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Abstract

A fundamental requirement in realistic computational geophysical fluid dynamics
is the optimal estimation of gridded fields and of spatial-temporal scales directly
from the spatially irregular and multivariate data sets that are collected by varied
instruments and sampling schemes. In this work, we derive and utilize new schemes for
the mapping and dynamical inference of ocean fields in complex multiply-connected
domains, study the computational properties of our new mapping schemes, and derive
and investigate new schemes for adaptive estimation of spatial and temporal scales.

Objective Analysis (OA) is the statistical estimation of fields using the Bayesian-
based Gauss-Markov theorem, i.e. the update step of the Kalman Filter. The existing
multi-scale OA approach of the Multidisciplinary Simulation, Estimation and Assim-
ilation System consists of the successive utilization of Kalman update steps, one for
each scale and for each correlation across scales. In the present work, the approach
is extended to field mapping in complex, multiply-connected, coastal regions and
archipelagos. A reasonably accurate correlation function often requires an estimate
of the distance between data and model points, without going across complex land-
forms. New methods for OA based on estimating the length of optimal shortest sea
paths using the Level Set Method (LSM) and Fast Marching Method (FMM) are
derived, implemented and utilized in general idealized and realistic ocean cases. Our
new methodologies could improve widely-used gridded databases such as the climato-
logical gridded fields of the World Ocean Atlas (WOA) since these oceanic maps were
computed without accounting for coastline constraints. A new FMM-based method-
ology for the estimation of absolute velocity under geostrophic balance in complicated
domains is also outlined. Our new schemes are compared with other approaches, in-
cluding the use of stochastically forced differential equations (SDE). We find that our
FMM-based scheme for complex, multiply-connected, coastal regions is more efficient
and accurate than the SDE approach. We also show that the field maps obtained us-
ing our FMM-based scheme do not require postprocessing (smoothing) of fields. The
computational properties of the new mapping schemes are studied in detail. We find
that higher-order schemes improve the accuracy of distance estimates. We also show
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that the covariance matrices we estimate are not necessarily positive definite because
the Weiner Khinchin and Bochner relationships for positive definiteness are only valid
for convex simply-connected domains. Several approaches to overcome this issue are
discussed and qualitatively evaluated. The solutions we propose include introducing
a small process noise or reducing the covariance matrix based on the dominant sin-
gular value decomposition. We have also developed and utilized novel methodologies
for the adaptive estimation of spatial-temporal scales from irregularly spaced ocean
data. The three novel methodologies are based on the use of structure functions, short
term Fourier transform and second generation wavelets. To our knowledge, this is the
first time that adaptive methodologies for the spatial-temporal scale estimation are
proposed. The ultimate goal of all these methods would be to create maps of spatial
and temporal scales that evolve as new ocean data are fed to the scheme. This would
potentially be a significant advance to the ocean community for better understanding
and sampling of ocean processes.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Associate Professor
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Chapter 1

Introduction and Motivation

The statistical estimation theory of Objective Analysis (OA) was introduced by

Gandin (1965) to the field of meteorology and was extended to oceanography by

Bretherton et al. (1976). The theory is based on the Gauss-Markov theorem (Plackett,

1950), and it provides a sound basis for interpolating irregularly spaced data onto a

computational grid. Upto details of the set-up, which are specific to the oceanic and

atmospheric fields, the OA scheme is equivalent to utilize the Kalman update steps

of the Kalman Filter to grid the irregularly-spaced data. Specifically, the data is

gridded based on the specified prior field estimate and error covariance matrices. The

OA methodology has been well formulated for open oceans without any landforms

(convex simply-connected domains), but the OA in complex coastal regions (multiply-

connected domains) is one of the ‘last’ mapping problems which remains to be studied

in detail. This is one of the main research question of the present work.

Our OA research is carried out within the Multidisciplinary Simulation, Esti-

mation and Assimilation System (MSEAS) group. MSEAS (http://mseas.mit.edu)

consists of a set of mathematical models and computational methods for ocean predic-

tions and dynamical diagnostics, for optimization and control of autonomous ocean

observation systems, and for data assimilation and data-model comparisons. It is

used for basic and fundamental research and for realistic simulations and predictions

in varied regions of the world’s ocean, recently including monitoring (Lermusiaux,

2007), naval exercises including real-time acoustic-ocean predictions (Xu et al., 2008)
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and environmental management (Cossarini et al., 2009). Several different models are

included in the MSEAS, including a new free-surface primitive-equation dynamical

model which uses two-way nesting free-surface and open boundary condition schemes

(Haley et al., 2008). This new free-surface code is based on the primitive-equation

model of the Harvard Ocean Prediction System (HOPS). Additionally, barotropic

tides are calculated from an inverse tidal model (Logoutov, 2008).

In MSEAS, the Kalman updates for data gridding are carried out successively,

from the largest scale (uniform mean prior) to the smallest scale, using a sequential

processing of observations and scale separation. In a two-scale version, a two-staged

OA approach (Lermusiaux, 1997, 1999a) maps the scarcely available data onto oceanic

fields in two steps: the larger and the smaller scale steps. The two main requirements

for the Objective Analysis based on a Kalman update (also called the Gauss Markov

estimation theory) are the statistical description of the field being estimated and the

observational noise covariance. While observational noise statistics is dependent on

the measurement sensor, the knowledge of the field statistics does not come easily

in oceanography due to the scarcity of observations. A description of field statistics

is often provided by a simple analytical correlation function which depends on the

spatial separation distance and the spatial-temporal scales (Carter and Robinson,

1987). Other schemes also utilize dynamical models to construct covariances.

Our research study on Objective Analysis for coastal regions has been motivated

by the Philippines Straits Dynamics Experiment (PhilEx) sponsored by the Office of

Naval Research. The goal of PhilEx is to enhance understanding of the oceanographic

processes and features arising in and around straits, and to improve the capability

to predict the inherent spatial and temporal variability of these regions using models

and advanced data assimilation techniques. There are several examples of Objective

Analysis in coastal regions (Hessler, 1984, Stacey et al., 1988, Paris et al., 2002), but

the methodologies employed in these examples do not satisfy coastline constraints

(e.g. there should be no direct relationship across landforms).

New methodologies for field (e.g. temperature, salinity, biology, and velocity)

mapping in complex multiply-connected coastal domains and archipelagos are derived
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and demonstrated in this work. These methodologies will likely be very useful in im-

proving the World Ocean Atlas (WOA) climatologies in complex multiply-connected

domains. The WOA provides global ocean climatology containing monthly, seasonal

and annual means of temperature (T) and salinity (S) fields at standard ocean depths.

The temperature and salinity climatologies presented as part of the WOA (Levitus,

1982), which is also termed as ‘Levitus Climatology’ and its atlas updates in 1994

(Levitus and Boyer, 1994, Levitus et al., 1994), 1998 (Antonov et al., 1998a,b,c, Boyer

et al., 1998a,b,c), 2001 (Stephens et al., 2002, Boyer et al., 2002) and 2005 (Locarnini

et al., 2006, Antonov et al., 2006, Garcia et al., 2006a,b) have proven to be valuable

tools for studying the hydrographic structures of the World’s oceans. The WOA

climatologies have been very useful for providing initial and boundary conditions to

ocean circulation models. As its MSEAS counterpart, the OA procedure for ‘Levi-

tus Climatology’ requires the use of an analytical correlation function to determine

the covariance (or weight function, as described by Levitus (1982)). If the “straight

Euclidean distance” (the straight line distance between two points) is used in such

analytical correlation functions, the distance estimate is inappropriate for complex

multiply-connected domains, as this “straight Euclidean distance” goes across land

and so violate the coastline constraints. An appropriate measure of distance to be

used in the correlation function for OA in such complex multiply-connected regions

should be longer. It is nonetheless the length of the optimal shortest sea path i.e.,

the shortest path without going across complex landforms.

Such an optimal shortest sea path in complex multiply-connected regions can

be obtained using the following numerical techniques: the Level set method (LSM)

(Osher and Sethian, 1988, Sethian, 1999b) and the Fast Marching Method (FMM)

(Sethian, 1996, 1999b). These methods model the propagation of evolving boundaries

using appropriate PDE’s. They have been applied in both the Philippines Archipelago

and Dabob Bay (WA, USA) regions. They are also compared to the SDE approach

proposed by Lynch and McGillicuddy (2001). Other optimization methods for path

planning, for example Dikjstra’s algorithm (Bertsimas and Tsitsiklis, 1997) and Bre-

senham line algorithm (Bresenham, 1965) could also be used for mapping in complex
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domains, but our FMM and LSM schemes are shown to be computationally more

efficient and more accurate. The optimal path length can also be used in conjunction

with the methodology proposed by Lermusiaux et al. for three-dimensional, mul-

tivariate and multi-scale spatial mapping of geophysical fields and their dominant

errors (Lermusiaux et al., 1998, 2000, Lermusiaux, 2002) in coastal regions. This

method reduces the dimension of the error covariance matrices by focusing on the

error subspace formed by dominant eigen-decomposition of the a-priori covariance

(Lermusiaux and Robinson, 1999).

The new LSM and FMM schemes are also used in this work to estimate the mini-

mum vertical area along any path between two islands. Vertical areas across landforms

are needed to compute the transport streamfunction along the island coastlines, which

minimizes the inter island transport. Such estimates of the transport streamfunction

will aid in the computation of absolute velocity under geostrophic balance (Wunsch,

1996) in complex domains with islands.

Computational properties of the new mapping schemes are also investigated in de-

tail. To reduce the computational cost and to understand the impact of the individual

data, sequential processing of observations (Parrish and Cohn, 1985, Cho et al., 1996)

is discussed utilized. By definition, the prior covariance matrix should be positive

definite. According to the Wiener-Khinchin and Bochner theorem (Papoulis, 1991,

Yaglom, 2004, Dolloff et al., 2006), the covariance matrix based on analytical correla-

tion function will be positive definite if a Fourier transform (or the spectral density of

the correlation function) is non-negative for all frequencies. These theorems are valid

only for convex simply-connected domains. In our complex multiply-connected do-

mains, the covariance matrix may become negative due to: a. Numerical error in the

computation of the optimal path length using our new FMM/LSM based schemes b.

The presence of landforms. These issues may lead to divergence problems (Brown and

Hwang, 1997) of field mapping schemes. Therefore, the following two questions were

resolved and investigated: a). What are the computational errors in optimal path

lengths computed using the FMM/LSM and how can they be reduced? b). What are

the computational issues including non-positive definite covariances that arise in a
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multiply-connected coastal domain and how can they be remedied? These computa-

tional studies were indispensable for the development of our novel FMM/LSM based

scheme for complex multiply-connected domains.

