 1, . . . ,M .

With this, we arrive at the posterior DO representation

in Monte Carlo form for the state vector based on a

Bayesian assimilation of the observations y at time k:

xar,k5 xak1Xkf
a
r,k, r5 f1, . . . ,Ng . (82)

We note that the size of the prior and posterior en-

sembles at time k in the stochastic subspace do not need

to be the same (e.g., N can be evolved by a convergence

criterion for the DO forecast from time k to the next

observation time k 1 1; Lermusiaux 2007; Ueckermann

et al. 2013). This concludes the derivation of the GMM-

DO filter. We summarize the algorithm using the flow-

chart displayed in Fig. 2. We note that extensions of this

GMM-DO filter algorithm are provided in appendix B:

specifically, an algorithm for limiting the GMM fit to

a dominant subspace in the full stochastic DO subspace

as well as an algorithm for constraining the means of the

GMM.

Next, we illustrate the GMM-DO filter procedure by

way of a simple toy example. More realistic applications

are provided in Part II (Sondergaard and Lermusiaux

2013).

4. Example

Assume we are provided with the following (arbi-

trarily chosen) forecast for the DO decomposed repre-

sentation of the state:
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FIG. 2. GMM-DO filter flowchart.
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xf 5

2
4 1

2

3

3
5 and X 5

2
4 1 0

0 1

0 0

3
5 ,

with one hundred subspace realizations, fff g5 fff
1,

. . . ,ff
100g, generated from a Gaussian Mixture Model of

complexity 2:

pFf (ff )5 �
2

j51

pj 3N (ff ;m
f
j ,§

f
j ) .

Let us further assume the following forecast parameters:

p
f
15 0:5, m

f
15

�
210

21

�
, §

f
15

�
1 0

0 1

�

p
f
25 0:5, m

f
25

�
10

1

�
, §

f
25

�
1 0

0 1

�
.

For simplicity, we will take the true field to coincide with

one of the realizations:

xt 5 xf 1Xf
f
1 .

We make noisy measurements of the first and third el-

ements of the state vector, that is,

H5

�
1 0 0

0 0 1

�
,

normally distributed with an error covariance matrix

given by

R5s2
obs 3

�
1 0

0 1

�
,

where sobs 5 5. We illustrate all of the above in Fig. 3a.

With this, we proceed with the update step, using the

GMM-DO flowchart, Fig. 2. We bypass illustrating the

application of the BIC and rather present results directly

for GMMs of complexityM5 1, 2. The former is a single

Gaussian parametric distribution, while the latter

would, with high probability, be obtained using the BIC

criterion in the present example.

a. Fitting of GMM

Use the EM algorithm to obtain the prior mixture

parameters

p
f
j ,m

f
j ,§

f
j , j5 1, . . . ,M

within the stochastic subspace based on the set of ensemble

realizations, fff g5 fff
1, . . . ,f

f
100g. The identified mix-

tures (of complexities one and two), along with their mar-

ginal distributions, are displayed in Fig. 3b(i).

b. Update

1) Calculate parameters:

~H[HX
~y[ y2Hxf

and determine the mixture Kalman gain matrices:

~Kj 5§f
j
~H
T
(~H§f

j
~HT 1R)21 .

2) Assimilate the measurements y by calculating the

intermediate mixture means in the stochastic sub-

space,

m̂a
j 5m

f
j 1

~Kj(~y2
~Hm

f
j ) ,

and further compute the posterior mixture weights:

pa
j 5

p
f
j 3N (~y; ~Hm

f
j ,
~H§

f
j
~HT 1R)

�
M

m51

pf
m 3N (~y; ~Hmf

m,
~H§f

m
~HT 1R)

.

3) Update the DO mean field [displayed in Fig. 3c(ii)],

xa5 xf 1X �
M

j51

pa
j 3 m̂a

j ,

as well as the mixture parameters within the sto-

chastic subspace:

ma
j 5 m̂a

j 2 �
M

j51

pa
j 3 m̂a

j

§a
j 5 (I2 ~Kj

~H)§f
j .

4) Generate the posterior set of ensemble realizations

within the stochastic subspace, ffag5 ffa
1, . . . ,f

a
100g,

based on the multivariate GMM with posterior

parameters:

pa
j ,m

a
j ,§

a
j , j5 1, . . . ,M .

We display the posterior set of realizations in Fig. 3c(i).

