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are not always able to provide oceanic-acoustic predictions in high-resolution and with enough accuracy.
Adaptive Rapid Environmental Assessment (AREA) is an adaptive sampling concept being developed in
connection with the emergence of Autonomous Ocean Sampling Networks and interdisciplinary ensemble
predictions and adaptive sampling via Error Subspace Statistical Estimation (ESSE). By adaptively and

ﬁ;ﬁvgﬁsgampnng optimally deploying in situ sampling resources and assimilating these data into coupled nested ocean and
Path planning acoustic models, AREA can dramatically improve the estimation of ocean fields that matter for acoustic
Vehicle routing predictions. These concepts are outlined and a methodology is developed and illustrated based on the
Feature tracking Focused Acoustic Forecasting-05 (FAF05) exercise in the northern Tyrrhenian sea. The methodology first
Decision-making under uncertainty couples the data-assimilative environmental and acoustic propagation ensemble modeling. An adaptive

Data assimilation
Error subspace

ESSE

Ocean modeling
Acoustic propagation

sampling plan is then predicted, using the uncertainty of the acoustic predictions as input to an optimization
scheme which finds the parameter values of autonomous sampling behaviors that optimally reduce this
forecast of the acoustic uncertainty. To compute this reduction, the expected statistics of unknown data to be
sampled by different candidate sampling behaviors are assimilated. The predicted-optimal parameter values

Primitive-equations are then fed to the sampling vehicles. A second adaptation of these parameters is ultimately carried out in the
Ocean observing system water by the sampling vehicles using onboard routing, in response to the real ocean data that they acquire.
Autonomous Underwater Vehicle The autonomy architecture and algorithms used to implement this methodology are also described. Results
AUV from a number of real-time AREA simulations using data collected during the Focused Acoustic Forecasting
AOSN (FAF05) exercise are presented and discussed for the case of a single Autonomous Underwater Vehicle (AUV).

Tyrrhenian sea

) - For FAF05, the main AREA-ESSE application was the optimal tracking of the ocean thermocline based on
Pianosa island

ocean-acoustic ensemble prediction, adaptive sampling plans for vertical Yo-Yo behaviors and subsequent
onboard Yo-Yo routing.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction seabed are also variable in space and often not well known, which
impacts acoustic predictions.
In coastal regions, wind driven flows, tidal currents, river outflows, Conventional oceanographic measurements cannot provide the

internal waves, solitary waves, fronts, eddies, thermal changes, etc, are ability to synoptically observe all those dynamically interlocking,
some of the commonly dominant oceanographic processes. These  patchy and intermittent processes in the coastal ocean, especially for
processes make the coastal ocean-acoustic environment highly  sub-mesoscales short in time and space (Dickey, 2003). Consequently,
variable in time and space (Schmidt, 2002; Coelho, 2002; LermusiauX  the coastal environment is under-sampled at these small and fast
etal, 2002; Lermusiaux and Chiu, 2002; Robinson et al,, 2002; Finette  scales. Oceanographic forecasting by modeling and data assimilation
et al, 2002; Duda, 2002; Tolstoy et al., 2002; Akal, 2002; Lermusiaux  sych as the Harvard Ocean Prediction System with Error Subspace
et al,, 2006a; Logutov and Lermusiaux, 2008). Statistical Estimation (HOPS/ESSE) can produce 4-D oceanographic
In the water column, the temperature, salinity and plankton  fie]d estimates and their associated uncertainties (Robinson et al.,
distribution can vary in complex dynamic ways, driven by these 1998; Robinson, 1999; Lermusiaux and Robinson, 1999). However, the
processes and their Coupling. Current flows interact with the littoral resolution of the Spatial and temporal grids used in computation is
bottom topography which becomes variable. The properties of the limited by the available computational resources. The initial condi-
tions can be relatively unknown due to the environmental synoptic

under-sampling (Lermusiaux et al., 2006a). Even if nested or

* Corresponding author. unstructured computational grids are utilized (Deleersnijder and
E-mail address: pierrel@mit.edu (P.FJ. Lermusiaux). Lermusiaux, 2008), spatial scales smaller than hundred meters in the
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horizontal, and meters in the vertical cannot yet be simulated
deterministically over large coastal regions (see Fig. 1).

Modern modeling and assimilation systems (Lermusiaux et al.,
2006b) can represent the smaller, sub-grid-scale variability in a
statistical or average-of-fluctuations sense (Lermusiaux et al., 2000,
2002; Chen et al., 2005; Lermusiaux et al., 2006a). From an acoustic
viewpoint, very small scale variabilities are averaged out by the
acoustic wave length; while the sub-mesoscale variabilities of the
order of the acoustic wavelength make the speed of sound in
the coastal ocean largely unknown. Variabilities and uncertainties in
the ocean as well as in the seabed can be responsible for a large part of
the acoustic prediction uncertainty (Pace and Jensen, 2002; Lermu-
siaux et al., 2006a). The uncertainty of the acoustic predictability is
critical to the decibel (dB) budget of classical sonar systems by directly
affecting detection and false alarm probabilities. It is also one of the
major obstacles to adapting new model-based sonar processing
frameworks, such as matched field processing (MFP) (Baggeroer
et al., 1988), to the coastal environment. Finally, the spatially and
temporarily varying sound speed and the random characteristics of
the bottom are also of critical influence to acoustic communication
systems, which, with the integration of the new Autonomous Ocean
Sampling Network (AOSN) (Curtin et al., 1993) concept in the
operational Navy, are becoming of increasing tactical significance.

To determine the environmental variability of the critical sub-
mesoscales and short temporal scales, a rapid in situ measurement
capability is needed (Schmidt et al, 1997, 2002). However, its
implementation is being constrained by the limited number of
platforms and sensors available. The lack of high-resolution in situ
observations for assimilation into modeling systems can limit the
usefulness of sound-speed forecasts for acoustic predictions. Acknowl-
edging that the size of a coastal ocean area relevant to an acoustic
problem is often as large as tens of kilometers, acoustic-driven coastal
environmental assessment is facing the classic conflict between reso-
lution, needed to capture the fine scale variability and coverage, needed
for the larger scale environmental phenomena. Thus, Rapid Environ-
mental Assessment (REA) (Pouliquen et al., 1997; Kirwan and
Robinson, 1997; Robinson and Sellschopp, 2002; Coelho and Rixen,
2008; Allard et al., 2008; Ko et al., 2008; Rixen et al., 2008) resources
available must focus on the environmental uncertainties critical to the
specific acoustic region and application. A quantitative and adaptive
sampling approach (Schmidt, 2002,Lermusiaux, 2007; Lermusiaux et
al.,, 2007; Heaney et al., 2007; Yilmaz et al., 2008) is necessary.

Adaptive Rapid Environmental Assessment (AREA) is an adaptive
acoustics-environment sampling approach based both on coupled
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oceanic-acoustic forecasts and on focused localized sampling. In
AREA, data-assimilative deterministic ocean forecasts first provide
larger scale (0.5 km and larger) coverage and also identify regions and
features with strong uncertainty such as fronts and sub-mesoscale
features. The limited high-resolution sampling resources are then
deployed locally in a manner which is optimal to the acoustic
forecasting (Robinson et al., 1998; Wang, 2004). Consequently, once
these local data are assimilated, the limit of deterministic character-
ization is locally shifted towards smaller scales (Fig. 1): the ocean
estimate is corrected locally and at high data-based resolution in a
way directly relevant to the local acoustic propagation. Such focused
adaptive sampling does not sacrifice coverage, and, as a whole, AREA
can minimize acoustic forecast uncertainties.

The Focused Acoustic Forecasting-05 (FAF05) real-time at-sea field
exercise was held 13-26 July 2005 off Pianosa, Italy (Fig. 2), within the
northern Tyrrhenian Sea, on the eastern side of the Corsican channel.
This region, around the island of Elba, was the site of a series of real-
time prediction exercises in collaboration with the NATO Undersea
Research Center (NURC). The first exercise, GOATS-2000 (Sep-Oct
2000), emphasized forecasting, adaptive sampling and a demonstra-
tion of inter-model nesting (Onken et al., 2005). During the second,
ASCOT-02 (May 2002), the focus was on quantitative forecast skill
evaluation (Coelho et al., 2004). The MREAO3 experiment (June
2003), was designed to characterize the sub-mesoscale/inertial
dynamics north of Elba. This was accomplished using small, high-
resolution domains focused on the areas of interest (“Mini-HOPS”)
(Leslie et al., 2008). FAF05 was part of the Persistent Littoral Undersea
Surveillance Network (PLUSNet) program. The emphasis was on AREA
methodology development and engineering tests (Wang et al., 2006).
In preparation for FAFO5, virtual experiments were conducted in
which ocean and acoustic predictions were used to optimize the AUV
path along a set of pre-selected sections. Acoustic computations were
carried out using the Range-dependent Acoustic Model (RAM, Collins,
1989; Jensen et al., 1994), with sound-speed field inputs from the
HOPS/ESSE predictions. RAM is a popular wave-theory parabolic-
equation scheme for solving range-dependent propagation problems
in the coastal ocean. Subsequent ocean-acoustic exercises in this
Tyrrhenian region include Lam et al. (2009-this volume) who carry
out coupled four-dimensional oceanographic and acoustic forecasts at
sea, for the Battlespace Preparation 2007 exercise. Within BP07, Rixen
et al. (2009-this volume) investigated the use of dynamic super-
ensemble prediction techniques for acoustic inversion and tomogra-
phy, and Carriere et al. (2009-this volume) investigated full-field
tomography and tracking.
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Fig. 1. Multi-scale environmental assessment. Typical sonar system performance is dependent on the acoustic environment variability over a wide range of scales (horizontal scales
are shown in the diagram). Optimal environmental assessment is thus a compromise between conflicting requirements of coverage and resolution. By targeting areas of high
sensitivity to the sonar system through in situ measurements, the deterministic assessment range will be shifted towards smaller scales.
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Fig. 2. Left: geographic location of the experiment, south of the island of Elba, Italy. Right: general schematic of the FAFO5 experiment site, Pianosa, Italy. The AUV domain covered an
area of about 2.5 km by 2.5 km, with a preference for southwest to northeast sections (green and red lines). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