Apart from the OA research, another major question for ocean studies is the

estimation of spatial and temporal scales from irregular ocean field measurements.

Such scale estimation is potentially a significant advance to the ocean community

for better understanding and sampling of ocean processes. The issue is that this is a

challenging problem, especially because of the irregular properties of the data but also

due to the multi-scale turbulent and/or intermittent ocean dynamics. The knowledge

of the spatial-temporal scales is linked to our OA results: it provides a direct estimate

of parameters needed for the analytical correlation function. These scales can also

be used to obtain a measure of the internal Rossby radius of deformation, another

relevant length scale in atmospheric and ocean sciences. The internal Rossby radius is

the length scale at which rotational effects become as important as buoyancy effects.

We have proposed and implemented novel methods for adaptive spatial-temporal

scale estimation from irregular field measurements. The ultimate goal of these new

methods would be to create maps of spatial and temporal scales that evolve as ocean

data are collected or are fed to to the scale estimation scheme, all without having

to map the data. Denman and Freeland (1985) proposed an approach for estimating

scales using the so-called structure function. We have further developed this approach,

which is based on using the structure function and the non-linear least square fitting

methods, to obtain adaptive scale estimates that vary in space and time. If the signal

is stationary, i.e. the scales do not change with time, then the Fourier analysis can

be very useful tool for scale estimation. Fourier analysis is valid only for stationary

signals, but short term Fourier transforms (STFT) can be used for non-stationary

signals as well, even though it has some resolution problems. We have proposed a

new method for adaptive scale estimation based on STFT and have illustrated the

method using chirp signal data. Wavelet Analysis is another approach which helps in

overcoming the resolution issues, and which can potentially be very useful for adaptive

scale estimation. However, the limitation of classic wavelet analysis and STFT is in
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dealing with the irregularly sampled ocean data. Using adaptive methods based on

second generation wavelets (Sweldens, 1998, Jansen and Oonincx, 2005), which are

applicable to irregularly sampled and non-dyadic data sets, to learn the largest and

the most energetic scales from the irregularly spaced ocean data is discussed and

exemplified using a chirp signal data set.

In Chapter 2, we review the two staged multi-scale static field mapping approach

from MSEAS and the Objective Analysis scheme used for ‘Levitus Climatology’.

In Chapter 3, we derive and utilize the new OA methodologies based on the Level

Set Method and the Fast Marching Method and compare them to existing schemes

including the OA based on the stochastically forced differential equations. A new

optimization approach is proposed for computing the transport streamfunction and

absolute velocity under geostrophic balance by minimizing the inter-island transport.

In Chapter 4, applications of our new methodologies, for the complex regions of

Dabob Bay and Philippines Archipelago are presented. In Chapter 5, we study the

computational properties of our new mapping schemes. Chapter 6 introduces our

novel methodologies for adaptive scale estimation including the use of the structure

function, the use of STFT and the use of second generation wavelets. Chapter 7

consists of a summary and conclusions.
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Chapter 2

Objective Analysis Approach

The multi-scale OA approach from MSEAS (Section 2.1) and the approach for

‘Levitus Climatology’ (Section 2.2) for field mapping are summarized in this Chapter.

These approaches, which require the computation of Euclidean distance, are well

established for mapping heterogeneous, multivariate, irregular data (Gandin, 1965,

Bretherton et al., 1976, Carter and Robinson, 1987, Daley, 1993) in open oceans

without islands or archipelagos as well as in atmospheric sciences.

2.1 Multi-scale static field estimation: MSEAS

Objective Analysis

The two staged OA approach (Lermusiaux, 1997, 1999a) in MSEAS, utilizes the

Gauss-Markov or minimum error variance criterion (Plackett, 1950) to map observa-

tions to the numerical grid. Let us denote the vector of numerical grid point locations

as x and the vector of measurement locations as X, then the OA estimate of the field

(ψOA) based on the background field (ψ̄,d̄) is given by:

ψOA = ψ̄ + Cor(x,X)[Cor(X,X) + R]−1[d− d̄]

= ψ̄ + K[d− d̄] (2.1)
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where, d̄ = Hψ̄, H is the observation matrix, d is the sensor data vector, R is the

observational error covariance matrix, and Gain (K) is given by:

K = Cor(x,X)[Cor(X,X) + R]−1 (2.2)

The error covariance of the estimated field is given by:

POA = E[(x− E[x])(x− E[x])T ]

= Cor(x,x)− Cor(x,X)[Cor(X,X) + R]−1Cor(X,x)

= Cor(x,x)−KCor(X,x). (2.3)

A comparison between the MSEAS update equations (OA) and the Kalman filter

update equations is made in Table 2.1.

Kalman Filter Update Equations MSEAS Update equations (OA)
Kalman gain: OA estimator:
Kt=Pt|t−1Ht

T[HtPt|t−1Ht
T+Rt]

−1 Gain = Cor(x,X)[Cor(X,X) + R]−1

State estimate update equation: State estimate update equation:
x̂t = x̂t|t−1 +Kt(yt −Htx̂t|t−1) ψOA = ψ̄ +Gain[d− d̄].
Error Covariance equation: Error Covariance equation:
Pt = (I −KtHt)Pt|t−1 POA = Cor(x,x)−Gain× Cor(X,x)

Table 2.1: Comparison between the Kalman Filter and MSEAS OA update equations

Thus, the update equations of OA are equivalent to the update equations of the

discrete Kalman filter (KF) algorithm where the background error correlation matrix

for the field-to-data points, Cor(x,X), and the background correlation matrix at the

data points, Cor(X,X), are directly related to the KF a priori error covariance matrix

Pt|t−1 i.e. Cor(x,X) = Pt|t−1H
T
t and Cor(X,X) = HtPt|t−1H

T
t (Ht is the observation

matrix). The matrix R represents the error covariance for the sensor data d at the

data points. This matrix is often chosen diagonal with a uniform non-dimensional er-

ror variance ε2, i.e. R = ε2I. In MSEAS, the correlation matrices are often generated
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from the following isotropic function:

Cor(r) =

(
1− r2

L2
0

)
exp

[
−0.5× (

r2

L2
e

+
∆t2

τ 2
)

]
(2.4)

Here, ∆t is the difference between the observation and the estimation time and τ is

the decorrelation time scale. The parameters L0 and Le are the zero-crossing and the

e-folding length scales. The scalar r is the spatial separation distance. The Euclidean

distance does not satisfy coastline constraints. So, the use of the optimal distance

(the minimum distance between two points without going across complex landforms)

is proposed. LSM or FMM can be utilized to obtain such optimal distance between

any two points in a complex (for example, multi-island) multiply-connected coastal

region. These methods are efficient and accurate solvers for optimal distances in

multiply-connected complex domains and satisfy coastline constraints.

The MSEAS OA is carried out in two stages. In the first stage, the largest dynam-

ical scales are mapped onto computational grid using the parameters (τ , L0, Le)LS.

The background field for this stage is often chosen to be constant and equal to the

horizontal mean of all the observations. In the second stage, the smaller scales are

mapped using the coefficients (τ , L0, Le)ME often corresponding to the most energetic

(meso) scales. The background field for this stage is the first stage OA. The block

diagram for the two staged MSEAS OA is shown in Figure C-1. A major assumption

in this OA approach is that the errors in the largest and the most energetic stages are

statistically independent. The accuracy of the field estimates obtained using OA also

depends on the spatial and time scale parameters used in the analytical correlation

function, as well as the correlation function itself.

2.2 Objective Analysis approach for the ‘Levitus

Climatology’

The objective analysis scheme used for ‘Levitus Climatology’ (Levitus, 1982, Lo-

carnini et al., 2006, Antonov et al., 2006, Garcia et al., 2006a,b) has its origins in the

27



work of Cressman (1959) and Barnes (1964). This scheme is based on adding “correc-

tions”, which are computed as a distance-weighted mean of all grid point difference

values, to the first-guess field. Initially, the World Ocean Atlas 1994 (WOA94) used

the Barnes (1973) scheme which requires only a single “correction” to the first-guess

field at each grid point in comparison to the successive correction method of Cress-

man (1959) and Barnes (1964). This was done to reduce the computing time. Barnes

(1994) suggests using the multi-pass analysis when computing time is not an issue.

The analysis scheme used in WOA98, WOA01 and WOA05 is a three-pass “correc-

tion” scheme. The inputs to this analysis scheme are one-degree square means of the

observed data values, and a first-guess field. The difference between the observed

mean and the first-guess field is then computed. An influence radius is specified

next and a correction to the first-guess value at all the grid points is computed as a

distance-weighted mean of all the grid point difference values that lie within the area

around the grid point defined by the influence radius. Mathematically, the correction

factor derived by Barnes (1964) is given by:

Ci,j =

∑d
s=1WsQs∑d
s=1 Ws

(2.5)

where,

(i, j) - coordinates of a grid point in east-west and north-south directions respectively;

Ci,j - correction factor at the grid point coordinates (i, j);

d - the number of data points that fall within the area around point (i, j) defined by

the influence radius;

Qs - difference between the observed mean and the first-guess at the Sth data point

in the influence area;

Ws = exp(−Er2/R2) (for r ≤ R; Ws = 0 for r > R) ≡ Correlation weight;

r - distance of observation from grid point;

R - influence radius;

E = 4.

At each grid point, the analyzed value Gi,j is the sum of the first guess Fi,j and

28



the correction Ci,j. The expression is:

Gi,j = Fi,j + Ci,j (2.6)

If there is no data within the area defined by the influence radius, the correction is

zero and the analyzed value of the field is the same as the first-guess. The analysis

scheme is set up such that the inference radius can be varied in each iteration. To

progressively analyze the smaller scale phenomena with each iteration, the analysis

begins with a large inference radius which is decreased gradually with each iteration.

Equation 2.6 can also be expressed in the matrix form, which is given by

G = F + [diag(Wed)]
−1WQ (2.7)

Here n is the number of model points, the analyzed field G and the first guess F are

n-by-1 vectors, the correlation weight matrix W is a n-by-d matrix, the difference

between the observed mean and the first-guess at the data point Q is a d-by-1 vector

and ed is a d-by-1 vector with unit entities. The operation diag(v) creates a diagonal

matrix i.e. it puts the vector v on the main diagonal.