By way of this simple example, we draw two conclu-

sions on the benefits of the GMM-DO filter. Because of

the initial non-Gaussian statistics, the GMM was ex-

pectedly found to provide a posterior estimate superior

to that of the Gaussian parametric distribution (PD),

as evidenced for example by their posterior means,

Fig. 3c(ii). In particular, because of the PD’s conservative
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FIG. 3. GMM-DO filter update. In column (i), we plot the set of ensemble realizations within the stochastic

subspace, ffg5 ff1, . . . ,f100g; in column (ii), we display the vectors and information residing in the state space.

(a) The prior state estimate. (b) The fitting of Gaussian Mixture Models of complexity M 5 1 (PD) and M 5 2

(GMM) are shown, and their marginal distributions are plotted for each of the stochastic coefficients, F1 andF2.

(c) The posterior state estimate is proposed again in the decomposed form that accords with the DO equations.
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estimate for the covariance matrix of the true pdf [Fig.

3b(i)], the noisy measurements were inherently favored

during the update step, essentially resulting in an ‘‘over-

shoot’’ of its posterior estimate for the mean. Given the

GMM’s accurate representation of the non-Gaussian

features, on the other hand, the prior information was

properly balanced with that due to the measurements,

resulting in a successful Bayesian update. While this was

to be expected given the initial bimodal distribution,

previous arguments suggest that this holds for arbitrary

distributions as long as the fitting of GMMs based on the

EM algorithm and BIC provides a good approximation

of the true pdf.

The second conclusion refers to the posterior statis-

tics, represented by the subspace realizations, ffag5
ffa

1, . . . ,f
a
100g, in Fig. 3c(i). In addition to the GMM’s

successful capture of the true solution, the compactness

of its posterior set of realizations further emphasized an

added belief in this estimate. The accuracy of the pos-

terior representation of the true statistics clearly affects

future assimilations (not shown here). We therefore

hypothesize that the GMM-DO filter outperforms sim-

pler schemes (e.g., the Gaussian parametric distribu-

tion) in this respect. In Part II of this two-part paper, we

support this hypothesis by applying the GMM-DO filter

in truly dynamical systems.

5. Discussion and comparisons with related
schemes

In this section, we review a selection of past pioneering

DA schemes that, as the GMM-DO filter, have adopted

the use of GMMs for approximating the true pdf.

a. Alspach and Sorenson (1972)

GMMs were, to the best of our knowledge, first

addressed in the context of filtering theory by Alspach

and Sorenson (1972). Here, the authors were particu-

larly motivated by the inappropriate use of the Gaussian

parametric distribution, stating that ‘‘the Gaussian

(parametric) approximation greatly reduces the amount

of information that is contained in the true density,

particularly when it is multimodal.’’ They emphasized

the ability of GMMs to approximate arbitrary pdfs, all

the while retaining the familiar computational tracta-

bility when placed in the context of Bayesian inference.

Based on an approximation of the known, initial (non

Gaussian) distribution by a GMM of complexity M,

their scheme would essentially runM extended Kalman

filters in parallel—one for each mixture component—

coupled solely through the mixture weights. Their up-

date would thus take a form structurally similar to that

of the GMM-DO filter, set aside the latter’s focus on

a stochastic subspace nonlinearly evolving through fully

coupled DO equations. While the authors freed them-

selves of theGaussian parametric constraint, their scheme

remained grounded in linear theory, however, having

been inspired by the extended Kalman filter. The au-

thors also made no mention of the appropriate mixture

complexity or the manner in which the initial mixture

parameters were obtained. Moreover, while they alluded

to the need for intermittently restarting the distribution—

either due to a poor mismatch of forecast distribution

with observations, or to the collapse of weights onto a

single mixture component—no appropriate remedies

were proposed.

b. Anderson and Anderson (1999)

Anderson and Anderson (1999), in part inspired by

the recent advances of ensemblemethods within theDA

community (e.g., Evensen 1994; Lermusiaux 1997;

Houtekamer et al. 1998), extended the work of Alspach

and Sorenson by adopting a Monte Carlo approach for

evolving the probabilistic description of the state in

time. By arguing that ‘‘one of the fundamental advan-

tages of a Monte Carlo approach [is its] ability to rep-

resent non-Gaussian probability distributions,’’ they

chose to approximate the Monte Carlo realizations by

use of a kernel density estimator:

pXf (xf )5 �
N

i51

1

N
3N (xf ; x

f
i ,a§

f ) , (83)

with xi representing realizations in state space,§ is the

sample covariance matrix based on the set of ensem-

ble realizations, and a is a heuristically chosen scaling

parameter.