The intent of the FAFO5 exercise was a real-time at-sea proof of
concept but not a validation of schemes and approaches. The specific
objectives were to: (1) Develop new algorithms and software for
initiating the coupling of real-time ocean environmental modeling,
uncertainty prediction and adaptive sampling with the adaptive rapid
environmental assessment and acoustic predictions schemes; (2) Test
and improve these algorithms and software in real-time; and (3) Issue
physical-acoustical adaptive sampling recommendations every day,
aiming to capture the vertical variability of the thermocline (due to
fronts, eddies, internal waves, etc) and to minimize the corresponding
uncertainties. These adaptive sampling plans were computed based on
1-to-2 day long forecasts of fields and uncertainties. The statistical
impacts of the data for these plans were forecast, using an ESSE
adaptive sampling approach (Lermusiaux, 2007). In classic path
planning schemes (e.g. Popa et al., 2004; Lermusiaux et al., 2007;
Heaney et al., 2007), these statistical impacts are usually not computed
and not used. With ESSE adaptive sampling, ensembles of data
assimilation steps are carried out in the future and the uncertainty
reduction for each candidate sampling plan is nonlinearly forecast
beyond these assimilation times. A novelty here is to accomplish this in
real-time for coupled acoustic-oceanographic fields.

In what follows, Section 2 introduces the principles and meth-
odologies of AREA. Section 3 describes the autonomy architecture for
implementing AREA in an AOSN framework, including the autono-
mous platforms, vehicle behaviors, and onboard routing and control.
Section 4 presents the results obtained for the FAFO5 exercise, which
were obtained in real-time, based on simulations. They include: the
coupled high-resolution physical-acoustical ocean simulations; the
new online Adaptive Yo-Yo control scheme for onboard vertical
routing of AUVs; the novel prior optimization of these Yo-Yo
parameters based on the ocean-acoustic predictions and AREA-ESSE
optimization; the procedures and daily protocol; a selected sub-set of
the real-time findings; and, finally, an evaluation of real-time
modeling estimates via independent observations. A summary and
conclusions are provided in Section 5.

2. AREA

Fig. 3 shows the architecture of the AREA-ESSE concept and its
connection with ocean environmental models. Via data assimilation,
the HOPS/ESSE and the geoacoustic modeling produce an ensemble of
environmental realizations for the water column and the seabed
respectively (Lermusiaux et al., 2006a). These ensembles are used to
represent the probability density of the predicted ocean and seabed

fields. They are used as inputs to the acoustic model, which for this
exercise was RAM.

By coupling the ocean, seabed and acoustic models, the dominant
acoustic prediction uncertainties can be generated via Monte Carlo
ESSE simulations. The result is a probability density for the acoustic
fields, which is input to the optimization schemes for selecting the
ideal future measurements. Finally, acoustic measurements and
inversion methods can be utilized to improve the environmental
predictions and uncertainties.

The quantitative uncertainty maps, e.g. obtained from the standard
deviation of the ensemble, provide guidance for optimally reducing
the uncertainties and so guide the sampling plans.

Compared with sound velocity in the water column, the variabilities
in bathymetry are less rapid and can be captured by a side-scan/sub-
bottom profiling AUV, water depth detection etc. Thus, AREA presently
focuses on the water column and treats bathymetry deterministically.

In general, the objective function in the AREA-ESSE optimization
algorithm is a weighted sum of the ocean-acoustic-seabed prediction
uncertainties which is to be reduced optimally by the ideal sampling
plan. Specific applications lead to specific weight balances in this sum.
The aim is to select the sampling plan, e.g. an optimal AUV path, that
reduces these integrated predicted uncertainties the most. Thereafter,
REA resources are deployed according to this optimal plan and in situ
measurements collected and passed back to the ocean and seabed
models. Those new local data are rapidly assimilated (Robinson et al.,
1998; Lermusiaux and Chiu, 2002; Xu et al, 2008), and ocean and
acoustic predictions for the next day are generated. This is a daily
AREA-ESSE optimal resources allocation.

The daily AREA-ESSE constitutes a first level of adaptivity. The
AREA optimization problem can also be treated as a Sequential
Decision Making Problem and modeled in the Dynamic Programming
(DP) framework (Bertsekas, 2001), in which the REA resources
allocation pattern is not predetermined but generated on-board. An
optimal adaptive routing strategy is then produced, as a function of
the data sampled by the autonomous data-collecting platforms. The
dynamic optimization algorithm then only computes the optimal
sampling path for the next step; after the local data in this “next step”
is collected and rapidly objective analyzed or assimilated in real-time,
a new ocean estimate is computed to optimize the subsequent step.
The whole optimal REA resources allocation is adaptively generated
step by step on-board. This is the second level of adaptivity. In general,
it would involve DP. However, it is known that a DP problem is usually
at least [NP]—hard (Bertsekas, 2001). Determining an optimization
approach for an adaptive routing strategy that can be computed on-
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Fig. 3. Wiring diagram of the AREA-ESSE concept. Deterministic-stochastic forecasts and nowcasts of the ocean and seabed provide spatial and temporal environmental statistics in
the form of realization ensembles. These ensembles are then used as input to acoustic models to provide realizations for the sonar performance, e.g. in the form of probability of
detection and false alarms. To minimize the uncertainty of the acoustic prediction and therefore improve the probability of detection to false alarm ratio, the realizations of ocean-
acoustic fields and the operational constraints are used as input to an adaptive sampling optimization scheme that determines an optimal deployment strategy for the REA resources.
The collected REA data are then assimilated. The resulting reduced uncertainty fields are ultimately used for the acoustic prediction.

board can be extremely difficult. However in some particular cases, this
difficult problem can be solved by indirect methods (see Section 4).
A two-level AREA simulation software has been assembled to
search for (sub)-optimal sampling patterns and/or sampling strate-
gies and to test the optimization in virtual settings before in situ
experiments (Wang, 2004). This software can also be used to estimate
the feasibility of real-time adaptive sampling for a given situation.
Once a sampling strategy is successful in simulation, the real-time
sampling algorithm can be implemented in the MOOS-IvP autonomy
architecture described in Section 3. The MOOS-IVP architecture
enables real-time adaptive routing onboard autonomous marine
vehicles using a variety of oceanographic sensors and allows the
sensor platform to optimize its path based on multiple competing
goals such as the need for reducing the sampling uncertainty while

simultaneously providing robust communications and safe navigation
(e.g. avoiding obstacles).

3. Integrating AREA with AOSN

AREA via onboard routing is made possible with the use of mobile
marine sensor platforms that are able to adapt their motion based on
sensor readings gathered in real-time. These platforms are able to
carry a wide variety of oceanographic sensors that can monitor ocean
environmental variables including conductivity, temperature, dis-
solved oxygen, pH, and turbidity (Dickey, 2003). In general, the AOSN
concept envisions networks of cooperating marine sensor platforms.
This enables the capability to use distributed, simultaneous measure-
ments to gain additional information about the ocean environment as

Fig. 4. An Odyssey-IIl AUV equipped with a sonar payload, CTD, and acoustic line array used for acoustic sensing.
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Fig. 5. The kayak-based autonomous surface craft. These small, lightweight platforms are ideal proxies for the much larger, more resource intensive AUVs for autonomy experiments

as well as well as being capable sensor platforms in their own right.

well as the capability to cover broad areas. This section describes the
autonomous sensor platforms used in our AOSN implementation, the
autonomy architecture that enables these platforms to perform
adaptive sampling, and a number of specific path planning and on-
board routing applications.

3.1. Autonomous sensor platforms

Two types of autonomous sensor platforms are used in our
prototype AOSN, autonomous underwater vehicles (AUVs) and
autonomous surface craft (ASCs). Both are capable of carrying a
variety of oceanographic sensors. In our AOSN configuration, the ASCs
are able to communicate with the AUVs, allowing oceanographic
measurements to be transmitted worldwide in real-time.

3.1.1. Autonomous underwater vehicles

The AUVs used in MIT's adaptive sampling architecture are based
on the Odyssey-Ill platform built by Bluefin Robotics Corporation
(Fig. 4). These underwater vehicles are capable of carrying a wide
variety of oceanographic sensors including sonars, CTDs, chemical and
biological sensors, and cameras (Benjamin et al., 2007). Data
processing can be carried out in real time and/or archived for offline
processing. Each AUV is also equipped with an acoustic modem for
networked communications with other AUVs, communications buoys,
ships, and ASCs. Shown in Fig 4 is an AUV equipped with a sonar
payload, CTD, and acoustic line array used for acoustic sensing.

3.1.2. Autonomous surface craft

The autonomous surface craft are based on a lightweight kayak
platform (Fig. 5). Each is equipped with a Garmin 18 GPS unit
providing position and trajectory updates at 1 Hz. The vehicles are also
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Micromodem | [ iGPS | (iPWMController |

e

pLogger -— MOOSDB
40Hz 10Hz

( pNav | (pmoOSBridge ) (pThemmotrack

10Hz 5Hz 4Hz

(@) A MOOS Community

equipped with a compass but the GPS provides more accurate heading
information, and is preferred, at speeds greater than 0.2 m/s.