Analogous to the Kalman Gain (K) from the Gauss Markov criterion (K =

Cor(x,X)[Cor(X,X) + R]−1), Equations 2.7 and 2.1 show that a similar Gain ma-

trix (KL = [diag(Wed)]
−1W) can be defined for the Levitus methodology. While the

multi-scale OA approach in MSEAS is based on Gauss Markov estimation theory,

the Levitus OA is based on estimating the field by computing the distance-weighted

mean of all grid point difference values (between the mean and first-guess field) in

the inference radius and then adding it to the first-guess field. Thus, the choice of

first guess-field is very important in the ‘Levitus OA’ analysis. On the other hand,

in Gauss Markov estimation, the first-guess field is often the mean of the data values

and the correction is made in the Kalman update step by computing the difference

between the data and the interpolated value of the first-guess on the data location.

The Gauss Markov estimation theory also requires the knowledge of error covariance

of the observation noise (R).
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The above approaches for MSEAS OA and ‘Levitus Climatology’, which are based

on computing the covariance or the weight factors by providing Euclidean distance as

an input to the correlation function, are valid only for open oceans. New methodolo-

gies based on computing the length of the optimal path using the Level Set Method

and the Fast Marching Method are discussed in Chapter 3.
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Chapter 3

OA methodologies in complex

coastal regions and archipelagos

This chapter describes the new methodologies for Objective Analysis in complex

multiply-connected coastal regions and compares them to previous methods. The

new methodologies are based on finding the length of the optimal path using the

Level Set Method and the Fast Marching Method, as described in Section 3.1. In

Section 3.2, we discuss other methods including the methodology proposed by Lynch

and McGillicuddy (2001) based on using the stochastically forced differential equation

(SDE) for the field and the methodology based on using the SDE for the covariance

(Logoutov, Lermusiaux, personal communication). An improved version of the op-

timization methodology proposed by Haley and Lermusiaux (2009), for estimating

the inter-island transport and for estimating the absolute velocity under geostrophic

balance in multiply-connected coastal regions is presented in Section 3.3.

3.1 Novel Objective Analysis Methodologies based

on optimal path length

The optimal path in a domain having complex multiply-connected islands and

archipelagos is defined as the shortest path between two points without going across
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landforms. Optimization method like Dijkstra’s algorithm (Bertsimas and Tsitsiklis,

1997) can be utilized to obtain the optimal path length. Apart from being computa-

tionally expensive, Dijkstra’s method is also inaccurate. The accuracy of FMM and

LSM is illustrated in Figure C-2 where it is compared to the optimization method

(Dijkstra’s method with norm p = 2) for optimal distance computations in a complex

domain (Takei, 2006). Another classic method for approximately computing the opti-

mal path length is the Bresenham line algorithm (Bresenham, 1965). This algorithm

is used for computer control of a digital plotter. In the oceanic context, the modified

Bresenham line algorithm can be used to obtain the length of the optimal path. The

modified algorithm is explained using Figure C-3, which has a complex island in the

domain. To compute the length of the optimal path between the points A and B in

Figure C-3, a straight line connecting the two points is drawn. Since the optimal path

does not go across landforms, the straight line path is modified such that it goes along

the boundary of the island upon hitting the island. The optimal path between the

points A and B is drawn in Figure C-3. The limitation of the Bresenham algorithm,

apart from being computationally expensive, is that the optimal path length com-

puted using this algorithm is discontinuous. Again, this is illustrated in Figure C-3.

The straight line between points A and C does not intersect the complex island, and

therefore the straight line path is the optimal path. However, it is clearly observed

from Figure C-3 that the length of the optimal path, which is computed from the

Bresenham line algorithm, between points A and B is significantly larger than the

length of the optimal path between points A and C. Since, points B and C are not

very far from each other, the length of the true optimal path between points A and

B and between points A and C should not differ significantly. This example clearly

illustrates the limitation of the Bresenham line algorithm for computing the optimal

path in the oceanic context.

We propose to utilize the methodology based on using level sets for computing

the length of the optimal path. The novel Objective Analysis methodology based on

computing the length of the optimal path using the Level Set Method is discussed

in Section 3.1.1 and the methodology based on using the Fast Marching Method is
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discussed in Section 3.1.2. These methods can efficiently and accurately compute the

optimal path length.

3.1.1 Objective Analysis using the Level Set Method (LSM)

A level set of a real-valued function φ of n variables is a set of the form:

{(x1, ..., xn)|φ(x1, ..., xn) = c} (3.1)

where, c is a constant. That is, a level set is the set where the function φ takes on a

given constant value c.

Osher and Sethian (1988), Sethian (1999b) proposed a numerical technique, which

is called the Level Set Method, to implicitly represent and model the propagation of

evolving interfaces under the influence of a given velocity field using appropriate

partial differential equations (PDE’s). An initial value formulation describing the

interface motion is now discussed. The initial position of interfaces are given by level

sets of the function φ. The evolution of this function φ is linked to the propagation

of the interface through a time-dependent level set equation. Interfaces can be rep-

resented explicitly (parametrized interfaces i.e. interfaces given by x = x(s), where

s is the parameter) or implicitly (interfaces given by zero level set i.e. φ(x) = 0).

Using the implicit representation φ(x), where x is the position vector, the convection

equation can be solved to propagate level sets by a velocity field v:

φt + v.∇φ = 0 (3.2)

In many cases, one is interested only in the motion normal to the boundary. Therefore,

the velocity v can be represented using the scalar speed function F and the normal

direction n. Thus.

v = Fn = F
∇φ
|∇φ|

(3.3)
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The hyperbolic, non-linear (Hamilton-Jacobi equation) level set equation, obtained

from Equations 3.2 and 3.3, is given by:

φt + F |∇φ| = 0 (3.4)

The following first order upwinded finite difference approximation can be used to

numerically solve the level set equation (2-dimensional in space) (Osher and Sethian,

1988, Sethian, 1999b):

φn+1
i,j = φni,j −∆t[max(F, 0)∇+

i,j +min(F, 0)∇−i,j]

where,

∇+
i,j = [max(D−xφni,j, 0)2 +min(D+xφni,j, 0)2 +

max(D−yφni,j, 0)2 +min(D+yφni,j, 0)2]1/2

∇−i,j = [min(D−xφni,j, 0)2 +max(D+xφni,j, 0)2 +

min(D−yφni,j, 0)2 +max(D+yφni,j, 0)2]1/2 (3.5)

Here, D−x is the first order backward difference operator in the x-direction; D+x is

the first order forward difference operator in x-direction, etc. Mathematically, these

operators are given by:

D−xφi,j =
φi,j − φi−1,j

∆x
; D+xφi,j =

φi+1,j − φi,j
∆x

(3.6)

The level set equation is an initial value problem which tracks the evolution of the

level sets φ=constant assuming F is given by the specifics of the evolution of the φ

for a particular problem.

If the scalar speed function of the front F is non-negative, then the steady state

boundary value problem, known as the Eikonal equation, can be formulated to evalu-

ate the arrival time function T(x). The Eikonal equation representing the time T(x)
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for the “frontal interface” to reach the position x from its initial position is given by:

F |∇T | = 1 (3.7)

The Eikonal equation simply states that the gradient of the arrival time function is

inversely proportional to the speed of the front. To solve the Eikonal equation, a

time dependent problem is proposed. The time evolved steady state solution of the

resultant Hamilton-Jacobi equation is the Eikonal equation. Mathematically, this is

written as:

Tt + F |∇T | = 1
steady−→ F |∇T | = 1 (3.8)

This Hamilton-Jacobi equation (Equation 3.8 (Left)) can be discretized using the nu-

merical scheme for the Level Set equation. The steady state solution of this Hamilton-

Jacobi equation will be the solution of the Eikonal equation (Equation 3.8 (Right)).

The Level Set Method has been used in a wide variety of applications which in-

clude the arrival time problems in the control theory, generation of minimal surfaces,

flame propagation, fluid interfaces, shape reconstruction etc. In the oceanic context,

the method can be used to determine the optimal distance defined here as the mini-

mum distance between two points without going across complex landforms.

Numerics and operation count for the LSM: MATLAB code has been devel-

oped for Objective Analysis using the Level Set Method. For estimating the optimal

distance, the scalar speed function F is set to 0 for the grid points on the land and 1

for the grid points on the water. The level set T(x), which is the arrival time func-

tion, also represents the optimal distance from the starting position to the position

vector x for the above speed function F . The above OA approach, which is based on

computing the evolution of all the level sets and not simply the zero level set corre-

sponding to the front itself, has an operation count of O(N3) in two dimensions for

N2 grid points (Sethian, 1999b). Thus, it is a computationally expensive technique

since an extra dimension has been added to the problem.

A modified approach named ‘Fast Marching level set method’, which significantly
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reduces the operation count, is described in the next section. Roughly speaking, the

two possible ways to view these solution techniques are either iteration towards the

solution, or direct construction of the stationary solution T. While LSM constructs

the solution to the Eikonal equation (Equation 3.7) by iterating towards the solution,

FMM is based on direct construction of the stationary solution T.

3.1.2 Objective Analysis using the Fast Marching Method

(FMM)

The Fast Marching Method (FMM) for monotonically advancing fronts, which has

been proposed by Sethian (1996, 1999b), is described in this section. This method

leads to an extremely fast scheme for solving the Eikonal equation (Equation 3.7).

The Level set method, which is described in Section 3.1.1, relies on computing the

evolution of all level sets by solving an initial value partial differential equation us-

ing numerical techniques from hyperbolic conservation laws. As an alternative, an

efficient modification is to perform the work only in the neighborhood of the zero

level set, as this is known as the ‘narrow band approach’. The basic idea of this

alternative approach is to tag the grid points as either “alive”, “land mines” or “far

away” depending on whether they are inside the band, near its boundary, or outside

the band, respectively. The work is performed only on alive points, and the band is

reconstructed once the land mine points are reached.

FMM, which allows boundary value problems to be solved without iterations, is

now discussed in detail. The method is applicable to monotonically advancing fronts

(i.e. the front speed (F ≥ 0 or F ≤ 0 ) which are governed by the level set equation

(Equation 3.8). The steady state form of the level set equation is the Eikonal equation

(Equation 3.7) which says that the gradient of the arrival time surface is inversely

proportional to the speed of the front. For the two dimensional case, the stationary

boundary value problem is given by:

|∇T |F (x, y) = 1 s.t. Γ = {(x, y)|T (x, y) = 0} (3.9)
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where Γ is the starting position of the interface. The first order finite difference

discretization form of the Eikonal equation (Sethian, 1999b) at the grid point (i,j) is

given by:

[max(D−xij T, 0)2 +min(D+x
ij T, 0)2 +max(D−yij T, 0)2 +min(D+y

ij T, 0)2]1/2 =
1

Fij

or,

[max(max(D−xij T, 0),−min(D+x
ij T, 0))2 +

max(max(D−yij T, 0),−min(D+y
ij T, 0))2] =

1

F 2
ij

(3.10)

Equation 3.10 is essentially a quadratic equation for the value at each grid point

(assuming that values at the neighboring nodes are known). An iterative algorithm for

computing the solution to Equation 3.10 was introduced by Ruoy and Tourin (1992).