Upon assimilating data from a Gaussian observation

model, their posterior distribution for the state vector

would thus take the familiar form:

pXa(xa)5 �
N

i51

pa
i 3N (xa; xai ,a§

a) , (84)

with parameters determined in accordance with (57)–

(59), from which they would draw N new realizations.

The authors justifiably argued for the advantages over

filters invoking the Gaussian parametric distribution,

giving as example their respective performances when

applied to the three-dimensional Lorenz-63 model

(Lorenz 1963): while their kernel filter would represent

states solely in accordance with model dynamics, sim-

pler filters would potentially assign finite probability to

regions of state space never visited.
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One drawback of the filter lay in their arguments for

choosing the scaling parameter a. Specifically, the au-

thors stated that while ‘‘a number of methods for com-

puting the constant covariance reduction factor a have

been developed,. . .the value of a is often subsumed into

a tuning constant and so does not need to be calculated

explicitly.. . .Tuning a filter for a real system is com-

plicated. . .[and] must be chosen with care.’’

Hoteit et al. (2008) later extended the filter by al-

lowing the realizations to carry uneven weights, drawing

on the concepts of particle filters. Specifically, they re-

tained the posterior form of (84) rather than drawing N

new realizations following every assimilation step. To

avoid the collapse of weights onto only a few realizations,

they proposed a number of interesting methods for re-

sampling. While effective, these ideas are not discussed

further.

c. Bengtsson et al. (2003)

Bengtsson et al. (2003) expressed a concern over

Anderson and Anderson’s use of kernel density methods

for approximating distributions, arguing that the use of

‘‘scaled versions of the full ensemble covariance around

each center in the mixture. . .cannot adapt as easily to

local structure in the forecast distribution.’’ Instead, they

proposed to approximate the set of realizations by a

GMM (of complexity less than the number of realiza-

tions), estimating the mixture parameters using local

knowledge of the ensemble distribution. They stated that

such an approach would provide a more accurate ap-

proximation to the true pdf.

Their update step essentially proceeded as follows:M

ensemble realizations would be arbitrarily chosen to act

as means for the proposed Gaussian mixtures, from

whichNn nearest neighbors to each of these realizations

would be used to approximate their respective mixture

covariance matrices. From here, one would proceed

with the Bayesian update, conceptually inspired by the

ensemble Kalman filter (Evensen 1994).

As with Alspach and Sorensen, the authors left

unanswered methods for determining both the mixture

complexity M, as well as the appropriate choice of Nn,

the number of nearest neighbors. Furthermore, their

choice of mixture means, based on the arbitrary sam-

pling of ensemble realizations, would certainly invite for

sampling noise.

The authors further expressed difficulties associated

with manipulating pdfs in high-dimensional spaces.

They thus introduced a hierarchy of adaptations to the

aforementioned filter in which they invoked varying

degrees of localization approximations, all based on

heuristic arguments. As a remedy, however, they con-

cluded that ‘‘amore sophisticated filter will likely rely on

efficient, sequential identification of low-dimensional

subspaces where non-Gaussian densities can be accu-

rately represented and filtered using finite ensemble

sizes.’’

d. Smith (2007)

Indirectly extending the work by Bengtsson et al.,

Smith (2007) employed the EM algorithm to uncover

the underlying structure represented by the set of en-

semble realizations, thus alleviating former heuristic

arguments. The author modified the ensemble Kalman

filter to allow for a Gaussian mixture representation of

the prior distribution, using Akaike’s Information Cri-

terion (AIC) as themethod for selecting the appropriate

mixture complexity. (As a side note, McLachlan and

Peel (2000) found the BIC to outperform the AIC when

fitting Gaussian mixtures to data; specifically, the latter

would have the tendency to overestimate the mixture

complexity.) Similar to the scheme of Bengtsson et al.,

Smith retained the concept of operating on individual

ensemble realizations during the update step, imposing

only—but somewhat surprisingly—that the posterior

distribution be normally distributed.

For illustration, the author applied his cluster ensemble

Kalman filter to a two-dimensional phytoplankton–

zooplankton biological model. While successful for such

simple models, he emphasized the difficulties of extend-

ing his scheme to test cases of larger dimensions, making,

however, the useful comment that ‘‘the state space could

be projected onto a lower dimensional space depicting

some relevant phenomenon, and the full covariance

matrix in this state space could be used.’’

e. Dovera and Rossa (2011)

Dovera and Rossa (2011) would later modify the ap-

proach by Smith, attempting to overcome the constraint

that the posterior distribution beGaussian. Their update

step seemingly disagreed with the output of the EM al-

gorithm, however—a point of view reflected in the re-

cent work by Frei and Kunsch (2013).