Each vehicle is powered by 5 lead-acid batteries and a Minn Kota
motor providing both propulsion and steering. The vehicles have a top
speed of roughly 2.5 m/s. Each kayak is equipped with an acoustic
modem for communications with other kayaks and AUVs and can
carry a variety of sensors including CTDs, sidescan sonars and optical
cameras. See (Curcio et al., 2005) for more details on this platform.

3.2. The MOOS-IvP autonomy architecture

The sensor platforms described in this work use the MOOS-IvP
architecture for autonomous control. An autonomy architecture
coordinates the gathering of sensory data from multiple environ-
mental, navigation, and communications sensors, the processing of
this data into an understanding of the state of the world, and the
translation of this world state into a set of actions. MOOS-IVP is
composed of the Mission Oriented Operating Suite (MOOS), an open
source software project for coordinating distributed software pro-
cesses running on autonomous platforms, typically under GNU/Linux.
MOOS-IVP also contains the IvP Helm, a behavior-based helm that
runs as a single MOOS process and uses multi-objective function
optimization with the Interval Programming (IvP) model (see next
Section 3.3.1 for behavior coordination (Benjamin, 2002; Benjamin
and Curcio, 2004; Benjamin et al., 2006a,b).

A MOOS community consists of processes that communicate
through a database process called the MOOSDB in a publish and
subscribe manner as shown in Fig. 6(a). Each MOOS process has two
key methods which are called at a user specified frequency. The
OnNewMail() method is used to check for new mail (i.e. variables to
which this process has subscribed to and that have changed during the

| MOOSDB |
pHelmIvP
Action Information
IVPFunction
IvP . N
Solver IvPFunction
IvPFunction
(b) The pHelmIvP process

Fig. 6. The IvP helm runs as a process pHelm called in a MOOS community. MOOS may be composed of processes for data logging (pLogger), data fusion (pThermotrack), actuation
(iPWMController), navigation (iGPS, pNav), communication (pMOOSBridge, iMicroModem), and much more. They can all be run at different frequencies as shown.
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last iteration) from the MOOSDB. The Iterate() method is called to
allow the process to handle any newly received mail. Results are
published back to the MOOSDB during the call to the Iterate method.
The IvP helm runs as the MOOS process pHelm (Fig. 6(b)).

Each iteration of the helm contains the following steps: (1) mail is
read from the MOOSDB, (2) information is updated for consumption
by behaviors, (3) behaviors produce an objective function if applic-
able, (4) the objective functions are resolved to produce a single
action, and (5) the action is posted to the MOOSDB for consumption
by low-level control MOOS processes.

3.3. The IvP helm and vehicle behaviors

A helm is a process responsible for producing desired actions for
the vehicle actuators controlling the vehicle motion. Classically, there
have been two major approaches to this problem. The first approach,
which we'll term the world-model approach, is the classical control
theory method whereby sensor states are directly mapped to actuator
outputs. A major weakness of this approach for controlling marine
vehicles is the combinatorial explosion of states needed for any
reasonably complex world model in which a sensor platform may not
only have to deal with sensing but also with duties such as
communications, obstacle avoidance, energy usage minimization,
etc. An alternative approach introduced by Brooks (Brooks, 1986) is
termed the behavior-based approach in which multiple modules
(termed behaviors), each operating in parallel, post their desired
course of action on each control cycle (see Fig. 6(b)). Each behavior is
responsible for suggesting actions based on its particular function
such as vehicle safety or other application-specific duties like adaptive
sensing and communications. The key to any behavior-based
approach is in the action selection mechanism that is employed to
arbitrate between behaviors with conflicting desired actions. Brooks'
original approach was to give each behavior a priority and then choose
the output of the behavior with the highest priority, thereby creating a
hierarchy of behaviors with behaviors such as vehicle safety behaviors
having the highest priority. This selection mechanism fails to address
situations in which compromise between behaviors is both possible
and desired. Section 3.3.1 describes an alternative method of action
selection using multiple objective functions which allows compro-
mise between competing behavior goals. Section 3.3.2 describes the
specific behaviors developed to implement adaptive sampling and
routing in our FAF05 exercises.

3.3.1. Behavior-based control with interval programming

By using multi-objective optimization in action selection, behaviors
produce an objective function over the vehicle control parameters such
as course, speed, and depth rather than a single preferred action
(Rosenblatt, 1997; Pirjanian, 1998; Benjamin, 2002). The IvP model
specifies both a scheme for representing functions of unlimited form as
well as a set of algorithms for finding the globally optimal solution. All
functions are assumed locally piecewise linear (see also (Yilmaz et al.,
2008), hence approximating the true underlying utility function. The
search is over the weighted sum of individual functions and uses branch
and bound (Bertsekas, 2001; Deb, 2001) to search through the
combination space of pieces rather than the decision space of actions.
The only error introduced is in the discrepancy between a behavior's
true underlying utility function and the piecewise approximation
produced to the solver. This error is preferable than errors due to a
restriction of the function form of behavior output, for example to linear
or quadratic functions. Furthermore, the search is faster than brute force
evaluation of the decision space, as done in (Rosenblatt, 1997).

The solver guarantees an piecewise globally optimal solution and
this work validates that such search is feasible in a vehicle control loop
of 4 Hz on a 600 MHz computer.

To enhance the search speed, the initial decision provided to the
branch and bound algorithm is the output of the previous cycle, since

typically the optimal prior action remains an excellent candidate in
the present, until something changes in the world. Indeed when
something does change dramatically in the world, such as hitting a
way-point, the solve time has been observed to be up to 50% longer,
but still comfortably under practical constraints.

3.3.2. Adaptive sampling behaviors and processes

For FAF05, the key sampling behavior for efficiently capturing the
vertical variability of the thermocline was the Adaptive Yo-Yo behavior.
This behavior was simulated and used in real-time (Section 4.2).
Onboard, in the IvP helm, it is responsible for adaptively tracking and
sampling the thermocline using vertical sound speed gradient estimates
provided by the pThermoTrack MOOS process which uses raw CTD data
provided by the vehicles onboard instrument. These sound-speed
gradient estimates are published to the MOOSDB for use by the Adaptive
Yo-Yo behavior in the IvP helm. While the Adaptive Yo-Yo behavior is
controlling the vertical motion of the vehicle, the Waypoint behavior
controls the horizontal motion of the vehicle between two 2D waypoints
which are determined a priori according to region to be sampled. These
are described next. Other behaviors for adaptive thermal gradient
tracking and front detection have also been integrated and tested in the
PLUSNet MBO6 exercise (Wang, 2007; Haley et al., 2009).

3.3.2.1. pThermotrack. —pThermotrack is a process which runs in the
MOOS-IVP architecture (Fig. 6(a)) that is responsible for onboard
monitoring of the real-time CTD data and for interacting with the
Adaptive Yo-Yo behavior described below. pThermotrack uses p
samples of the sound velocity (obtained from the CTD at approxi-
mately 1 Hz) to compute the vertical gradient of the sound speed (see
Section 4.3) | 2| and then compares this value to a threshold vy (the
values of p and 7y being determined a priori). Once | % | exceeds the
threshold 7y and then goes back below the threshold, pThermotrack
signals to the Adaptive Yo-Yo behavior to toggle the vertical direction
of the AUV. The AUV then samples through the thermocline in both
directions. pThermotrack also monitors the depth of the AUV. If the
depth is greater than the lower limit or shallower than the upper limit
(determined a priori), the Adaptive Yo-Yo behavior will be given the
signal to toggle the AUV's vertical direction. This occurs when a
thermocline has not been detected.

3.3.2.2. Adaptive Yo-Yo behavior. = The Adaptive Yo-Yo behavior
controls the vertical direction of the AUV. The AUV is assumed to
begin the adaptive thermocline sampling mission at shallow depth. At
startup, the behavior orders the AUV to dive. After this, the behavior
looks for signals from pThermotrack with regard to toggling the state
of the vertical motion of the AUV. The objective function for the
Adaptive Yo-Yo behavior is one-dimensional over depth. This vertical
motion of the AUV can be controlled independently of the horizontal
motions, controlled by the Waypoint behavior.

3.3.2.3. Waypoint behavior. The waypoint behavior is responsible for
moving the sensor platform from one point to another along the
shortest path. The behavior is configured with a list of waypoints and
produces objective functions that favorably rank actions with smaller
detour distances along the shortest path to the next waypoint. Multiple
waypoints can be sequenced together to form platform motion along
arbitrary polygons. The objective function for this behavior is three-
dimensional over course, speed, and time. In our FAFO5 exercises, this
behavior aims for a constant velocity motion. It is used to move the AUV
between two fixed horizontal points while the Adaptive Yo-Yo behavior
is simultaneously controlling the vertical behavior of the AUV.

4. Results of the FAF05 exercise: methods, schemes and simulations

The Focused Acoustic Forecasting-05 (FAF05) real-time at-sea field
exercise was held 13-26 July 2005 off Pianosa, Italy (Fig. 2). The
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Fig. 7. AVHRR measurements of sea surface temperature for July 24 (0443Z) and July 25 (0418Z and 2108Z) demonstrating day-to-day and daily variability.

objectives of FAFO5 were given in Section 1. In what follows, sub-
section 4.1 describes the coupled physical-acoustical ocean forecast-
ing carried out during FAFO5 and its main results. The new online
Adaptive Yo-Yo control scheme which is run onboard the AUV
(onboard routing) is presented in sub-section 4.2. The novel prior
optimization of these Yo-Yo parameters which are computed on-the-
ground based on the ocean-acoustic predictions and the AREA-ESSE
adaptive sampling are presented in sub-section 4.3. The procedures
and daily protocol that explain how the latter adaptive sampling
predictions are used as inputs to the former onboard routing are given
in sub-section 4.4. Selected interesting results of the real-time
applications of these schemes and procedures during FAFO5 are
discussed in sub-section 4.5. Finally, a brief forecast evaluation is
presented in sub-section 4.6.