FMM is based on the observation that the upwind difference structure of Equation

3.10 means that the information propagates “one way”, i.e. from the smaller values

of T to the larger values. Therefore, FMM rests on solving Equation 3.10 by building

the solution outward from the smallest time value T. The front is swept ahead in an

upwind manner by considering a set of points in a narrow band around the existing

front and bringing new points into the narrow band structure. The fast marching

algorithm is:

1. Initialize

(a) Alive points: Let A be the set of all grid points (i,j) on the starting position

of the interface Γ; set Tij = 0 for all points in A.

(b) Narrow Band points: Let the Narrow Band be the set of all grid points

(i,j) in the immediate neighborhood of A; set Tij = d
Fij

for all points in the

Narrow Band where, d is the grid separation distance.

(c) Far Away points: Let the Far Away region be the set of all remaining grid

points (i,j); set Tij =∞ for all points in the Far Away region.
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2. Marching Forward

(a) Begin Loop: Let (imin,jmin) be the point in the Narrow Band with the

smallest value for T.

(b) Add the point (imin,jmin) to A; remove it from the Narrow Band.

(c) Tag as neighbors any points (imin−1,jmin), (imin+ 1,jmin), (imin,jmin−1),

(imin,jmin + 1) that are either in the Narrow Band or the Far Away region.

If the neighbor is in the Far Away region, remove it from that list and add

it to the Narrow Band.

(d) Recompute values of T at all neighbors in accordance with Equation 3.10.

Select the largest possible solution to the quadratic equation.

(e) Return to the top.

Here are some properties of the fast marching algorithm. The smallest value in the

Narrow Band is always correct. Other Narrow Band or Far Away points with larger

values of T cannot affect the smallest value. Also, the process of recomputing T values

at the neighboring points cannot give a value smaller than any of the accepted value

at Alive points, since the correct solution is obtained by selecting the largest possible

solution to the quadratic equation (Equation 3.10). Thus the algorithm marches

forward by selecting the minimal T value in the Narrow Band and recomputing the

values of T at all neighbors in accordance with Equation 3.10.

The key to an efficient version of the algorithm lies in finding a fast way to lo-

cate the grid point in the Narrow Band with the minimum value for T. To do so,

the heapsort algorithm (Williams, 1964, Sedgewick, 1988) with backpointers is often

implemented and it is the algorithm we used here. This sorting algorithm generates

a “complete binary tree” with the property that the value at any given parent node

is less than or equal to the value at its child node. Heap is represented sequentially

by storing a parent node at the location k and its child at locations 2k and 2k + 1.

The member having the smallest value is stored at the location k = 1.

All Narrow Band points are initially sorted in a heapsort. The fast marching al-

gorithm works by first finding, and then removing, the member corresponding to the
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smallest T value from the Narrow Band which is followed by one sweep of DownHeap

to ensure that the remaining elements satisfy the heap property. The DownHeap

operation moves the element downwards in the heap till the new heap satisfies the

heap properties. Far Away neighbors are added to the heap using the Insert operation

which increases the heap size by one and brings the new element to its correct heap

location using the UpHeap operation. The UpHeap operation moves the element up-

wards in the heap till the new heap satisfies the heap properties. The updated values

at the neighbor points obtained from Equation 3.10 are also brought to the correct

heap location by performing the UpHeap operation.

Numerics and operation count for the FMM: MATLAB code has been de-

veloped for Objective Analysis using the Fast Marching Method. Once again, for

estimating the optimal distance, the scalar speed function F is set to 0 for the grid

points on land and 1 for the grid points on the water. FMM has a significantly lower

operation count of O(N2 Log N) for N2 grid points (Sethian, 1999b). Thus, it is a

computationally inexpensive technique as compared to the Level Set Method.

The Fast Marching Method, as discussed above, is an efficient way to obtain the

correlation between two locations by selecting the optimal path. The length of the

optimal path computed using FMM or LSM can then be used for setting up the

covariance matrix using the analytical correlation function (Equation 2.4).

3.2 Objective Analysis based on using Stochasti-

cally Forced Differential Equations (SDE’s)

The use of Euclidean distance in the field covariance computed from the isotropic

correlation function is not applicable in coastal regions since the complex coastline

constraints, e.g. there should be no direct relationship across landforms (islands,

peninsulas etc.), need to be accounted for. The approach discussed in this section

represents the field and its coastline constraints by a partial differential equation

subject to stochastic forcing. The central idea of this approach, which is based on
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using stochastically forced differential equations (SDE), is the numerical construction

of a field covariance such that it accounts for the coastal constraints. The underlying

field variability is represented as an outcome of a stochastic process using a SDE and

the stochasticity represents the uncertainty in this differential equation. For example,

the stochastically forced Helmholtz equations in 1-D and 2-D in space for the field ψ

in an unbounded domain (Balgovind et al., 1983) are associated with the following

covariance functions respectively:

∂2ψ

∂x2
− k2ψ = ε(x) ⇔ Cψψ(r) = (1 + kr)e(−kr)

∇2ψ − k2ψ = ε(x, y) ⇔ Cψψ(r) = krK1(kr) '
(
π

2
kr
)1/2 (

1 +
3

8kr

)
e−kr, kr →∞

(3.11)

where, K1 is the Bessel function of the second kind. The process noise ε is a random

disturbance with mean 0, standard deviation 1 and has no spatial correlation. Also,

the length scale corresponds to the inverse of the SDE parameter (k). By the way,

Denman and Freeland (1985) have proposed other correlation functions which can

also be linked to the appropriate SDE’s.

A major advantage of this SDE approach is that the field-to-field covariance

Cor(x,x) can be computed numerically from the discretized SDE along with ap-

propriate boundary conditions (i.e. no flux boundary condition across islands) to

directly account for the coastline constraints (Lynch and McGillicuddy, 2001). The

discretization of SDE equations (Equation 3.11) or any other differential operator on

a finite element grid leads to the matrix form:

[A]{ψ} = {e} (3.12)

All coastline constraints are then incorporated automatically in the discretization

Equation (3.12). Since [Cee] = [I], the covariance matrices for field-to-field points
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and field-to-data points are directly obtained from Equation 3.12 and given by:

Cor(x,x) = [A]−1[Cee][A]−T = ([A]T [A])−1

Cor(x,X) = [A]−1[Cee][A]−T [H]T = ([A]T [A])−1[H]T (3.13)

The covariance matrix (3.13) obtained using the SDE approach can be used along

with Gauss-Markov Estimation theory to perform Objective Analyses in coastal re-

gions. A limitation of this approach is that the resulting fields can be affected by the

discretization error associated with the discretized form of the SDE. In fact, we found

that we often need to postprocess (smooth out) the SDE-gridded fields to remove

spurious field gradients. Such gradients, even when small, can lead to spurious ve-

locities by aggregate integration in the vertical for the estimation of absolute velocity

under geostrophic balance. It has also been verified that that the SDE approach is

computationally expensive when compared to our new FMM-based methodology.

A similar variant of the above methodology represents the covariance (Cψψ), in-

stead of the field (ψ), by a SDE like Helmholtz equation (Logoutov, personal commu-

nication). Spatial variation in the resulting OA field are found to be more prominent

with this new scheme. An heuristic reason is that this new representation corresponds

to carrying out “smoothing” using the Helmholtz equation only once as compared to

twice in the original representation. Both of these methods, the SDE specified for

the field (ψ) and the SDE specified for the covariance (Cψψ) were implemented in

MATLAB, using guidance from Logoutov (personal communication).

Even though many different SDE’s could be utilized for mapping a field, in the

example that follows, we selected the stochastically forced Helmholtz equation. First,

the dynamics of the atmosphere can be approximately governed on the time scale of

a few days by a Helmholtz-like equation, which is the equation for the conservation of

potential vorticity under the assumptions of a quasi-geostrophic, frictionless, shallow

water model without topography (Balgovind et al., 1983, Pedlosky, 1987). Second,

the Helmholtz equation can also be reduced from the diffusion or wave equations.

In these linear PDE’s, if the solution is assumed separable in time and space, one

41



obtains for the time variation an ordinary differential equation of the first order.

For the spatial variations, one always obtains the Helmholtz equation (Selvadurai,

2000), which is the equation that would be used for spatial mapping. Thirdly, the

Helmholtz equation is also equivalent to the steady state diffusion-reaction equation.

The Helmholtz equation can also be obtained by discretizing the diffusion equation

in a single time step.

In our examples in Equation 3.11, the SDE parameter (k) is chosen such that the

correlation function corresponding to the stochastically forced Helmholtz equation

best fits the analytical correlation function used by the standard OA scheme and the

LSM or FMM-based schemes (Section 3.1). These methods are compared to each

other and to the FMM and LSM schemes in Chapter 4 using the World Ocean Atlas,

2005 data in the sub-domain of Philippines Archipelago.

3.3 Estimation of the absolute velocity under

geostrophic balance by minimizing the inter-

island transport using FMM

For ocean flows, which evolve over long spatial-time scales and away from the im-

mediate vicinity of the sea-surface, the dominant terms in the horizontal momentum

equations are the terms corresponding to the Coriolis force and the pressure gradient.

Such a flow field, where a balance is struck between the Coriolis and the pressure

forces, is called geostrophic. The thermal wind equations, which have also been cen-

tral to physical oceanography for over 100 years, are obtained for geostrophic flow by

assuming that the vertical momentum equation is approximately given by hydrostatic

balance. The thermal wind equations are:

−f ∂(ρv)

∂z
= g

∂ρ

∂x
and f

∂(ρu)

∂z
= g

∂ρ

∂y
(3.14)
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where, ρ is the density, u and v are the horizontal fluid velocity in the zonal (x) and

meridional (y) directions respectively, and f = 2Ω sinφ is the Coriolis parameter for

the spherical earth rotating at a rate of Ω at latitude φ. The thermal wind equations

(Equation 3.14) when integrated in the vertical give:

ρv(x, y, z, t) =
−g
f

∫ z

z0

∂ρ

∂x
dz + ρv0 and ρu(x, y, z, t) =

g

f

∫ z

z0

∂ρ

∂y
dz + ρu0(3.15)

where, z0 or the level of no motion for v0, u0 = 0 or a level of reference for v0, u0 6= 0.