The authors applied their scheme to both the Lorenz-

63 model as well as a two-dimensional reservoir model,

outperforming the regular ensemble Kalman filter. As

with previous schemes, however, they equally noted the

problems caused by systems of high dimensionality,

again using a number of localization arguments to over-

come this burden. With the GMM-DO filter, all of these

issues are addressed by (i) adopting the generalized, time-

dependent Karhunen–Loeve decomposition of the state

dictated by the DO framework; and (ii) deriving the

corresponding rigorous GMM-DO updates for fully

Bayesian-based data assimilation.
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6. Summary and conclusions

Adata assimilation framework that rigorously utilizes the

governing dynamical equations with information theory

and learning theory for efficient Bayesian geophysical data

assimilationwas presented.The theory andalgorithmof the

resulting filter, the GMM-DO filter, were developed and

derived. The DO equations and their adaptive stochastic

subspace are employed to provide prior probabilities, ef-

fectively approximating the Fokker–Planck equation. At

assimilation times, the DO realizations are fit to semi-

parametric GMMs using the Expectation-Maximization

(EM) algorithm and the Bayesian Information Criterion

(BIC). Bayes’s law is then efficiently carried out analyt-

ically within the evolving stochastic subspace.

Past literature had identified the advantages of

adopting GMMs in a filtering setting, allowing the up-

date step to capture and retain potential non-Gaussian

features. In some cases, the EM algorithm and model

selection criteria had been used to obtain optimal mix-

ture parameter values, resulting in a more accurate ap-

proximation of the true pdf. However, existing schemes

often reverted to heuristic approximations or surprising

choices. A novelty of the GMM-DO filter lies in its

rigorous coupling of GMMs, the EM algorithm, and the

BIC with the efficient DO equations. By focusing on

the time-dependent dominant stochastic subspace of the

state space, we address prior limitations caused by the

dimensionality of geophysical applications. Particularly,

we render obsolete ad hoc procedures. Contrary to the

ensemble Kalman filter, as well as several other methods,

we presently refrain from operating directly on individual

ensemble realizations during the update step. Rather,

under the assumption that the fitted GMM accurately

captures the true prior pdf, we analytically carry out

Bayes’s law efficiently within the stochastic subspace.

The derived GMM-DO filter respects nonlinear dy-

namics and captures non-Gaussian statistics as it occurs,

obviating the use of empirical arguments. Of course,

variations of the present filter exist, two of which are

derived in appendix B. Additional areas for further re-

search include the selection of the algorithms for fitting

the GMMs to the DO realizations. Schemes based on

the EM-BIC approach have the advantage of being ge-

neric, but there is a large body of literature on other

estimators (McLachlan and Peel 2000), and some schemes

could be tailored to specific oceanic or atmospheric ap-

plications. Constraints can also be added to this fitting

procedure, leading to a supervised learning of the GMM

properties. Other mixture models could be used (e.g.,

including Laplacemixtures for heavier tails, depending of

the application and efficiency requirements). One ad-

vantage of the GMM is that if the number of Gaussians is

one (M5 1), one recovers a classic Kalman update. Since

our GMM-DO filter estimates the optimal M, if it is

found to be one, a Kalman update in the subspace is used.

The GMM-DO filter is thus a straightforward and effi-

cient extension of the Kalman filter for nonlinear and

non-Gaussian geophysical systems. The present GMM-

DO update could also be augmented with a subspace

learning scheme based on the innovation vector and

posterior misfit, extending the ESSE learning to GMMs.

Another variation of this update is to operate directly on

individual realizations; such a variation exists in ESSE.

Another research direction is the derivation of GMM-

DO smoothers. A possibility is to employ a statistical

linearization as in the ESSE smoother (Lermusiaux and

Robinson 1999; Lermusiaux et al. 2002b), but other

options are possible, including hybrid ones with varia-

tional schemes (e.g., Moore et al. 2004). Finally, for the

case of white noise stochastic forcing and for small

enough stochastic subspace size, the Fokker–Planck

equation that evolves the joint pdf for the stochastic

coefficients of the DO expansion (Sapsis and Lermusiaux

2011) could be used instead of the stochastic differential

equations for DO realizations. This approach would di-

rectly provide the prior joint pdf for the Bayesian update,

but numerical schemes other than those employed here

would then be needed (Ueckermann et al. 2013).