4.1. Real-time coupled oceanographic and acoustic simulations

4.1.1. Ocean modeling

During the FAF05 experiment, ocean environmental fields and
uncertainties were predicted daily by the Harvard Ocean Prediction
System and the Error Subspace Statistical Estimation approach. The
data used for initialization and assimilation via Optimal Interpolation
(Lermusiaux, 1999) were satellite sea surface temperature (SST)
snapshots (Fig. 7) and historical synoptic profiles of ocean tempera-
ture and salinity. To estimate environmental uncertainties, various
scenarios were computed daily as a function of different initial
condition estimates, assimilation procedures, modeling domains,
numerical/physical model parameters and time of day. Fig. 7
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exemplifies some of the SST conditions measured by AVHRR. The left
and central panels illustrate the day-to-day variability as conditions
cool from one day to the next. The central and right panels illustrate
variability encountered during a single day as skin temperatures warm
during the daily heating cycle. The variability pictured in this figure
helps to illustrate some of the varying conditions included within the
scenarios designed for the ocean forecasts on a daily basis. As seen
later, this variability is captured in the forecast sound speed sections.
The synoptic CTD sound speed profiles were used on a daily basis for
tuning and evaluation.

HOPS was run daily for 13 days, set-up in stand-alone, one-way-
and two-way-nested modeling configurations, in 2 domains: (i) a
high-resolution mini-HOPS domain along the eastern coast of Pianosa
(the region of FAFO5 operations) and (ii) a coarser resolution domain
south of Elba and east of Pianosa (see Fig. 8). The model resolutions
and domain sizes are given in Table 1. The fine 100 m resolution of the
“Mini-HOPS domain” is designed to capture some sub-mesoscale
dynamics relevant to acoustic propagation. At the time of FAF05, this
was the highest resolution modeling that we had ever run in real-
time. Importantly, the other two larger HOPS domains within which
this small high-resolution domain is nested are required to provide
adequate boundary conditions to the small domain. This is because
the boundary values in the about 10 km wide Mini-HOPS domain are
advected through the domain in less than one day. Without inputs
from the larger domains, the Mini-HOPS domain would thus be
completely uncertain after one day.

To initialize, HOPS utilized historical data from the May-June 2003
MREAO03/BP03 real-time mini-HOPS modeling in the Ligurian Sea/

101E 102 E 103 E

()

Fig. 8. HOPS 2-way nested domains: (a) overall schematic overlaid on bathymetry (in m), (b) Pianosa domain, (c) Elba domain.
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Table 1
Two-way nested ocean domain resolution and sizes.
Resolution Mini-HOPS Elba
100 m 300 m
Size NXXMnyxnz 89x 114 %21 106 x 126 x 21
Extent 8.8x11.3 km 31.5x375 km

Elba. However, as we have repeatedly observed, (e.g. Onken et al.,
2008; Lam et al., 2009-this volume), historical and climatological data
have limited use in the Mediterranean, due to interannual variability
and human activities. In fact, it is the in situ synoptic data acquired at
sea during FAFO5 that allowed us to set adequate properties of the
thermocline (see Section 4.6).

This synoptic data included: (i) Sound-speed profiles east of
Pianosa from the R/V Leonardo and AUVs, (ii) meteorological data
from the R/V Alliance, (iii) Satellite Sea Surface Temperature (SST)
from NURC. The decay scales of the OA varied from 2 km to 5 km in the
small Pianosa domain and 5 km to 15 km in the larger Elba domain.

Atmospheric forcing (ocean-atmosphere fluxes) for HOPS was
generated as a combination of: (i) Aladin forecasts and analyses
(~8 km resolution) from the Croatian Meteorological Service (DHMZ),
(ii) NOGAPS coarse resolution forecasts and analyses from the Fleet
Numerical Meteorology and Oceanography Command (FNMOC), and,
(iii) Coupled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS) forecasts and analyses from NURC. The criterion to select
the atmospheric forcing was to use the forcing with the highest
resolution when it was available.

Fig. 9 illustrates the HOPS daily simulations and forecasts of the
ocean environment. The 1-day forecasts of the temperature and
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current fields at 20 m depth (near the main depth of the thermocline)
from July 24 to July 25 are shown in the Pianosa (Fig. 9(a) and (b)) and
Elba (Fig. 9(a) and (d)) domains. These figures show the warm areas
to the east of Pianosa and south of Elba. There is a sharp temperature
contrast between the northern and southern coasts of Pianosa. In the
largest domain, an anti-cyclonic circulation is visible, bounded by
Elba, Pianosa and the cyclonic circulation of the northern Tyrrhenian
sea. This circulation creates an on-shore (east to west) flow at the
eastern coast of Pianosa. In the operational area this circulation is
intensified and flows from southeast to northwest. Larger surface
currents in the northwestern corner appear to be due to unrealistic
atmospheric forcing and boundary conditions.

4.1.2. Acoustic modeling coupled to ocean-seabed modeling

Based on the nominal at-sea configurations of the R/V Leonardo
and AUVs, we chose a 100 Hz continuous-wave (single-frequency)
sound source located at r=1950 m, z=35 m and the transmission
loss (TL) at 5 m depth was chosen as the acoustic signal which
mattered in the AREA-ESSE objective (see Fig. 10 next).

To implement acoustic simulations and optimization in real-time,
the RAM code was carefully configured so that TLs could be computed
as fast as possible with sufficient precision. This was done in the
virtual experiments, prior to the real-time work. For coupled ocean-
acoustic computations, a preliminary data-transfer interface was
created to connect the HOPS/ESSE output with RAM, and so allow
rapid and RAM-compatible extraction of the acoustic-related data
from the HOPS/ESSE output. Once the HOPS/ESSE ocean, seabed and
RAM codes were set-up and coupled together, a software-human
system was created such that ensembles of sound velocity profiles
(SVPs) and SST data were the inputs, and ensemble of TLs at the
receiver's depth were the outputs.
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Fig. 9. HOPS 2-way nested forecasts for the morning of July 25, 2005 (local time), issued on July 24. (a) and (b): Temperature and total velocity overlaid with current vectors at 20 m

depth in the Pianosa domain; (c) and (d): as (a) and (b) for the Elba domain.



D. Wang et al. / Journal of Marine Systems 78 (2009) S393-S407 S401

1540

1535

1530

1525

1520

1515

1510
(m/s)

0.5 1 1.5
Range (km)

Fig. 10. Illustration of the ocean-acoustic configuration and of the thermocline-oriented
AUV Yo-Yo track along a vertical section in the FAFO5 experiment domain, overlaid on
sound-speed (m/s). Pianosa is to the left, the source a red star and the target TL depth a
blue dashed line. The green lines are the minimum and maximum depths allowed. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

4.2. Onboard Adaptive Yo-Yo control scheme

At the small 2.5-by-2.5 km site of the FAFO5 experiment (see Fig. 2),
the depth and slope of the thermocline is the key ocean property which
sets the sound-speed field. Therefore, the adaptive sampling strategy
that aims to capture the vertical variability of the thermocline due to
fronts, eddies, internal waves, etc. can capture the dominant sound-
speed feature and so also minimize the TL uncertainty. To track the
vertical variability of the thermocline, a new thermocline-oriented AUV
path control was researched. The aim was to guide the AUV so that it
finds the depth of the thermocline and crosses this depth back and forth.
Since the thermocline is where the sound speed changes rapidly with
depth, a simple criterion to find the position of the AUV relative to the
thermocline is to compare the absolute value of local vertical gradient of
sound speed | £ | with a threshold. By doing so, the AUV can estimate
whether it is above inside of or below the thermocline (Fig. 10).

It is assumed that at the beginning of the mission, the AUV stays on
the surface. While it is diving, its CTD collects data every second. The
| ¢ | is estimated onboard the AUV via Linear Least Squares thtmg
method based on every p CTD data. If at the beginning, | | <
where vy is the threshold, and then | %< | becomes greater than Y, and
after that | ¢ | becomes lower than 'y again, then the criterion will
indicate that the AUV is now below the thermocline and it will turn
around upwards. Thereafter, while the AUV is going up, if | ¢ %5
becomes greater than and then lower than <y again, the criterion
indicates that the AUV is now above the thermocline and it will turn
around downwards. An upper bound and a lower bound on the depth
range of the AUV are also set up. Should the AUV have crossed the
thermocline or not, once the lower bound or upper bound is reached,
the AUV has to turn around to avoid reaching too deep depths or the
surface. This path control will lead the AUV to carry an up-and-down
Yo-Yo track (Fig. 10).

4.3. Adaptive sampling scheme: prior optimization of Yo-Yo parameters

In the AUV Yo-Yo control, there are two parameters to be
optimized: p, the number of sampling CTD values used to compute
| 2€ |, and , the threshold used to compare with | 5 |. Note that p is
deﬁned over the space of time-averaged raw CTD values (one raw CTD
data is obtained about every second. This CTD data is here boxed-
averaged over a grid of horizontal and vertical resolutions that are a
function of the scales of interest). The 7y parameter defines how
rapidly the sound speed changes with depth can be linked to the
thermocline. The optimal values of these parameters were predicted

daily, using the forecast ocean and acoustic fields and their
uncertainties. This novel optimization is an adaptive sampling
scheme: it is based on predicted (unknown) data properties and
computed on-the-ground, prior to sending the AUV at sea. The
optimization problem can be formulated as finding:

min f(p,7y) (1)

s.t.y > 0, pis a positive integer, (2)

where the objective function is
f(p, v) = E{tr(covar(TLOA)> } (3)

TL% is the stochastic-deterministic TL vector corresponding to the
posterior ocean estimate and its error field, after applying the Yo-Yo
control in the forecast ocean estimate (the predicted ensemble mean
or the ocean state the closest to it) and rapidly assimilating the most
recent in situ measurements (e.g. last 10 to 30 min of data) via
objective analysis. covar (TL?) is the error covariance matrix of TL?*
and tr the trace operator. Since the CTD noise may influence the
estimation of the thermocline depth and thus change the AUV track,
an expectation over all possible CTD noise is needed, E{std(TL°*)}.