Flow estimation based on thermal wind balance (Equation 3.15), is a classical

problem in physical oceanography (Wunsch, 1996). Historically, the only significant

routine measurements possible were the temperature, T , and salinity, S, of the water

at various depths. The equation of state for seawater then permits the estimation of

density at a given pressure from the temperature and salinity measurements. Thus the

geostrophic flow can be computed using the above method (Equation 3.15) from the

shipboard measurements of T and S alone. The formulation has been well defined

for the open oceans without any landforms. For complex coastal regions having

landforms such as islands and peninsulas, estimation of the inter-island transport is

first required before proceeding with the geostrophic formulation discussed above.

The optimization methodology for estimating the inter-island transport, proposed

by Haley and Lermusiaux (2009) is utilized and discussed below. The objective of this

methodology is to find a set of constant values for the transport streamfunction (Ψ)

along the island coastlines that produce a suitably smooth initialization velocity field,

e.g. with the fewest large velocity hot-spots, i.e. minimize the maximum absolute

velocity in the initialized geostrophic flow field. The working assumptions for Haley’s

methodology are listed below:

1. Coastlines in the given domain can be divided into two distinct subsets:

(a). Set A: N coastlines along which the transport streamfunction is unknown,

N 6= 0.

(b). Set B: M coastlines along which the transport streamfunction is known.

2. The solution for the transport streamfunction Ψ0 exists for the case which includes

43



coasts in set B, but coasts in set A, along with the corresponding interiors, are replaced

by open ocean (e.g. island sunk to 10m depth).

3. The difference between the initial solution Ψ0 and the final solution Ψ is not

extremely large. Otherwise, the information from Ψ0 would not be accurate enough.

Ψ0 contains useful information like the relative position of major currents to var-

ious coastlines and the effects of topography on the flow. Thus, the information in

Ψ0 can be utilized to estimate the constant value of the transport streamfunction

along the island coastlines by constructing an optimization functional for minimiz-

ing the inter-island transport subject to weak constraints. Haley’s methodology for

constructing the optimization functional is now discussed.

The problem is divided into three parts to construct the optimization functional.

The optimization functional (E) in the general form, which is a summation of three

terms, is given by:

E = E1 + E2 + E3 (3.16)

where, E1 is the minimizing target for the transport between all pairs of the unknown

(Set A) coasts, E2 is the minimizing target for the transport between all pairs of

unknown (Set A) and known (Set B) coasts and E3 is the minimizing target for the

transport between all pairs of the unknown (Set A) coasts and the open boundaries

of the domain. These three terms in Equation 3.16 are:

1. Constructing the optimization functional for minimizing the transport between all

pairs of island coastlines with unknown (Set A) transport streamfunction: Let Cn and

Cm be two of the coasts (coast n and coast m) in Set A. Ψ0 is not constrained to

be a constant along these coasts. Find the grid point i0 on the coastline n and the

grid point j0 on the coastline m such that [i0, j0] = arg max
[i,j]

|Ψ0n(i) − Ψ0m(j)| and

δΨn,m = Ψ0n(i0)−Ψ0m(j0). Here, we denote Ψ0 at point b on coastline a by Ψ0a(b).

The optimization functional for minimizing the inter-island transport between

islands n and m is given by (ΨCn − ΨCm − δΨn,m)2, where, ΨCa is the unknown

optimized, constant value of the transport streamfunction along the coast a. Haley
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proposes to weight this optimization function by wnm = 1/d2
nm where, dnm is the

minimum distance between Cn and Cm. However, since the objective is to smooth the

resulting initialization velocity flow field, the above weighting will be appropriate if the

ocean depth is uniform in between all pairs of islands. An alternative weighting along

with its computational methodology for non-uniform ocean depths will be proposed

later in this section.

2. Constructing the optimization functional for minimizing the transport between

all pairs of island coastlines with known (Set B) and unknown (Set A) transport

streamfunction: Let C ′k be one of the coasts along which the transport streamfunction

ΨC′
k

is known (Set B) and Cn be the coast in Set A. Ψ0 is not constrained to be

a constant along Cn. Find the grid point i′ on the coastline n such that [i′] =

arg max
[i]

|Ψ0n(i)−ΨC′
k
| and δΨ′n,k = Ψ0n(i′)−ΨC′

k
.

The optimization functional for minimizing the inter-island transport between

islands n and m is given by (ΨCn − ΨC′
k
− δΨ′n,k)

2 = (ΨCn − Ψ0n(i′))2. As before,

Haley proposes to weight these optimization function by w′nk = 1/d
′2
nk where, d

′2
nk is

the minimum distance between Cn and C ′k.

3. Constructing the optimization functional for minimizing the transport between all

pairs of island coastlines with unknown (Set A) transport streamfunction and the open

boundaries of the domain: Let (C
′′
b ) be the open boundary, {b} be the set of open

boundary points and Cn be the coast in Set A. Ψ0 is not constrained to be a constant

along Cn. Find the grid point i′′ on the coastline n and the grid point b′′ on the open

boundary such that [i′′, b′′] = arg max
[i,b]

|Ψ0n(i)−ΨC
′′
b
(b)| and δΨ′′n,b = Ψ0n(i′′)−ΨC

′′
b
(b′′).

Here, we denote Ψ0 at the point b on the open boundary by ΨC
′′
b
(b).

The optimization functional for minimizing the inter-island transport between

the island n and the open boundary is given by (ΨCn −ΨC
′′
b
(b′′)− δΨ′′n,b)2 = (ΨCn −

Ψ0n(i′′))2. As before, Haley proposes to weight this optimization function by w′′nb =

1/d
′′2
nb where, d

′′2
nb is the minimum distance between Cn and the open boundary C

′′
b .

The weighted average of the optimization functionals constructed from the above
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three parts is given by:

E =
1

2

N∑
n=1

[
N∑

m=1,m 6=n
wnm(ΨCn −ΨCm − δΨn,m)2 +

M∑
k=1

w′nk(ΨCn −Ψ0n(i′))2 + w′′nb(ΨCn −Ψ0n(i′′))2] (3.17)

The minimum of E is computed by solving the standard least square problem i.e by

setting gradients with respect to ΨCj ’s equal to zero. Therefore, the solution to the

optimization problem in Equation 3.17 is given by:

ΨCj [
N∑

m=1,m 6=j
2wjm +

M∑
k=1

w′jk + w′′jb]−
N∑

m=1,m 6=j
2wjmΨCm =

N∑
m=1,m 6=j

2wjmδΨj,m +
M∑
k=1

w′jkΨ0j(i
′) + w′′jbΨ0j(i

′′) (3.18)

Equation 3.18 represents a system of N equations which can be solved to obtain

the transport streamfunctions (ΨCj) along coastlines in set A. These streamfunction

values, which smooth the velocity field, will be used as Dirichlet boundary conditions

while solving the geostrophic flow equations using the Temperature and Salinity OA

maps. The illustration of this methodology in the complex domain of Philippines

Archipelago is discussed in Section 4.3.

Here, we discuss an extension of Equation 3.18 to involve new more suitable

weights. Consider the stream function (Ψ) for a two-dimensional horizontal flow. It

is defined such that the flow velocity can be expressed as:

~u = (u, v) =
1

H
∇×Ψk̂ ⇒ u =

1

H

∂Ψ

∂y
, v = − 1

H

∂Ψ

∂x
(3.19)

Here, H is the ocean depth. The transport between a pair of islands having stream-

function ψ1 and ψ2 is given by:

ψ2 − ψ1 =
∫
A
~u.n̂dA (3.20)

where, A is the vertical area between the two islands and n̂ is the unit vector normal
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to the vertical area. Equation 3.19 and 3.20 suggests that the appropriate weight

function to smooth the velocity field should be wnm = 1/A2
nm, where, Anm is the

minimum vertical area along any path between the two islands. The weight function

proposed by Haley (wnm = 1/d2
nm) will be appropriate when the ocean depth is

uniform in between all pairs of islands. Since the ocean depth is not uniform, a new

methodology is required to compute the minimum area along any path between a

pair of islands. Using the Fast Marching Method (FMM), which was described in

Section 3.1.2, is a very convenient and efficient way to compute Anm. Simulations

have been performed with several other weight functions to confirm that the proposed

weight function based on the minimum vertical area (Anm) is the most appropriate

for smoothing the velocity flow field (see Chapter 4 for illustration).

Computational details for obtaining the transport streamfunction: Fortran-

90 code from MSEAS (Haley, personal communication) has been modified to utilize

the weight function based on the minimum vertical area between islands, which was

computed using the FMM, instead of the weight function based on the minimum

distance between islands. For obtaining the minimum vertical area, the scalar speed

function in the Eikonal Equation (Equation 3.7) is chosen to be F(x,y) = 1/H(x,y).

The cost of computing the minimum distance is equal to the cost of computing the

minimum vertical area using the FMM. Thus, the computational cost is independent

of the choice of the weight function.

New methodologies for Objective Analysis in the multiply-connected coastal re-

gions were proposed in this Chapter. The applications of these methodologies are

discussed in Chapter 4. The Level Set Method and the Fast Marching Method have

been used for OA in the complex domains of the Philippines Archipelago and Dabob

Bay. These methodologies have been compared with the approach proposed by Lynch

and McGillicuddy (2001) and the standard OA. Estimation of absolute velocity under

geostrophic balance in Philippines Archipelago is also illustrated in Chapter 4. This

is followed by a computational study of properties of the new mapping schemes in

Chapter 5.
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Chapter 4

Applications illustrating the novel

OA methodologies

New methodologies for Objective Analysis in complex multiply-connected coastal

regions were described in Chapter 3. These new methodologies are based on com-

puting the optimal path lengths using the Level Set Method and the Fast Marching

Method. These methods efficiently incorporate coastline constraints (e.g. there is no

direct relationship across landforms). The above methodologies are utilized to map

the temperature, salinity and biological (chlorophyll) fields using a 2-staged mapping

scheme in subsets of the following regions: Dabob Bay and Philippines Archipelago.