In Part I of this two-part paper, we derived the GMM-

DO filter, outlined its algorithmic implementation, and

placed it in the context of current literature. In Part II,

we evaluate its performance when applied to the fol-

lowing test cases: (i) the double-well diffusion experi-

ment and (ii) the sudden expansion fluid flow.
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APPENDIX A

EM Algorithm (with Gaussian Mixture Models)

The EM algorithm is commonly introduced in the

context of ‘‘incomplete data’’ (Dempster et al. 1977), for
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which ML parameter estimation by partial differentia-

tion [(9)] fails to yield a closed form solution. To cir-

cumvent this, the main idea is to artificially ‘‘complete’’

the data at hand with additional pseudo data (or knowl-

edge about the data), thereby giving rise to closed form

solutions for the ML parameters (McLachlan and Peel

2000). The data with which to complete the existing da-

taset are chosen by the user and may have little physical

relevance; its choice, however, ultimately dictates the

efficiency of the algorithm. By conditioning the complete

data on the available data, an improved estimate for the

ML parameters is iteratively obtained. This procedure

lies at the heart of the EM algorithm.

For the case of GMMs, we augment the available

dataset, represented by the set of ensemble realizations,

fxg 5 fx1, . . . , xNg, to form the complete dataset,

fzg5 fc1, x1, . . . , cN , xNg , (A1)

where ci represents an indicator vector of lengthM such

that

(ci)j 5

�
1 if realization xi was generated

by mixture component j

0 otherwise,

with (ci)j referring to the jth element of vector ci. (Here,

these membership indicators have little physical rele-

vance, and exist merely as a conceptual device within the

EM framework.) Conditioned on the additional knowl-

edge of the set fcg5 fc1, . . . , cNg, we assume to know the

origin of each realization, namely, the mixture compo-

nent that generated it. This knowledge gives rise to closed

form solutions for the ML estimator of the parameter

vector, specifically the following:

pj5
Nj

N
, (A2)

xj 5
1

Nj

�
N

i51

(ci)j 3 xi , (A3)

Pj 5
1

Nj

�
N

i51

(ci)j3 (xi 2 xj)(xi 2 xj)
T , (A4)

where

Nj [ �
N

i51

(ci)j . (A5)

With the addition of the dataset fcg 5 fc1, . . . , cNg, we
have thus completed the data vector (i.e., in some sense,

we pretend that we know which mixture component

generated each realization, so as to get the EM itera-

tions started). In the real EM algorithm, however,

a realization is not hard wired to a particular mixture

component, as done above. Rather, the algorithm it-

eratively estimates the weights with which a given re-

alization is associated with each of the M mixture

components.

In what follows, to avoid lengthy expressions, we ne-

glect random variable subscripts when describing pdfs

with the understanding that their arguments are re-

alizations of this random variable. For instance, for the

following pdfs:

p(x; u)[ pX(x;u) , (A6)

x is the realization of random variable X.

a. Derivation of EM algorithm

We let fxg 5 fx1, . . . , xNg denote the set of available

data, fzg the complete data vector and u5 fu1, . . . , uMg
the set of parameters (to be determined) of the chosen

distributional form, p(fzg; u). We further assume, as is

often the case, that the available data are a unique and

deterministic function of the complete data, that is, fxg5
g(fzg). (For instance, this may simply be a subset of the

complete data.) By the total probability theorem (e.g.,

Bertsekas and Tsitsiklis 2008), we may thus write the

following:

p(fzg;u)5 �
fxg

p(fzgjfxg; u)3 p(fxg; u) , (A7)

5 p(fzgj g(fzg);u)3p(g(fzg); u). (A8)

By taking logarithms,A1 we consequently obtain for any

value of fzg that satisfies fxg 5 g(fzg):

logfp(fxg;u)g5 logfp(fzg;u)g2 logfp(fzgjfxg; u)g .
(A9)

By further taking expectations with respect to the com-

plete data, conditioned on the available data and pa-

rameterized by an arbitrary vector ~u (to be optimized),

A1 In this appendix, to delimit the argument of logarithms, we

utilize braces :;logfdg. These braces for logarithms should not be

confused with the braces used to denote a set of realizations as

defined in Table 1; for example, ;fxg still represents a set of re-

alizations in this appendix.
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E[(�) jfxg; ~u]5
ð
fzg