This optimization problem is essentially a mixed-integer non-
linear programming problem. The objective function here only
contains one term, the forecast error standard deviation of the TL
field, after statistical assimilation of the Yo-Yo data. It is only defined
on integer-valued p, so it can't be solved by relaxation. Additional real-
time challenges arise because of the time required to compute the
objective function via Monte Carlo simulations prior to resolving this
optimization problem. Of course, other objective functions, including
multiple (non-dimensionalized) terms or different objectives could be
used. For example, one could aim to optimize the source depth so as to
maximize the detection range, accounting for the forecast TL and its
uncertainties.

In FAF05, a small size enumeration method was implemented. The
objective function was computed every day for 7 potential Yo-Yo
control parameter pairs listed below. These pairs are a subset of
representative values carefully selected for real-time computations.
This selection was based on a large number of simulations and virtual
experiments prior to FAF05. During FAFO5, the optimization was to
predict the pair among the 7 possibilities that is associated with the
minimum objective function value and to use this optimal Yo-Yo
control parameter pair for the forecast (next) day. This information
was sent to the at-sea team and ultimately to the AUVs as the prior (i.e.
forecast) optimal adaptive sampling parameters which are used to
start the onboard routing control.

4.4. Procedures and daily protocol for adaptive sampling and onboard
routing

The real-time data-driven simulations were implemented from
7/17/2005 to 7/26/2005. Each day, the ocean-acoustic environmen-
tal fields were predicted by HOPS/ESSE with the associated
uncertainties. The data used for initialization and assimilation were
satellite sea surface temperature snapshots and historical profiles of
ocean temperature and salinity. To estimate ocean uncertainties
(Lermusiaux, 2006; Lermusiaux et al., 2006a), various scenarios were
computed daily as a function of different initial condition estimates,
assimilation procedures, modeling domains, numerical/physical
model parameters and time of day. This scenario procedure was
used instead of a more classic ESSE initialization (Lermusiaux et al.,
2000, 2002) because of the lack of initial data for constraining these
initial conditions and parameters. Each resulting sound speed field (in
time and 3D space) of this ensemble of predictions was interpolated
along several characteristic vertical sections and used for acoustic
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Table 2
Enumeration table for the p and y parameters.
1 2 3 4 5 6 7
P 20 20 20 30 30 30 30
v 0.1 0.5 1 0.1 0.5 1 1000

predictions with RAM. The ensemble of sound-speed sections and the
corresponding ensemble of acoustic transmission loss fields were
utilized as input to the optimizationalgorithm that forecast the optimal
parameters of the AUV sampling pattern's for the next day(s), as
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described in Section 4.3. These prior optimal sampling parameter
estimates for optimal reduction of the predicted acoustical uncertainties
and the corresponding ocean and acoustic predictions were emailed
daily to the FAFO5-MIT team at-sea aboard the R/V Leonardo. They
provided the basis for onboard optimal routing the MIT AUVs.

The daily operational adaptive sampling tasks were to solve the
optimization problem (Section 4.3) and so forecast the optimal
sampling parameters. The specific steps in the procedure included:

1. Generate environmental forecasts of fields and uncertainties of
1-to-2 days of duration using HOPS and the ESSE approach.
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Fig. 11. AREA-HOPS-ESSE simulations for 7/23/2005. (a) Estimate of SVP output from HOPS/ESSE. Black line: forward AUV Yo-Yo track. White line: backward track. A 100 Hz CW
sound source is located at the red point r= 1950 m, z= 35 m. Green line: TL depth which is 5 m. (b) Associated error standard deviation. (c) Posterior SVP estimate after objective
analysis (predicted data assimilation). (d) Associated posterior error standard deviation. (e) TL realizations associated with the environment shown in (c) and (d), where in the
seabed, the sound speed is c = 1700 m/s, the density is p = 1700 kg/m>. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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2. Couple these forecasts with the seabed and acoustic modeling,
running an ensemble of acoustic propagation forecasts.

3. Implement the AUV Yo-Yo control with the ith parameters pair in
the enumeration Table 2. Output its objective function value.

4, Repeat step 3 for m times (m=10), so as to account for the
modeled uncertainties in the expected CTD data of the AUV.
Calculate the average objective function value.

5. If i<7, then i=i+1 and go to step 3; otherwise, find the
parameters pair associated with the minimum average objective
function value and plot AUV track.

4.5. Real-time coupled ocean physics—-acoustic AREA-ESSE

The real-time results of the application of the above schemes
(Sections 4.2 and 4.3) and procedures (Section 4.4), which utilize the
forecast inputs from Section 4.1, are now illustrated. A typical daily
result is shown in Fig. 11, which corresponds to forecasts for the
morning of 7/23/2005. In this case, p =30, y= 1000 were the optimal
parameters, as forecast in real-time by the AREA-ESSE adaptive
sampling and routing schemes for FAF05 (Section 4.4).

Analysis on the AUV Yo-Yo control shows that when p becomes
larger, the thermocline-oriented criterion is less sensitive to the CTD
noise. When <y becomes larger, the thermocline is estimated to be
weaker by the criterion. If 7y is very large such as y=1000, no
thermocline is measured to be strong enough (for the AUV, no
thermocline is present) and the AUV simply goes up-and-down
between the upper and lower bound. In contrast, if p and ©y become
smaller, the criterion is more sensitive and thus the AUV's track is a
more complex zigzag in the vertical plane.

In the AREA-ESSE procedure, the simulated data sampled by the
AUV (not the raw data but the box-averaged data over the vertical and
horizontal scales of interest, see Section 4.3) in the ensemble of ocean
forecasts is rapidly objectively analyzed to update the central forecast
(selected from the ensemble of forecasts), see Section 1. For FAF05, the
parameters utilized in this vertical objective analysis were scales set
based on experience, data and model outputs in the region, specifically
the horizontal oceanic correlation length set to Lr=1 or 2 km and the
vertical correlation length set to Lz=5 m. Since the Lr can be almost as
long as the total horizontal span of experiment area, a few sampling
points per depth can dramatically reduce the SVP uncertainties at that
depth for a relatively large range. If the AUV can explore the deepest
depths, it can very likely capture most of the SVP and TL uncertainties.
On several of the days of the experiment, the choice of bounding values
for p and v, i.e. p=30, y=1000 (which makes the AUV go up-and-
down between the upper and lower depth bounds) was forecast to give
the optimal results. However, if the experiment area had spanned an
area larger than three times Lr, the choice p =30, y= 1000 would not
often have been the optimal solution (as confirmed in our simulations
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for larger sections). The small FAFO5 region was selected here for easier
engineering tests with the AUVs.

Fig. 12 shows an interesting phenomena and result obtained on
7/21. For both the morning and afternoon forecasts, p =30, y=0.1 was
the optimal parameter pair for the outbound-inbound sampling path.
With these parameters, the AUV did not go from the upper to the lower
depth bound, but focused on tracking internal vertical variabilities of the
sound velocity. In the morning, the optimized inbound-outbound AUV
path captured the main thermocline along its path, both back and forth.
However, in the afternoon, the optimized Yo-Yo first samples the full
thermocline in the outbound path but in its return inbound path, the
optimized AUV automatically captures the so-called “afternoon effect”
on the surface thermocline, i.e. the warming of the upper ocean layers
due to the strong day-light sun.

4.6. Evaluation of real-time modeling estimates via independent
observations

The FAF05 experiment was a demonstration of concept that was
not designed to include independent observations for validation of the
ocean-acoustic models and of the adaptive sampling approach.
However, as the sound speed profiles acquired during the experiment
were not assimilated into the model forecasts, they were available for
use in evaluating and validating the model outputs.

During the real-time experiment, the information regarding
oceanic structures gleaned from the sound speed profiles was utilized
to improve the model representation (Fig. 13). As described
previously, HOPS was initialized with historical synoptic CTD profiles.
These profiles were from a prior experiment in this region which took
place in late May 2003. Fig. 13(a)-(c) illustrates the initial mismatch
of the model with synoptic sound velocity observations. The vertical
section of sound speed has a mixed layer depth which is roughly
similar to that of the observations but the value of the sound speeds in
the model fields is significantly lower than that of the observations.
Post-experiment estimates of the bias between the profile data in
Fig. 6 and the model sound speed values in Fig. 6 show that overall the
model underestimates the sound speed by ~10 m/s. The historical
profiles were cooler than the synoptic conditions of mid-July 2005. To
alleviate this mismatch, the initial temperature fields were first
modified in real-time by melding the historical data with 15 July 2005
satellite SST extended down to the estimated mixed layer depth.
Fig. 13(d)-(f) shows an improved match with the 2005 conditions as
the field is closer in value to the sound velocity profiles. The model
bias in the upper layers is reduced to around — 2 m/s. However, while
this first correction was made and the updated model simulations
were run, the ocean mixed layer in the observations had deepened
further. This dynamical evolution was not yet reflected in the model
forecasts. The resulting incorrect vertical structure exacerbated the
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Fig. 12. AREA-ESSE simulations for 7/21/2005. In the afternoon, when the AUV came back, it tried to capture the “afternoon effect”.
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Fig. 13. Tuning the model initialization based on comparison of in situ sound speed profiles with sound speed sections from the numerical model field forecasts. The three model
sections are all from (42.586N, 10.105E) to (42.602N, 10.122E). (a) Sound speed profiles acquired 13—14 July. (b) Sound speed model section on 0000Z 14 July. (c¢) Estimated bias in
(b) when compared to (a). (d) Sound speed profiles acquired 15 July. (e) Sound speed model section on 00Z 18 July. (f) Estimated bias in (e) when compared to (d). (g) Sound speed
profiles acquired 16-17 July. (h) Sound speed model section on 0000Z 19 July. (i) Estimated bias in (h) when compared to (g).

model bias in the deeper layers, which reached a peak value around
—17 m/s. A third initialization was then created by (i) further
increasing the estimated mixed layer in the SST melding procedure
and (ii) modifying the extension procedure to allow deeper penetra-
tion of SST within the mixed layer. Fig. 13(g)-(i) demonstrates that the
updated real-time model fields have both the appropriate vertical
structure and values, the overall model bias being reduced to ~2 m/s.
A conclusion of our real-time adaptation (see Lermusiaux, 2007) of
the model initialization and assimilation procedures is that our focus
on the depth of thermocline is certainly a key property in the region.