Section 4.1 evaluates the use of our new OA methodology in Dabob Bay and shows

that it is more effective over other classic distance optimizing algorithms like Bresen-

ham’s line algorithm (Bresenham, 1965). Section 4.2 shows a comparison of the dif-

ferent methodologies introduced in Chapter 3 for Objective Analysis in a subdomain

of Philippines Archipelago. The estimation of absolute velocity under geostrophic

balance by minimizing the inter-island transport is illustrated in Section 4.3. Section

4.4 discusses approaches for including non-homogeneous dynamical effects in our new

Objective Analysis schemes.
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4.1 Objective Analysis in Dabob Bay

Dabob Bay data are used to illustrate the effectiveness of the Fast Marching

Method over other distance optimizing algorithms like Bresenham line algorithm (Bre-

senham, 1965). Maps for the temperature and salinity fields in a subdomain of Dabob

Bay corresponding to the spatially irregular data in Figure C-4 are obtained using

the a. Bresenham line algorithm, b. Averaged Bresenham line algorithm, and c. Fast

Marching Method. The limitation of Bresenham line algorithm, which is explained in

Chapter 3, is that the optimal distance computed using this method is discontinuous.

This results in discontinuities in the covariance and also in the resultant field maps.

Figure C-5 shows the temperature and salinity field maps in Dabob bay obtained

using large length scales (L0 = 60, Le = 30)LS, most energetic length scales (L0 = 30,

Le = 15)ME and observational error (R = 0.25I). Temperature and salinity have

higher magnitudes in the northern part of the western arm of Dabob bay. The eastern

arm of Dabob bay has relatively low temperature and salinity. Effects due to the

discontinuity in distance obtained from Bresenham line algorithm is clearly evident

in Figure C-5(top). Numerical fronts having high temperature and salinity gradients

exist at the intersection of the two arms. Such fronts lead to numerical problems

in dynamical simulations. The geostrophic velocity obtained using these field maps

will be unrealistic and will have high magnitudes along these fronts. A possible

remedy, which reduces the discontinuity effects, is to smooth the distance by averaging

distances of neighboring points (Lermusiaux and Haley, personal communication).

The above averaging technique becomes numerically very expensive as shown by

Lermusiaux and Haley.

The field maps obtained using the averaged Bresenham algorithm (Figure C-

5(middle)) clearly show that the intensity of the erroneous fronts are reduced, but

they still exist. Finally, the Fast Marching Method is used to compute distances

and the Objective Analysis field maps obtained using FMM are clearly devoid of any

numerical fronts (Figure C-5(bottom)). Along with that, FMM accurately satisfies

coastline constraints and it is computationally inexpensive compared to using the
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averaged Bresenham line algorithm. Thus, the use of FMM is recommended over the

Bresenham line algorithm.

4.2 Objective Analysis in the Philippines

Archipelago

This research study is motivated by the Philippines Straits Dynamics Experiment

(PhilEx) sponsored by the Office of Naval Research. Novel OA techniques for such

complex coastal regions are an important requirement to map very irregular datasets

and initialize simulations. A comparison of the different OA methodologies will be

illustrated in this region. We compare our new methods a. Level Set Method, b.

Fast Marching Method, to the existing schemes, the a. Standard OA Method which

ignores islands and uses the direct Euclidean distance, b. Stochastically forced Dif-

ferential Equation approach (SDE specified for the field) and c. Stochastically forced

Differential Equation approach (SDE specified for the covariance).

A comparison of these methods using the World Ocean Atlas, 2005 (Locarnini

et al., 2006, Antonov et al., 2006) data for the temperature and salinity field maps is

discussed in Section 4.2.1. WOA-05 data are data mapped using ‘Levitus climatology’

scheme (see Section 2.2) and is regularly spaced. Regularly spaced WOA-05 data is

used here primarily to illustrate and discuss the comparison of the different method-

ologies. Subsequently, synoptic in situ data is used. These real direct ocean data are

the spatially irregular temperature and salinity data. Results are presented in Section

4.2.2 (using Melville exploratory cruise data, Global Temperature-Salinity Profile Pro-

gram - GTSPP (Center, 2006) data and HB2 Climatology for June-July’07), section

4.2.3 (using Melville exploratory cruise, sg122 and sg126 glider data for June-July’07)

and section 4.2.4 (using joint Melville cruise data for Nov’07-Jan’08). Results of the

new OA methodology based on FMM is illustrated in section 4.2.5 for the biologi-

cal field (chlorophyll) using the exploratory cruise data. These biological OA field

maps obtained using our FMM scheme can be utilized in the initialization for coupled
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physics-biology modeling in MSEAS (Burton, 2009).

4.2.1 Objective Analysis using WOA-05 data: Comparison

of the different OA methodologies

Two-dimensional horizontal OA maps for temperature and salinity fields in a

subdomain of the Philippines Archipelago corresponding to the data in Figure C-6

computed using methodologies proposed in Chapter 3 are shown in Figures C-7 -

C-16. Figures C-7 (LSM), C-8 (FMM), C-9 (Standard), C-10 (SDE specified for the

covariance) and C-11 (SDE specified for the field) show the temperature field maps,

while Figures C-12 (LSM), C-13 (FMM), C-14 (Standard), C-15 (SDE specified for

the covariance) and C-16 (SDE specified for the field) show the salinity field maps.

Depths shown are 0m, 40m, 200m, 450m, 1000m and 3000m. Large length scales

(L0 = 540, Le = 180)LS and most energetic length scales (L0 = 180, Le = 60)ME are

used with an observational error covariance R = 0.25I. For the SDE approach, the

SDE parameter k = 1/200 and the observational error (R = 0.25I) are used.

The OA field maps from all methods indicate that the Philippines Sea and the

region near Palawan island is warmer than the rest of the region at the surface (0m).

The region south of the Sulu sea around the Sulu Archipelago has relatively lower

temperature. At levels below 500m, there is a significant difference in the temperature

of the Sulu sea (warm) as compared to the rest of the region (cold) (Gamo et al.,

2007, Gordon, 2009). These temperature fields clearly show that direct correlation

across landforms are weak. Similar observations can be made for Salinity. Salinity in

the Sulu Sea and South China Sea is lower than the salinity in the rest of the region

at the surface (0m). At levels below 500m, the salinity in the Sulu sea is significantly

lower as compared to the rest of the region. These salinity fields further support the

hypothesis that direct correlation across landforms are weak.

The comparison of the temperature field maps and the salinity field maps ob-

tained using different methods at level 1000m is shown in Figures C-17 and C-18,

respectively. The methods based on LSM, FMM and SDE clearly satisfy coastline
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constraints. The data in the Sulu Sea, which has high temperature and low salinity

compared to the remaining region, does not have any influence on the field outside

the Sulu Sea since the two regions are not connected by water. On the other hand,

the standard OA does not satisfy coastline constraints. Thus the data outside the

Sulu Sea, where the temperature is low and salinity is high, is correlated to the field

inside the Sulu Sea. This is undesirable since the direct relationship across landforms

is at best very weak. This leads to spurious high temperature and salinity gradients

in the Sulu Sea, which will lead to problems for the estimation of geostrophic flow.

Differences between temperature field maps and salinity field maps obtained using

the Fast Marching Method and using other OA methods at level 1000m are shown

in Figures C-19 and C-20, respectively. These plots show that there is a very small

difference in field maps obtained using the FMM and LSM. The difference is larger

between field maps obtained using the FMM and SDE approach. This is because the

analytical correlation function corresponding to the stochastically forced Helmholtz

equation, which is used in the SDE approach, is different from the analytical correla-

tion function in the FMM. The difference between field maps obtained using the FMM

and standard OA are significantly large because standard OA does not incorporate

coastline constraints.

The field maps obtained by LSM (Figures C-7, C-12) and FMM (Figures C-8,

C-13) are almost identical, but the FMM has a significantly lower computational

cost. While LSM constructs the solution by iterating towards the solution, FMM is

based on the direct construction of the stationary solution as described in Section 3.1.

There is a very small difference in the field obtained using LSM and FMM because

FMM exactly constructs the solution of the discretized Eikonal equation whereas LSM

computes the solution within a desired tolerance limit. So, FMM is more accurate

and less expensive compared to LSM. Thus, our OA methodology based on FMM

should clearly be preferred over our methodology based on LSM.

The SDE approach satisfies coastline constraints, but the discretization errors

in SDE are significant and this results in prominent spatial variations in the tem-

perature and salinity fields. The impact of such huge spatial variations on the
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geostrophic flow velocity is not good, and often additional smoothing has to be em-

ployed (post-processing) after obtaining the OA fields using the SDE approach. Such

post-processing is not required for our FMM-based scheme. The SDE approach can

be implemented by specifying the SDE for the field or by specifying it for the co-

variance (Logoutov, Lermusiaux, personal communication). If the SDE is specified

for the field (Figure C-11, C-16) as opposed to the covariance (Figure C-10, C-15),

spatial variation in the field will be less prominent. Specifying SDE (say Helmholtz

equation) for the field is equivalent to carrying out the smoothing twice by using the

Helmholtz equation. Thus, specifying the SDE for the field will be more expensive

than specifying the SDE for the covariance, but this will make the spatial variation

in the field less prominent and it will reduce the need for post-processing. Finally, we

confirmed that the computational time required by the SDE approach is higher than

that of FMM. Thus, FMM appears to be the best among all the methodologies dis-

cussed in Chapter 3 for Objective Analysis in coastal regions. Therefore, in Sections

4.2.2, 4.2.3, 4.2.4 and 4.2.5, we show and discuss results of our FMM-based Objective

Analysis scheme for mapping spatially irregular data.

4.2.2 Objective Analysis for Summer 2007: Melville

exploratory cruise, GTSPP and HB2 Climatology data

The coarse WOA-05 data used in Section 4.2.1 is regularly spaced and is already

mapped using the ‘Levitus Climatology’ mapping scheme. The data used now is

sampled in situ and is irregularly spaced. They were collected from the Melville Ex-

ploratory cruise, the Global Temperature-Salinity Profile Program - GTSPP (Center,

2006) and the HB2 Climatology for the June-July’07 period. The data location plot

is shown in Figure C-21. Large length scales (L0 = 1080, Le = 360)LS, most energetic

length scales (L0 = 270, Le = 90)ME and observational error (R = 0.2I) are used.

The temperature and salinity field maps obtained using the FMM-based OA

scheme at the surface (0m) in Figure C-22 clearly show that coastline constraints

are appropriately incorporated, since the warm region in the west of Luzon island is
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uncorrelated with the region on the east of Luzon island. The same holds true for

salinity, since the data in the low salinity region i.e. west of Luzon island does not

have a significant impact on the field in the east of Luzon island. It is also observed

that local effects and wind patterns lead to higher temperature and salinity in the

Visayan Sea while the temperature and salinity in the Bohol Sea remain low.

Again, it should be noted that the data from the HB2 climatology is mapped

data. Section 4.2.3 and 4.2.4 will discuss the examples of Objective Analysis using

the exploratory cruise data alone.