(�)p(fzgjfxg; ~u) dfzg , (A10)

the left-hand side of (A9) remains unaffected,

E[logfp(fxg;u)gjfxg; ~u]5 logfp(fxg; u)g , (A11)

and we thus obtain

logfp(fxg; u)g5E[logfp(fzg; u)gjfxg; ~u]

2E[logfp(fzgjfxg; u)gjfxg; ~u]. (A12)

For the sake of convenience, we define the notation

U(u; ~u)5E[logfp(fzg;u)gjfxg; ~u] (A13)

V(u; ~u)52E[logfp(fzgjfxg; u)gjfxg; ~u] (A14)

to obtain the simplified expression

logfp(fxg; u)g5U(u; ~u)1V(u; ~u) . (A15)

By application of Gibbs’ inequality (MacKay 2003), we

see that

V(u; ~u)52E[logfp(fzgjfxg; u)gjfxg; ~u] , (A16)

$ 2E[logfp(fzgjfxg; ~u)gjfxg; ~u] , (A17)

5V(~u; ~u) . (A18)

Therefore, if we denote ~u as our present estimate for the

parameter vector, by choosing u 6¼ ~u such that it further

satisfies U(u; ~u)$U(~u; ~u), we guarantee that

logfp(fxg; u)g5U(u; ~u)1V(u; ~u) , (A19)

$U(~u; ~u)1V(~u; ~u) , (A20)

5 logfp(fxg; ~u)g . (A21)

Consequently, upon repeated iterations, our estimate

for the parameter vector monotonically increases the

(log) likelihood of generating the data at hand, fxg 5
fx1, . . . , xNg. Assuming further that the likelihood is

bounded from above, we are thus guaranteed to con-

verge to a stationary point and as such obtain an esti-

mate for theML parameter vector (Casella and Berger

2001). In summary, the EM algorithm proceeds as

follows.

EM ALGORITHM

Given the available data, fxg 5 fx1, . . . , xNg, initial
parameter estimate, u(0), proposed complete data vector

fzg with predetermined, user-specified distribution,

p(fzg; u), repeat until convergence:

d Using the present parameter estimate u(k), form

U(u; u(k))5E[logfp(fzg; u)gjfxg; u(k)] . (A22)

d Update the estimate for the parameter vector, u(k11),

by maximizing U(u; u(k)):

u(k11) 5 argmax
u

[U(u; u(k))] . (A23)

Next, we apply the EM algorithm to multivariate

GMMs. We provide the derivation in a condensed

manner; we refer to Sondergaard (2011) for full details.

b. The EM algorithm with Gaussian Mixture Models
(GMMs)

We augment the available dataset, fxg5 fx1, . . . , xNg,
generated by a GMM of unknown parameters,

u5 fp1, . . . ,pM, x1, . . . , xM,P1, . . . ,PMg , (A24)

to form the complete dataset,

fzg5 fc1, x1, . . . , cN , xNg , (A25)

as described in (A1).

By the assumed independence of the data, the prob-

ability distribution for the complete data takes the fol-

lowing form:

p(fzg;u)5 P
N

i51

p(ci, xi;u) (A26)

5P
N

i51
P
M

j51

[pj 3N (xi; xj,Pj)]
(c

i
)
j . (A27)

Upon taking logarithms we obtain

logfp(fzg; u)g5 �
N

i51
�
M

j51

(ci)j 3 [logpj 1 logN (xi; xj,Pj)] .

(A28)
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By further taking the conditional expectation of (A28)

with respect to the available data, arbitrarily parame-

terized by vector u(k), we consequently obtain the ex-

pression to be maximized under the EM algorithm:

U(u;u(k))5E[logfp(fzg; u)gjfxg;u(k)] (A29)

5 �
N

i51
�
M

j51

E[(ci)jjfxg; u(k)]

3 [logpj 1 logN (xi; xj,Pj)] . (A30)

For convenience of notation, we define the following:

tj(xi;u
(k))[E[(ci)jjfxg; u(k)] (A31)

5
p
(k)
j 3N (xi; x

(k)
j ,P

(k)
j )

�
M

m51

p(k)
m 3N (xi; x

(k)
m ,P(k)

m )

. (A32)

This completes the E step of the EM algorithm (A22).

We proceed with evaluating u(k11), the parameter

vector u, which maximizes U(u; u(k)). This forms the M

step of the EM algorithm (A23). To determine the up-

dated mixture weights p
(k11)
j , we augment U(u; u(k))

using Lagrange multipliers and so introduce the auxil-

iary function L with multiplier l:

L5 �
M

j51
�
N

i51

tj(xi; u
(k))3

h
logpj 2

n

2
log2p2

1

2
logjPjj

2
1

2
(xi2 xj)

TP21
j (xi 2 xj)

�
1 l3

 
�
M

k51

pk 2 1

!
.