Once the initialization and SST assimilation were satisfactory, further
qualitative assessments of the model estimates were made. Fig. 14
illustrates a model forecast that evolves the vertical structure of sound
speed in a fashion that is consistent with the evolution of the inde-
pendent observed sound speed profiles. As the model moves forward in
time, 13-13-13, the mixed layer deepens and spreads, becoming less well-

defined. Similar behavior can be seen in the observed profiles. In
particular profile 15 (red), shows the most deepening/broadening. The
mean biases between the forecasts and profile 15 (red curves in 13-13-
13) show a clear reduction in the deep bias as time progresses.
Conversely, profiles 13 and 14 (blue and green, respectively) show an
increase in bias around 30 m as the mixed layer deepens, followed by a
slight decrease again as the broadening erodes the bottom of the mixed
layer. Fig. 13 also shows that the model captures the surface heating effect,
as there is a ribbon of high sound speed at the surface which is also found
in Profile 15 (red). This afternoon effect was also captured by the adaptive
sampling and onboard routing (see Fig. 12).

5. Summary and conclusions

The principles of Adaptive Rapid Environmental Assessment were
developed, using ideas from ensemble ESSE adaptive sampling and



D. Wang et al. / Journal of Marine Systems 78 (2009) S393-S407

5405

0 1540
= . 1530
g
o L1520
5 0 5
0 1 2 3 4 =t <G\ odei Cuara> (M/5)
& (b) 21 July 0000Z (c) 21 July 00002
5 1540 0
__-10
10 180
£ -20
15} 2
1520 O
220
[s] -40
25/ 0 1 2 3 4 1910 <Cmfdel_gdata>5 (m'fs)
(d) 21 July 12002 (e) 21 July 12002
30 1 0 1540 0 ;
-35/ as -20 RS [
£ 1530 é
4815 1520 1525 1530 1535 1540 1545 & 40 £ =20
Sound Speed = _— 8
(a) SVP Data on 19, 22 July B i
_80 : —40—
0 1 2 3 4 e <Cmndel_gdata> 4 (m/s)
(f) 22 July 00002 (9) 22 July 0000Z

Fig. 14. Comparison of in situ sound speed profiles with forecast sound speed sections from the numerical model field forecast. The model section here is longer than in Fig. 13,
extending from (42.586N, 10.105E) to (42.62N, 10.14E). (a) Sound speed profiles acquired 19 July (blue) and 22 July (green and red). Sound speed section forecasts for (b) 21 July
0000Z, (d) 21 July 1200Z and (f) 22 July 0000Z. Mean bias estimates between each profile and the sound speed section forecasts for (c) 21 July 0000Z, (e) 21 July 1200Z and (g) 22
July 0000Z. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

smart onboard routing. The corresponding algorithms and schemes
were derived, a preliminary computational structure was implemen-
ted, and a demonstration of concept was simulated in real-time during
FAF05. In summary, the first components of AREA-ESSE are
algorithms and software for the coupling of scenario- or ensemble-
based ocean predictions with acoustic predictions. These predictions
are then used as inputs to an optimization scheme which seeks the
parameter values of sampling behaviors that optimally reduce the
predicted acoustic uncertainties. This uncertainty reduction is
computed as an ESSE-based adaptive sampling problem (Lermusiaux,
2007): a set of future sampling plans is drawn from the possible
sampling behaviors, a data assimilation is carried out for each member
of the set and the parameters of the sampling plan which leads to the
optimum uncertainty reduction is selected as the best forecast plan.
These optimal parameters are then fed to the sampling vehicles as
priors. A second adaptation of parameters is finally carried out
underwater by the autonomous sampling vehicles using onboard
routing. This onboard routing is a simple controlled response to the
real ocean data that the vehicle acquires. The algorithms and software
to carry out this adaptive sampling strategy and onboard routing
algorithm were implemented and utilized in real-time during the two
weeks of the FAFO5 exercise in the northern Tyrrhenian sea. To
coordinate the on-the-ground ocean-acoustic field and adaptive
sampling predictions with the onboard routing, a preliminary system
integration was completed and tested. For the AUV, this included
setting-up and testing at sea the physical CTD sensor hardware,
MOOS-IvP autonomy architecture and platform navigation systems.

For the autonomous surface craft, this mainly involved the MOOS-IvP
architecture and communication tests.

The main accomplishments for the FAFO5 exercise simulations
included first an initial coupling of ocean-acoustic ensemble methodol-
ogies and software so that: (i) ocean environmental fields and
uncertainties were predicted daily by the HOPS ocean model and ESSE
approach; (ii) various (10 to 20) scenarios of 0.5-2 days predictions of
sound-speed sections were computed and transferred for acoustic
forecasts; (iii) corresponding ensembles of acoustic TLs were computed
using RAM; and, (iv) sound-speed sections and TL curves were input to
an adaptive sampling scheme which uses an optimization algorithm to
forecast the optimal prior parameters for Yo-Yo sampling during the
next 1-2 day(s). Second, physical-acoustical adaptive sampling recom-
mendations were issued in real-time every day (on the internet and by
email), aiming to: (i) capture the vertical variability of the thermocline,
due to the daily solar cycle, atmospheric-driven vertical mixing and
mesoscale features (eddies, etc); and (ii) minimize the corresponding
uncertainties. Finally, all these advances were coordinated with the
hardware and autonomous software of the AUV.

The results of the FAFO5 simulations are encouraging. First, the
applications of our scenario-based adaptive sampling and onboard
routing schemes were found computationally feasible on-the-ground
and underwater, respectively. An interesting result was the impact of
the “afternoon effect” on the optimal sampling in this summer period
in the Pianosa island area. In the morning, the result of the
optimization of the Yo-Yo sampling based on scenarios of ocean-
acoustic predictions and assimilation was to sample the whole water
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column. However, in the afternoon, the optimized result was to
sample the whole water column in the first trip but to sample the
secondary thermocline (due to stratified afternoon warming of the
ocean surface) in the return trip. It was also shown that wind-forced
coastal ocean modeling predictions can have forecast skill over small
regions, even if the amount of in situ data is very limited. This ocean
forecast skill was achieved by assimilation of SST and by adaptively
tuning the vertical extension of the SST based on a few sound speed
profiles. The adaptive sampling focus on the thermocline opmitized
the data collected for this purpose.

The sensitivity of the AUV Yo-Yo behavior to its onboard control
parameters was studied in simulations. For the small (2.5 km or less)
FAFO5 ranges in the Pianosa area, the optimum Yo-Yo parameters were
every so often found to be those that make the AUV go up-and-down
over the full allowed depth range. This is because over the 2.5 km, the
depth of the thermocline was often forecast to be relatively uniform in
range: even though it varied from day to day, due to the advection of
different ocean features through the small FAFQ5 operational area, it
often remained constant with range. If the experiment area had spanned
larger ranges (e.g. 7 to 10 km or more), these upper and lower depth
bounds were non-optimal. In that case, the optimal bounds varied with
range, as a function of the specific ocean features. The “afternoon effect”
was another situation for which variable bounds were found optimal.

In the longer term, our combination of adaptive sampling priors
and onboard routing for coupled physics—-acoustics aims for optimal
autonomous coastal ocean surveillance. Much work remains in this
field of research, including the optimal underwater vehicle-to-vehicle
and cluster-to-cluster communications as well as optimal ocean
sampling for these communications. Adaptive sampling schemes
(Lermusiaux, 2007; Heaney et al., 2007; Yilmaz et al., 2008) can also
be further researched. Other objectives could also be used for the
AREA-ESSE approach, including: minimize oceanic uncertainties
(Lermusiaux et al., 2006a) and biological uncertainties (Wang, 2004;
Lermusiaux, 2006; Makris et al., 2006), or to objectively evaluate the
performance of new REA concepts, such as Acoustically Focused Ocean
Sampling (AFOS) (Schmidt et al., 1997) and Acoustic Data Assimilation
(ADA) (Elisseeff et al., 2002; Lermusiaux and Chiu, 2002).

The implementation of multi-vehicle AOSNs with robust at-sea
hardware and software also requires further research. Underwater
behavior modeling is still in its infancy. For example, in the behavior-
based control we implemented, although the use of objective
functions is designed to coordinate multiple simultaneously-active
behaviors, helm behaviors could also be conditioned on variable-
value pairs in the MOOS database to run at the exclusion of other
behaviors. Likewise, behaviors can produce variable-value pairs upon
reaching a conclusion or milestone of significance to the behavior. In
this way, a set of behaviors could be run in a plan-like sequence, or run
in a layered relationship as originally described in (Brooks, 1986).
Examples of this approach, although with different missions and
behaviors, are given in (Benjamin et al., 2006a,b).