4.2.3 Objective Analysis for Summer 2007: Melville

exploratory cruise, sg122 and sg126 glider data

The data used in this example is collected from the Melville exploratory cruise,

sg122 and sg126 gliders for the June-July’07 period. The data location plot is shown

in Figure C-23. Since the data is available only in a small region of the Philippines

Archipelago near islands, Objective Analysis maps are computed in a portion of the

regular Philex domain. Large length scales (L0 = 1080, Le = 360)LS, most energetic

length scales (L0 = 270, Le = 90)ME and observational error (R = 0.2I) are used.

The temperature and salinity field maps obtained using the methodology based on the

Fast Marching Method are shown in Figures C-24 and C-25, respectively at depths of

0m, 40m, 200m, 450m, 1000m and 3000m. Once again, these maps clearly indicate

that coastline constraints are appropriately satisfied. At depths of 0m and 40m, the

warm region in the west of Luzon island is uncorrelated with the region on the east

of Luzon island. The warm Sibuyan and Visayan Seas can be distinguished from

the relatively cold Bohol Sea. At depths of 450m and 1000m, the data in the warm

Sulu sea and Bohol Sea does not have any impact on the remaining regions, clearly

suggesting that there is no direct relationship across landforms. Similar observations

are made for the salinity. At depths of 0m and 40m, the low salinity region in the

west of Luzon island is uncorrelated with the region on the east of Luzon island.

We now compare fields in Summer 2007 from Melville exploratory cruise, sg122
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and sg126 glider data (Figures C-24 and C-25) with fields from from Melville ex-

ploratory cruise, GTSPP and HB2 Climatology data (Figure C-22) (Section 4.2.3).

This comparison illustrates differences in fields obtained using different datasets for

Summer 2007. There is a good comparison between the two fields near islands. While

the exploratory cruise and glider data is available in a small region around islands, the

GTSPP and HB2 Climatology data is also available away from islands. Thus away

from the island, fields from Melville exploratory cruise, GTSPP and HB2 Climatology

data (Figure C-22) will be more accurate.

Section 4.2.4 will now discuss the example of Objective Analysis using the joint

Melville cruise data in the winter season (Nov’07-Jan’08).

4.2.4 Objective Analysis for Winter 2008: Melville joint

cruise data

The data used in this example is obtained from the joint Melville cruise for the

Nov’07-Jan’08 period. The data location plot is shown in Figure C-26. Once again,

since data are available in a small region of the Philippines Archipelago near islands,

maps are obtained in a smaller subsection of the regular Philippines region. Large

length scales (L0 = 1080, Le = 360)LS, most energetic length scales (L0 = 270,

Le = 90)ME and observational error (R = 0.2I) are used for the OA field maps.

The temperature and salinity field maps obtained using the FMM-based scheme are

shown in Figures C-27 and C-28, respectively. Depths shown are 0m, 40m, 200m,

450m, 1000m and 3000m. Once again, at depths of 0m and 40m, the warm region

in the west of Luzon island is uncorrelated with the region on the east of Luzon

island. At depths of 450m and 1000m, the data in the warm Bohol Sea does not

have any impact on the remaining regions, clearly suggesting that there is no direct

relationship across landforms. Similar observations are made for salinity. At depths

of 0m and 40m, the low salinity region in the west of Luzon island is uncorrelated

with the region in the east of Luzon island.

We now compare fields in Winter 2008 from Melville joint cruise data with fields in
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Summer 20007 from Melville exploratory cruise, sg122 and sg126 glider data (Section

4.2.3). It is clearly evident that the difference in temperature during Winter 2008

and Summer 2007 is more near the ocean surface. Beyond the depth of 200m, the

difference is significantly less and the same inference is valid for salinity as well. At

surface (0m), the temperature in the Sulu sea is nearly the same for both Summer

2007 and Winter 2008. But the temperature near Luzon island is significantly lower

during Winter 2007 than the temperature during Summer 2007.

Section 4.2.5 illustrates the application of our FMM-based scheme for biological

field (chlorophyll).

4.2.5 Objective Analysis for biological field (chlorophyll)

Application of our new FMM-based scheme for the biological field (chlorophyll) is

illustrated here using Exploratory cruise Summer 2007 data. The biological OA field

map obtained using FMM can be utilized in the initialization for coupled physics-

biology modeling studies (Burton, 2009). The data location plot is shown in Figure

C-29. Large length scales (L0 = 1080, Le = 360)LS, most energetic length scales

(L0 = 270, Le = 90)ME and observational error (R = 0.2I) are used for the OA

field maps at depths of 0m, 40m, 200m, 450m, 1000m, 3000m. The chlorophyll

maps computed using our FMM-based scheme are shown in Figure C-30 at depths

of 0m, 10m, 50m, 100m, 150m, 200m. The concentration of biological fields like

chlorophyll, phytoplankton and zooplankton is substantial only near the surface due

to the presence of sunlight. Therefore, the coupled physics-biology modeling studies

are usually carried up to the depth of 200m.

The chlorophyll concentration is maximum near islands. Away from islands, it

approaches the mean data value. At depth of 0m and 10m, the maximum chlorophyll

concentration is observed in the south of the Visayan sea and in the Bohol Sea. At a

depth of 50m, the chlorophyll concentration in the south of the Visayan sea and in the

Bohol Sea remains significant. The maximum chlorophyll concentration is observed

in the north of Palawan island.
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4.3 Estimation of the absolute velocity under

geostrophic balance in Philippines Archipelago

Estimation of absolute velocity under geostrophic balance in the Philippines Archi-

pelago is illustrated in this section. The algorithm for minimizing the inter-island

transport (Chapter 3) is utilized for computing a smooth geostrophic velocity flow

field.

We proposed to utilize weight functions based on the minimum vertical area along

each pair of islands in the algorithm for minimizing the inter-island transport. The

estimation of the minimum vertical area has been carried out using the FMM by

specifying the scalar speed function in the Eikonal equation (Equation 3.7) as F(x,y)

= 1/H(x,y), where H is the ocean depth. The temperature and salinity data are

from the World Ocean Atlas 2005 (Figure C-6). They are mapped using our FMM-

based OA scheme (Figures C-8 and C-13) and the SDE approach (Figures C-11 and

C-16), with the stochastically forced Helmholtz equation employed for the field. The

streamfunction and velocity fields (at depths 0m, 100m, 1000m) using the maps from

our FMM-based scheme are shown in Figure C-31. These plots show a very good

comparison with the streamfunction and velocity obtained using the temperature

and salinity field maps based on the stochastically forced Helmholtz equation, which

are shown in Figure C-32. These maps suggest that the velocity is maximum in the

Mindoro strait, near the Mindanao island and in the Balabac strait. At lower depths,

the velocity remain high in the Mindoro strait and near the Mindanao island. There is

a large inter-island transport across the Mindoro strait since the vertical area between

the Mindoro and Palawan island is very large.

Haley’s methodology utilizes weight functions based on the minimum inter-island

distance which can be obtained using the FMM by specifying the scalar speed function

in the Eikonal equation (Equation 3.7) as 1 for the sea points and 0 for the land

points. The streamfunction and velocity fields (at depths 0m, 100m, 1000m) are

obtained using the weight functions based on the minimum inter-island distance. The

streamfunction and velocity fields using field maps from our FMM-based scheme are
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shown in Figure C-33. Once again, these plots show a very good comparison with the

streamfunction and velocity obtained using the temperature and salinity field maps

based on the stochastically forced Helmholtz equation, which are shown in Figure C-

34. These maps also suggest that the velocity is maximum in the Mindoro strait, near

the Mindanao island and in the Balabac strait. But the velocity estimated in Balabac

strait is very high and is clearly not acceptable. Such high velocity is obtained due

to the inaccurate computation of inter-island transport.

These results clearly show that the weight functions based on the minimum vertical

area will produce smooth geostrophic flow field with the least velocity hot spots.

4.4 Non-homogeneous dynamical effects in Objec-

tive Analysis

We satisfied coastline constraints using the FMM/LSM-based schemes, which

solve the Eikonal equation (Equation 3.7) to obtain the length of the optimal path. By

appropriately specifying the scalar speed function F in the Eikonal equation, which

simply says that the gradient of the arrival time function is inversely proportional

to the speed, the optimal path length can be obtained. The scalar speed function is

specified as 1 for the sea points and 0 for the land points in the illustrations in Section

4.1 and 4.2. Additional effects due to the ocean bathymetry and the dynamics can

also be incorporated in the Objective Analysis by appropriately modifying the scalar

speed function (F ) or the choice of the length scales.

Such dynamical effects can be explained in the context of continental a shelf. The

scales in a continental shelf are not uniform. The correlation between any two points

in the ocean will depend on the optimal path between the points and the non-uniform

length scales on the optimal path. While the optimal path can be obtained using the

FMM or LSM, the utilization of all the length scales on the optimal path has to

be appropriately done. It can be argued that the dynamics will be governed by the

smallest length scale on the optimal path, since the smallest length scale will govern
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the correlation between the two points. Consider the example of a continental shelf

shown in Figure C-35. In this figure, the scales in y-direction are large in both the

regions: region A and region B. These regions are separated by a front having small

length scales. Therefore, the correlation between any two points in the same region

will be governed by the large length scale and the correlation between the points in

different regions will be governed by the small length scale. Thus, the effect of non-

homogeneous length scales can be incorporated by choosing the smallest scale on the

optimal path.

Effects due to the bathymetry can be incorporated by specifying the scalar speed

function at a given depth as the ratio of the bathymetry at the grid point and the

depth at which the OA is carried out. This will ensure that even if the two points

in the domain are separated by land at a certain depth, the correlation between

those points at that depth is not necessarily zero. Since the land may not extend

to a significant height above the depth at which the OA is carried out, it will be

inappropriate to specify the scalar speed function as zero for such a pair of points.

This is illustrated in Figure C-36 for the Philippines Archipelago at a depth of 450m.

This figure shows the scalar speed functions for the general case and for the case in

which effects due to the bathymetry are incorporated. The temperature and salinity

fields obtained for these different cases are also compared. The difference is clearly

visible in the Bohol Sea. In the general case, the data in the Sulu Sea is uncorrelated

with the field in the Bohol Sea. But the use of modified scalar speed function shows

that the data in the Sulu Sea has an affect on the field in the Bohol Sea. The scalar

speed function can also be modified using other non-linear functions which depend

on the bathymetry at the grid point and the depth at which the OA is carried out.