(A33)

By equating to zero the gradients of L with respect

to pp and l, we obtain after manipulations the final

expression:

p(k11)
p 5

�
N

i51

tp(xi;u
(k))

N
[

N
(k)
p

N
, (A34)

where N(k)
p is the sum total of particles associated with

a given mixture component p, under the present esti-

mate for the parameter vector u(k). With this, we pro-

ceed to determine the unconstrained parameters, x(k11)
p

and P(k11)
p . To obtain the updated mixture mean vectors

x(k11)
p , we equate the appropriate partial derivative of L

with zero:

›L

›xp
5 0 (A35)

to obtain

x(k11)
p 5

1

N
(k)
p

�
N

i51

tp(xi; u
(k))3 xi . (A36)

Similarly, to obtain the updated mixture covariance

matrices P(k11)
p , we enforce (with knowledge of x(k11)

p )

›L

›Pp

5 0 (A37)

to ultimately arrive at

P(k11)
p 5

1

N
(k)
p

�
N

i51

tp(xi;u
(k))3(xi2 x(k11)

p )(xi2 x(k11)
p )T .

(A38)

This completes the condensed derivation of the EM al-

gorithm as applied to GMMs. The algorithm is sum-

marized in the main body of the text in (10)–(13). For

additional remarks on the EM algorithm and its appli-

cation to GMMs, including the choice of starting pa-

rameters and the issue of convergence, we refer to

Sondergaard (2011).

APPENDIX B

Variations of the GMM-DO Filter

a. EM algorithm in q-dominant space of stochastic
subspace

Estimating and manipulating nontrivial pdfs in high-

dimensional spaces can be a difficult task (Bengtsson

et al. 2003). Heuristic arguments suggest that the num-

ber of realizations required to accurately represent

multivariate pdfs grows exponentially with the dimension

of the space (Silverman 1992). This is one of the reasons

why we investigate approximations to our main scheme

that would allow efficient fitting of GMMs to realizations

when the dimension of the stochastic subspace itself is

large and may pose a difficulty. Another reason arises

from oceanic and atmospheric applications. In such ap-

plications, the variance of the ESSE or DO modes is

often found to decay rapidly with mode number (e.g.,

Lermusiaux 1999a,b, 2001, 2007; Sapsis and Lermusiaux

2011). In addition, the accuracy of the low variance

modes is not as good as that of the large variance modes:

this is mainly because of their much smaller variance

and of their proximity to the truncation index and thus
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unmodeled interactions with the truncated modes. As

a result, trying to fit all structures of the marginal

probabilities for these low variance modes is likely not

needed and can in fact reduce the robustness in the

Bayesian inversion. Finally, it reduces the computa-

tional cost.

As in the main text, we let the dimension of the

stochastic subspace be s (i.e., X 2 R
n3s). When

deemed necessary on the grounds of tractability and

mode variance decay, we can limit our estimation of

mixtures to the stochastic coefficients associated with

the space defined by the q most dominant modes,

denoting this Xq 2 R
n3q. We in turn approximate the

stochastic coefficients of the remaining s 2 q modes,

fFq11, . . . , Fsg, as zero mean Gaussian with (co)var-

iances based on the sample covariance matrix. For

our purposes, an obvious and appropriate measure of

dominance is the variance of each of the stochastic co-

efficients.

Next, we define thismodifiedEMalgorithm forGMMs

in a q-dominant space.

EM ALGORITHM IN q-DOMINANT SPACE OF

STOCHASTIC SUBSPACE

Given the set of realizations, ffg 2 R
s3N, associated

with the stochastic subspace, X 2 R
n3s, we limit our

attention to the ensemble set, ffqg 2 R
q3N, associated

with the q-dominant reduced space, Xq 2 R
n3q, of the

stochastic subspace (i.e., q # s). We define q such that

the following holds:

1$

�
q

i51

var(Fi)

�
s

j51

var(Fj)

$C$ 0, (B1)

where C denotes a user-specified constant chosen such

that themajority of the energy in the stochastic subspace

is captured. [Note, we assume that the stochastic co-

efficients, Fi, are ordered by decreasing variance, i.e.,

var(F1)$ var(F2)$ � � �$ var(Fs). Other ratios are also

possible (e.g., Lermusiaux 2007; Sapsis and Lermusiaux

2011).]