Acknowledgment

This research was sponsored by the Office of Naval Research under
the Capturing Uncertainty DRI, the Persistent Littoral Undersea Surveil-
lance Network (PLUSNet) program, and the Adaptive Sampling and
Prediction (ASAP) MURI. We are grateful to E. Coelho, E. Nacini and
A. Cavanna from NURC for the satellite and Alliance in situ data, to
Martina Tudor from the Croatian Met. Service for the Aladin atmospheric
forcing and to the Fleet Numerical Meteorology and Oceanography
Center (FNMOC) for their real-time atmospheric forcing. We thank Drs.
M.N. Shipley (ARL Penn State) and E. Coelho for their real-time inputs
and suggestions. We thank Dr. M. Rixen and the two anonymous
reviewers for their rapid reviews and useful comments. PFJL, PJH and
WGL gratefully thank the Office of Naval Research for research support
under grants S05-06, N00014-07-1-1061, N00014-07-1-0501, NO0014-

07-1-0534 and N00014-08-1-0680 to the Massachusetts Institute of
Technology, and under grants N00014-05-1-0335, N00014-05-1-0370
and N00014-04-1-0534 for the real-time work.

References

Akal, T,, 2002. Effects of environmental variability on acoustic propagation loss in
shallow water. In: Pace, N.G., Jensen, FB. (Eds.), Impact of Littoral Environmental
Variability on Acoustic Predictions and Sonar Performance. Kluwer Acad. Pub.,
Dordrecht, The Netherlands, pp. 229-236.

Allard, R., Dykes, J., Hsu, Y.L, Kaihatu, ]., Conley, D., 2008. A real-time nearshore wave
and current prediction system. J. Mar. Syst. 69, 37-58.

Baggeroer, A., Kuperman, W., Schmidt, H., 1988. Matched field processing: source
localization in correlated noise as an optimum parameter estimation problem.
J. Acoust. Soc. Am. 83, 571-587.

Benjamin, M.R,, “Interval programming: a multi-objective optimization model for
autonomous vehicle control,” Ph.D. dissertation, Brown U., Providence, RI, May 2002.

Benjamin, M.R., Curcio, J., 2004. COLREGS-Based Navigation in Unmanned Marine
Vehicles. IEEE Proceedings of AUV-2004, Sebasco Harbor, Maine, June 2004.

Benjamin, M., Curcio, J., Leonard, J., Newman, P., 2006a. Navigation of Unmanned
Marine Vehicles in Accordance with the Rules of the Road. International Conference
on Robotics and Automation (ICRA), Orlando, Florida, May 2006.

Benjamin, M., Grund, M., Newman, P., 2006b. Multi-objective Optimization of Sensor
Quality with Efficient Marine Vehicle Task Execution. International Conference on
Robotics and Automation (ICRA), Orlando FL, May 2006.

Benjamin, M., Battle, D., Eickstedt, D., Schmidt, H., Balasuriya, A., 2007. Autonomous
Control of an Unmanned Underwater Vehicle Towing a Vector Sensor Array.
International Conference on Robotics and Automation (ICRA), Rome, Italy.

Bertsekas, D.P., 2001. 2nd ed. Dynamic Programming and Optimal Control, vol. 1. Athena
Scientific, Nashua, NH.

Brooks, R.A., 1986. A robust layered control system for a mobile robot. IEEE ]. Robot.
Autom. RA-2 (1), 14-23 April.

Carriere, 0., Hermand, ].-P, LeGac, ]J.-C., Rixen, M., 2009-this volume. Full field
tomography and kalman tracking of the range-dependent sound speed field in a
coastalwater environment. J. Mar. Syst., special issue on “MREA and Coastal
processes: challenges for monitoring and prediction.

Chen, TR, Ratilal, P, Makris, N.C., 2005. Mean and variance of the forward field
propagated through three-dimensional random internal waves in a continental-
shelf waveguide. J. Acoust. Soc. Am. 118, 3532-3559.

Coelho, E., 2002. Mesoscale — small scale oceanic variability effects on underwater
acoustic signal propagation. In: Pace, N.G., Jensen, E.B. (Eds.), Impact of Littoral
Environmental Variability on Acoustic Predictions and Sonar Performance. Kluwer
Acad. Pub., Dordrecht, The Netherlands, pp. 49-54.

Coelho, E.F, Rixen, M., 2008. Maritime rapid environmental assessment new trends in
operational oceanography. J. Mar. Syst. 69, 1-2.

Coelho, E.F, Rixen, M., Signell, R., 2004. Nato tactical ocean modeling system: concept
applicability. NATO Undersea Research Centre, Tech. Rep. Serial Report, SR-411.
Collins, M.D., 1989. Applications and time-domain solution of higher-order parabolic

equations in underwater acoustics. J. Acoust. Soc. Am. 86 (3), 1097-1102.

Curcio, J., Leonard, J., Patrikalakis, A., 2005. SCOUT — A Low Cost Autonomous Surface
Platform for Research in Cooperative Autonomy. Proceedings of MTS/IEEE Oceans,
pp. 725-729. vol. 1, September 2005.

Curtin, T., Bellingham, J., Catipovic, ], Webb, D., 1993. Autonomous oceanographic
sampling networks. Oceanography 6 (3), 86-94.

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons.

Deleersnijder, E., Lermusiaux, P.EJ., 2008. Multi-Scale Modelling: Nested Grid and
Unstructured Mesh Approaches, Editorial. Ocean Dynamics, 58, 335-336, Springer.
doi:10.1007/s10236-008-0170-5.

Dickey, T., 2003. Emerging ocean observations for interdisciplinary data assimilation
systems. J. Mar. Syst. vol. 40-41, 5-48.

Duda, T.F,, 2002. Relative influences of various environmental factors on 50-1000 Hz
sound propagation shelf and slope areas. In: Pace, N.G., Jensen, E.B. (Eds.), Impact of
Littoral Environmental Variability on Acoustic Predictions and Sonar Performance.
Kluwer Acad. Pub., Dordrecht, The Netherlands, pp. 393-400.

Elisseeff, P., Schmidt, H., Xu, W., 2002. Ocean acoustic tomography as a data assimilation
problem. IEEE J. Oceanic Eng. 27 (2), 275-282.

Finette, S. Evans, T, Shen, C., 2002. Sub-mesoscale modeling of environmental
variability in a shelf-slope region and the effect on acoustic fluctuations. In: Pace,
N.G., Jensen, F.B. (Eds.), Impact of Littoral Environmental Variability on Acoustic
Predictions and Sonar Performance. Kluwer Acad. Pub., Dordrecht, The Nether-
lands, pp. 401-408.

Haley, PJ. Jr., Lermusiaux, P.E].,, Robinson, A.R., Leslie, W.G., Logutov, O., Cossarini, G.,
Liang, X.S., Moreno, P,, Ramp, S.R., Doyle, ].D., Bellingham, J., Chavez, F, Johnston, S.,
2009. Forecasting and Reanalysis in the Monterey Bay/California Current Region for
the Autonomous Ocean Sampling Network-II Experiment. Special issue on AOSN-II,
Deep Sea Research, Part II. ISSN 0967-0645. doi:10.1016/.dsr2.2008.08.010.

Heaney, K., Gawarkiewicz, G., Duda, T, Lermusiaux, P., 2007. Non-linear optimization of
autonomous undersea vehicle sampling strategies for oceanographic data-assim-
ilation. J. Field Robotics 24 (6), 437-448 Special issue on Underwater Robotics.

Jensen, F,, Kuperman, W., Porter, M., Schmidt, H., 1994. Computational Ocean Acoustics.
American Institute of Physics, Melville, New York.

Kirwan, A.D., Robinson, A.R,, 1997. Assimilation and modeling, executive summary in
rapid environmental assessment. In: Pouliquen, A.K.E., Pearson, R. (Eds.), Rapid
Environmental Assessment. ser. SACLANTCEN Conference Proc. Series CP-44, p. xxi.



D. Wang et al. / Journal of Marine Systems 78 (2009) S393-S407 S407

Ko, D.S., Martin, PJ.,, Rowley, C.D., Preller, RH., 2008. A real-time coastal ocean
prediction experiment for mrea04. J. Mar. Syst. 69, 17-28.

Lam, EP, Haley, PJ.,, Janmaat, J., Lermusiaux, P.E]., Leslie, W.G., Schouten,M.W,, te Raa, LA.,
Rixen, M, 2009-this volume. At-sea real-time coupled four-dimensional oceano-
graphic and acoustic forecasts during Battlespace Preparation 2007, ]. Mar. Syst.
doi:10.1016/j,jmarsys.2009.01.029.

Lermusiaux, P.FJ., 1999. Data assimilation via error subspace statistical estimation. Part
II: Middle atlantic bight shelfbreak front simulations and ESSE validation. Mon.
Weather Rev. 127 (7), 1408-1432.

Lermusiaux, P.E]J., 2002. On the mapping of multivariate geophysical fields: sensitivity
to size, scales and dynamics. . Atmos. Ocean. Technol. 19, 1602-1637.

Lermusiaux, PFJ., 2006. Uncertainty estimation and prediction for interdisciplinary
ocean dynamics. J. Comput. Phys. 176-199 special issue on “Uncertainty
Quantification”.

Lermusiaux, P.EJ., 2007. Adaptive sampling, adaptive data assimilation and adaptive
modeling. In: Jones, Christopher K.RT., Ide, Kayo (Eds.), Mathematical Issues and
Challenges in Data Assimilation for Geophysical Systems: Interdisciplinary
Perspectives. Physica D., 230, pp. 172-196.

Lermusiaux, P.E]J., Robinson, A.R., 1999. Data assimilation via error subspace statistical
estimation. Part I: Theory and schemes. Mon. Weather Rev. 127, 1385-1407.