Based on the reduced ensemble set, ffqg5 ffq
1 ,

. . . ,fq
Ng, and initial parameter estimate,

uq,(0)

5fpq,(0)
1 , . . . ,p

q,(0)
M , x

q,(0)
1 , . . . , x

q,(0)
M ,P

q,(0)
1 , . . . ,P

q,(0)
M g,

appropriately sized for the reduced EM estimation

procedure, we repeat until convergence:

d For all i 2 f1, . . . , Ng and j 2 f1, . . . , Mg, use the

present parameter estimate, uq,(k), to form

tj(f
q
i ; u

q,(k))5
p
q,(k)
j 3N (f

q
i ;m

q,(k)
j ,§

q,(k)
j )

�
M

m51

pq,(k)
m 3N (fq

i ;m
q,(k)
m ,§q,(k)

m )

.

(B2)

d For all j 2 f1, . . . ,Mg, update the parameter estimate,

uq,(k11), according to

p
q,(k11)
j 5

N
q,(k)
j

N
, (B3)

m
q,(k11)
j 5

1

N
q,(k)
j

�
N

i51

tj(f
q
i ;u

q,(k))3f
q
i , (B4)

§q,(k11)
j 5

1

N
q,(k)
j

�
N

i51

tj(f
q
i ; u

q,(k))

3 (f
q
i 2m

q,(k11)
j )(f

q
i 2m

q,(k11)
j )T , (B5)

where

N
q,(k)
j 5 �

N

i51

tj(f
q
i ;u

q,(k)) . (B6)

Once converged, we obtain the GMM associated with

the stochastic subspace, X 2 R
n3s, by embedding the

above q-dominant vectors and matrices into their ade-

quately sized equivalent:

mj 5

�
mq
j

0

�
, 0 2 R

s2q (B7)

and

§j 5

"
§q

j §1:q,(q11):s

§
(q11):s,1:q §

(q11):s,(q11):s

#
, (B8)

where § 2 R
s3s is the sample covariance matrix,

§5
1

N2 1
�
N

i51

ffT , (B9)

and §a:b,c:d denotes the submatrix of § defined by rows

a, b and columns c, d.

In the above, we arrive at (B7) and (B8) by application

of the law of iterated expectations and the law of

total variance, respectively (e.g., Bertsekas and Tsitsiklis
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2008), ensuring that the stochastic coefficients, fFq11,

. . . , Fsg, are approximated as zero mean Gaussian dis-

tributions with variances based on the sample covariance

matrix.

b. EM algorithm with a constrained mean for the
Gaussian Mixture Model

In the DO decomposition (24), we impose a zero-

mean constraint on the random vector, F(v), repre-

sented by the ensemble set, ffg5 ff1, . . . ,fNg. Since
the EM algorithm is an unconstrained optimization

procedure in this regard, however, the EM fit of the

GMM may not necessarily itself be of zero mean:

�
M

j51

pj 3mj 6¼ 0. (B10)

While the test cases presented in Part II of this two-part

paper give evidence to suggest that this is little cause for

concern (namely that this mean offset is negligible and

tends to zero as N increases), we nonetheless propose

two possible remedies:

1) When forming the auxiliary function in (A33), onemay

add the constraint that the GMM be of zero mean:

�
M

j51

pj 3mj 5 0, (B11)

thus updating the auxiliary function (in the stochastic

subspace) to

L5 �
M

j51
�
N

i51

tj(fi; u
(k))3

h
logpj 2

s

2
log2p 2

1

2
logj§jj

2
1

2
(fi 2mj)

T§21
j (fi2mj)

�
1l13

 
�
M

k51

pk 2 1

!

1 l23 �
M

l51

pl 3ml . (B12)

While this clearly provides a viable solution, a closer

inspection reveals that such a constraint destroys the

simplicity of the EM algorithm. Particularly, the

closed form equations (11)–(13) for the updated

mixture parameters then no longer arise. Rather, the

GMM parameters to be optimized become intimately

coupled.

2) A complementary approach first estimates the

parameter vector by means of our regular EM

algorithm for GMMs. This estimate is then in turn

fed as a first guess to the coupled set of equations

obtained in 1) above, for which an iteration pro-

cedure of choice may be utilized. Since based on

experience we know that the first guess is good for

N large enough, we expect that only a few iterations

are needed to converge to an optimal set of pa-

rameter values satisfying the additional zero mean

constraint.
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