Lermusiaux, P.F].,, Chiu, C.-S., 2002. Four-dimensional data assimilation for coupled
physical-acoustical fields. In: Pace, N.G., Jensen, FB. (Eds.), Impact of Littoral
Environmental Variability on Acoustic Predictions and Sonar Performance. Kluwer
Acad. Pub., Dordrecht, The Netherlands.

Lermusiaux, P.FJ., Anderson, D.G.M., Lozano, CJ., 2000. On the mapping of multivariate
geophysical fields: error and variability subspace estimates. The Quarterly Journal
of the Royal Meteorological Society, pp. 1387-1430. April B.

Lermusiaux, P.EJ., Chiu, C.-S., Robinson, A.R., 2002. Modeling uncertainties in the
prediction of the acoustic wavefield in a shelfbreak environment. In: Shang, E.-C., Li,
Q., Gao, T.F. (Eds.), Proc. of the 5th International conference on theoretical and
computational acoustics. World Scientific Publishing Co., Singapore, pp. 191-200.
May.

Lermusiaux, P.EJ., Chiu, C.-S., Gawarkiewicz, G.G., Abbot, P., Robinson, A.R., Miller, R.N.,
Haley, PJ., Leslie, W.G., Majumdar, S.J., Pang, A., Lekien, F., 2006a. Quantifying
uncertainities in ocean predictions. In: Paluszkiewicz, T., Harper, S. (Eds.),
Oceanography, Special issue on “Advances in Computational Oceanography”.
vol. 19, pp. 92-105. 1.

Lermusiaux, P., Malanotte-Rizzoli, P., Stammer, D., Carton, J., Cummings, J., Moore, A.,
2006b. In: Paluszkiewicz, T., Harper, S. (Eds.), Progress and prospects of u.s. data
assimilation in ocean research. Oceanography, vol. 19, pp. 172-183. 1, special issue
on “Advances in Computational Oceanography”.

Lermusiaux, P.F]., Haley, PJ., Yilmaz, N.K, 2007. Environmental prediction, path
planning and adaptive sampling: sensing and modeling for efficient ocean
monitoring, management and pollution control. Sea Technol. 48 (9), 35-38.

Leslie, W.G., Robinson, A.R,, Haley, PJ.,, Logutov, O., Moreno, PA., Lermusiaux, P.F].,
Coelho, E., 2008. Verification and training of real-time forecasting of multi-scale
ocean dynamics for maritime rapid environmental assessment. ]. Mar. Syst. 69,
3-16.

Logutov, O.G., Lermusiaux, P.E]J., 2008. Inverse barotropic tidal estimation for regional
ocean applications. Ocean Model. 25, 17-34. doi:10.1016/j.ocemod.2008.06.004.

Makris, N.C., Ratilal, P., Symonds, D.T., Jagannathan, S., Lee, S., Nero, RW., 2006. Fish
Population and Behavior Revealed by Instantaneous Continental Shelf-Scale
Imaging. Science 311, 660-663 Feburary.

Onken, R., Robinson, A.R., Kantha, L., Lozano, CJ., Haley, PJ., Carniel, S., 2005. A rapid
response nowcast/forecast system using multiply nested ocean models and
distributed data systems. J. Mar. Syst. 56, 45-66.

Onken, R, Alvarez, A., Fernandez, V., Vizoso, G., Gasterretxea, G., Tintoré, J., Haley, PJ.,
Nacini, E., 2008. A forecast experiment in the balearic sea. J. Mar. Syst. 71, 79-98.

Pace, N.G., Jensen, EB., 2002. Impact of Littoral Environmental Variability on Acoustic
Predictions and Sonar Performance. Kluwer Acad. Pub., The Netherlands.

Pirjanian, P. “Multiple Objective Action Selection and Behavior Fusion,” Ph.D.
dissertation, Aalborg University, 1998.

Popa, D., Sanderson, A., Komerska, R., Mupparapu, S., Blidberg, D., Chappell, S., 2004.
Adaptive sampling algorithms for multiple autonomous underwater vehicles. IEEE/
OES AUV2004: A Workshop on Multiple Autonomous Underwater Vehicle
Operations, Sebasco Estates, Maine.

Pouliquen, E., Kirwan, A., Pearson, R. (Eds.), 1997. Rapid Environmental Assessment,
Proceedings of a conference held in Lerici (SP), Italy, 10-14 March 1997. ser.
SACLANTCEN Conference Proceedings Series CP-44.

Rixen, M., Ferreira-Coelho, E., Signell, R., 2008. Surface drift prediction in the adriatic sea
using hyper-ensemble statistics on atmospheric, ocean and wave models:
uncertainties and probability distribution areas. ]. Mar. Syst. 69, 86-98.

Rixen, M., LeGac, ].-C., Hermand, J.-P., Peggion, G., 2009-this volume. Super-ensemble
forecasts and resulting acoustic sensitivities in shallow waters,” J. Mar. Syst., special
issue on MREA and Coastal processes: challenges for monitoring and prediction.

Robinson, A.R., 1999. Forecasting and simulating coastal ocean processes and
variabilities with the Harvard Ocean Prediction system. Coastal Ocean Prediction,
ser. AGU Coastal and Estuarine Studies Series. AGU, pp. 77-100.

Robinson, A.R., Sellschopp, J., 2002. Rapid assessment of the coastal ocean environment.
In: Pinardi, N., Woods, ]. (Eds.), Ocean Forecasting: Conceptual Basis and
Applications. Springer, pp. 203-232.

Robinson, A.R., Lermusiaux, P.F]., Sloan, N.Q., 1998. Data assimilation. The Sea: The
Global Coastal Ocean, vol. 10, pp. 541-594.

Robinson, A.R., Abbot, P., Lermusiaux, P.EJ., Dillman, L., 2002. Transfer of uncertainties
through physical-acoustical-sonar end-to-end systems: a conceptual basis. In: Pace,
N.G., Jensen, FB. (Eds.), Impact of Littoral Environmental Variability on Acoustic
Predictions and Sonar Performance. Kluwer Acad. Pub., Dordrecht, The Nether-
lands, pp. 603-610.

Rosenblatt, J.K.,, “DAMN: a distributed architecture for mobile navigation,” Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, PA, 1997.

Schmidt, H., 2002. AREA: adaptive rapid environmental assessment. In: Pace, N.G.,
Jensen, EB. (Eds.), Impact of Littoral Environmental Variability on Acoustic
Predictions and Sonar Performance. Kluwer Acad. Pub., Dordrecht, The Nether-
lands, pp. 587-594.

Schmidt, H., Bellingham, J.G., Elisseef, P., 1997. Acoustically focused oceanographic
sampling in coastal environments. In: Pouliquen, E., Kirwan, A.D., Pearson, R.T.
(Eds.), Rapid Environmental Assessment. ser. SACLANTCEN Conference Proc. Series
CP-44, pp. 145-151.

Tolstoy, A., Jesus, S., Rodriguez, 0., 2002. Tidal effects on MFP via the INTIMATE96 test.
In: Pace, N.G., Jensen, EB. (Eds.), Impact of Littoral Environmental Variability on
Acoustic Predictions and Sonar Performance. Kluwer Acad. Pub., Dordrecht, The
Netherlands, pp. 457-464.

Wang, D., “Adaptive Rapid Environmental Assessment System Simulation Framework,”
Master Thesis, Massachusetts Institute of Technology, December 2004.

Wang, D., “Autonomous Underwater Vehicle (AUV) Path Planning and Adaptive On-
board Routing for Adaptive Rapid Environmental Assessment,” PhD Thesis,
Massachusetts Institute of Technology, September 2007.

Wang, D., Lermusiaux, P.F]., Haley, PJ., Leslie, W.G., Schmidt, H., 2006. Adaptive
acoustical-environmental assessment for the focused acoustic field-05 at-sea
exercise. Proceedings of [EEE/MTS Oceans'06 Conference, Boston, MA, pp. 175-187.

Xu, J., Lermusiaux, P.F]., Haley Jr.,, PJ., Leslie, W.G., Logutov, O.G., 2008. Spatial and
Temporal Variations in Acoustic propagation during the PLUSNet'07 Exercise in
Dabob Bay. Acoustical Society of America. Proceedings of Meetings on Acoustics
(POMA). 155th Meeting, vol. 4., 11pp. doi:10.1121/1.2988093.

Yilmaz, N.K., Evangelinos C., Lermusiaux, P.F]., Patrikalakis, N., 2008. Path Planning
of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed
Integer Linear Programming. IEEE Transactions, Journal of Oceanic Engineering,
vol. 33 (4) pp. 522-537. doi:10.1109/JOE.2008.2002105.


http://dx.doi.org/10.1016/j.ocemod.2008.06.004
http://dx.doi.org/doi:10.1121/1.2988093
http://dx.doi.org/doi:10.1109/JOE.2008.2002105

	Acoustically focused adaptive sampling and on-board routing for marine rapid environmental asse.....
	Introduction
	AREA
	Integrating AREA with AOSN
	Autonomous sensor platforms
	Autonomous underwater vehicles
	Autonomous surface craft

	The MOOS-IvP autonomy architecture
	The IvP helm and vehicle behaviors
	Behavior-based control with interval programming
	Adaptive sampling behaviors and processes
	pThermotrack
	Adaptive Yo-Yo behavior
	Waypoint behavior



	Results of the FAF05 exercise: methods, schemes and simulations
	Real-time coupled oceanographic and acoustic simulations
	Ocean modeling
	Acoustic modeling coupled to ocean-seabed modeling

	Onboard Adaptive Yo-Yo control scheme
	Adaptive sampling scheme: prior optimization of Yo-Yo parameters
	Procedures and daily protocol for adaptive sampling and onboard routing
	Real-time coupled ocean physics–acoustic AREA–ESSE
	Evaluation of real-time modeling estimates via independent observations

	Summary and conclusions
	Acknowledgment
	References