This discussion of the modification of the length scales or the scalar speed func-

tion can similarly be altered in different situations to include the dynamical effects

(for example, conservation of the potential vorticity) in the Objective Analysis. This

concludes the demonstration of the new OA methodologies and the methodology for

obtaining the geostrophic flow velocities in complex coastal regions. The computa-

tional details of the OA methodologies will be discussed in Chapter 5.

60



Chapter 5

Computational Analysis and

Derivations

Computational studies of properties of the new mapping schemes are carried out

in this Chapter. Section 5.1 introduces the sequential processing of observations

for mapping irregular data using our new OA schemes. Sequential processing re-

duces computational costs and it also allows to estimate the impact of the individual

data. We introduce definitions of convex, simply-connected and multiply-connected

domains here. A domain is said to be convex if for every pair of points within the

domain, every point on the straight line segment that joins them is also within the

domain. A domain is said to be simply-connected if any closed curve within it can be

continuously shrunk to a point without leaving the domain. A domain which is not

simply-connected is called multiply-connected. Section 5.2 introduces the Wiener-

Khinchin and Bochner theorems for positive definite correlation functions. Positive

definite correlation functions can generate a positive definite covariance matrix for

a simply-connected convex domain using the Euclidean distance. Our mapping of

observations is linked to the Kalman Filter’s state update. It is known that the

Kalman Filter encounters divergence problems if the covariance matrix becomes neg-

ative due to numerical issues (Brown and Hwang, 1997). Some useful techniques to

counter these divergence problems are discussed in Section 5.3. The comparison of

computational costs for different schemes is made in Section 5.4.
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The Wiener-Khinchin and Bochner theorems are valid for the background er-

ror covariance matrix, Cor(x,x) computed using the Euclidean distance for simply-

connected convex domains. For complex coastal regions, Cor(x,x) may not necessarily

be positive definite due to: a. numerical error in the computation of the optimal path

length using FMM/LSM b. the presence of landforms. This may lead to divergence

problems for the field mapping based on the FMM/LSM scheme in complex coastal

regions. Such divergence problems are illustrated using the WOA-05 data (Spliced

February and Winter Climatology) shown in Figure C-37. The field maps obtained

using our FMM-based scheme (one-scale) with length scales (L0 = 540, Le = 180)

and length scales (L0 = 1080, Le = 360) are shown in Figure C-38. Fields obtained

using the larger scales clearly show divergence problems near the Palawan island.

Such problems are not encountered when the smaller length scales are used. Specif-

ically, questions which motivate our research in Section 5.5 and 5.6 are: a. What

are the computational errors in optimal path lengths computed using the FMM/LSM

and how can they be reduced? b. What are the computational issues including non-

positive definite covariances that arise in a multiply-connected coastal domain and

how can they be remedied? A higher-order Fast Marching Method than the first-

order one (see Section 3.1.2) is discussed in Section 5.5. Higher-order FMM results

in a significant reduction of errors in distance estimates, i.e. the difference between

numerically computed and true optimal distances. Thus, the higher-order FMM helps

in dealing with divergence problems to some extent. In Section 5.6, methods to deal

with negative covariances arising due to the presence of islands and due to the numer-

ical error in computing the optimal path length are discussed. These methods, which

can remove divergence problems, are discarding the problematic data, introducing the

process noise and the dominant singular value decomposition of a-priori covariance.

5.1 Sequential Processing of Observations

A block-diagonal structure of the observation error covariance matrix (R) can be

very advantageous for improving the computational efficiency and also for understand-
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ing the impact of the individual data during the update step of the Kalman filter.

Many pairs of observations, such as the observations from different instruments, can

have uncorrelated errors resulting in a block-diagonal error covariance matrix (R).

In fact, Chapter 2 states that in most situations, the observation matrix for each

data type is chosen diagonal with a uniform non-dimensional error variance ε2, i.e.

R = ε2I. A Cholesky factorization can also be applied to diagonalize the R matrix

prior to using sequential processing of observations. The modified algorithm, which

takes the advantage of uncorrelated observations and the block-diagonal structure of

R is now discussed (see Parrish and Cohn (1985), Cho et al. (1996)). One step (one

scale) of the MSEAS OA equations (Equations 2.1, 2.2, 2.3) can be rewritten as:

K = Cor(x,x)HT [HCor(x,x)HT +R]−1 (5.1)

POA = (I −KH)Cor(x,x) (5.2)

ψOA = ψ̄ +K[d−Hψ̄] (5.3)

where H is the observation matrix, ψ̄ is the background field and POA is the error

covariance of the estimated field. The block-diagonal matrix R can be written as:

R =



R1

R2

.

RJ


(5.4)

where each blockRj, j = 1, 2, ...J is a pj×pj matrix, such that p1+p2+...+pj = p is the

total number of observations. Similarly the observation vector d and the observation

matrix H can be written as:

d =



d1

d2

.

dJ


and H =



H1

H2

.

HJ


(5.5)
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Here, dj is a vector of size pj and Hj is the pj × n observation matrix corresponding

to the data in batch j. The scalar n is the length of the grid point position vector x.

Thus, there are J batches of observations such that the observation error in the same

batch may be correlated but the observations in different batches are uncorrelated.

In order to sequentially process the observations by batch, lets begin by defining:

Cor(x, x)0 = Cor(x, x) and Ψ0 = Ψ̄. (5.6)

Then the modified equations for the sequential processing algorithm with j = 1,2,...N

are:

Kj = Cor(x,x)j−1H
T
j [HjCor(x,x)j−1H

T
j +Rj]

−1 (5.7)

Cor(x,x)j = (I −KjHj)Cor(x,x)j−1 (5.8)

ψj = ψj−1 +Kj[dj −Hjψj−1] (5.9)

This gives ψOA = ψJ and POA = Cor(x,x)J for each scale (step) of the OA scheme.

The equivalence of Equations 5.1 - 5.3 and Equations 5.7 - 5.9 as proven by Parrish

and Cohn (1985) is shown in Appendix A. Due to the smaller sizes of the matrices

to invert, Equations 5.7 - 5.9 with the relevant matrix dimensions pj are significantly

less expensive than Equations 5.1 - 5.3 with dimension p.

The detailed implementation of the sequential processing Equations (5.7 - 5.9) is

now discussed. Consider the case when all observations are uncorrelated i.e pj = 1,

j=1,2,...J. Then, the scalar Rj, row vector Hj of length n and the column vector Kj

of length n are written as:

σ2
j = Rj, hj = HT

j , kj = Kj (5.10)

The final sequential processing algorithm is:

vj = Cor(x, x)j−1hj

αj = hTj vj + σ2
j
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kj =
vj
αj

βj = dj − hTj ψj−1

ψj = ψj−1 + βjkj

Cor(x, x)j = Cor(x, x)j−1 − kjvTj (5.11)

The computational efficiency can be further improved by taking the sparsity of hj

into account. For example, when an observation falls at a grid point, hj will consist of

a single one and the rest zeros. In this case, the vj will be a column of Cor(x, x)j−1.

Apart from increasing the computational efficiency, the above algorithm also allows

to estimate the impact of the individual observation on the OA field.

5.2 Positive definite correlation functions:

Weiner-Khinchin and Bochner theorems

It was discussed in Chapter 2 that the covariance matrix is generated using analyt-

ical correlation functions. Such analytical correlation functions are termed “positive

definite correlation functions” if they generate positive definite covariance matrix us-

ing the Euclidean distance for a simply-connected convex domain. It has been well

established using the Wiener-Khinchin relationships that if a Fourier transform (or

the spectral density of a correlation function) is non-negative for all frequencies then

the correlation function is positive definite (Yaglom, 1987, Papoulis, 1991, Yaglom,

2004, Dolloff et al., 2006). The spectral density (or power spectrum) S(ω) is defined

as the Fourier transform of the correlation function, i.e., R(τ)↔ S(ω), where:

S(ω) =
∫ ∞
−∞

R(τ)e−jωτdτ

R(τ) =
1

2π

∫ ∞
−∞

S(ω)ejωτdω (5.12)

The above equations are known as Wiener-Khinchin relationships. The sufficient

condition for the validity of the above equation (to guarantee the existence of a
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Fourier transform pair) is:

∫ ∞
−∞
|R(τ)|dτ <∞. (5.13)

The Wiener-Khinchin relationships are a part of the Wiener-Khinchin theorem, which

states that R(τ) is a positive definite correlation function if S(ω) ≥ 0 ∀ ω. This is

also known as the Bochner theorem (Yaglom, 1987, 2004, Dolloff et al., 2006).

The proof for the Weiner-Khinchin relationships or Bochner theorem (see Papoulis

(1991), Yaglom (2004), Dolloff et al. (2006)) is described next. Let Γ be the matrix

obtained from the correlation function R(τ). The proof of the statement, which says

that Γ will be a semi-definite matrix if the spectral density S(ω) is non-negative

(S(ω) ≥ 0), is as follows:

Let z be an arbitrary vector. Since (S(ω) ≥ 0) therefore,

zTΓz̄ =
∑
i,k

ziz̄kR(ti − tk)

=
∑
i,k

ziz̄k
1

2π

∫ ∞
−∞

S(ω)ejω(ti−tk)dω

=
1

2π

∫ ∞
−∞

S(ω)[
∑
i,k

ziz̄ke
jω(ti−tk)]dω

=
1

2π

∫ ∞
−∞

S(ω)[
∑
i

zie
jωti ][

∑
i

z̄ie
−jωti ]dω

=
1

2π

∫ ∞
−∞

S(ω)|
∑
i

zie
jωti |2dω ≥ 0 (5.14)

Note that the above proof assumes that the correlation function depends on the

difference ti − tk only, which is the case for the Euclidean distance in a simply-

connected convex domain. But, this is not necessarily the case for the optimal path

length computed on multiply-connected domains (e.g. using the Fast Marching or the

Level Set Method). So, some computational problems may be observed with our new

OA schemes for complex multiply-connected coastal regions and archipelagos since

the covariance matrix may not be positive definite. Some numerical approaches to

deal with such divergence problems will be discussed in this Chapter.
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Using the above theorem, the necessary condition for the correlation function

defined in Equation 2.4 to be positive definite, can be obtained. The conditions are

derived next. The following Fourier transform relations (Dolloff et al., 2006) are used:

e−αr
2 ↔

(
π

α

) 1
2

e
−ω2

4α (5.15)

rnf(r) ↔ (i)n
dnF

dωn
(5.16)

Here, F is the Fourier transform of f(r). Using Equation 5.15, the following Fourier

transform pairs are obtained:

e
− x2

2L2
e ↔ (2πL2

e)
1
2 e
−ω2

1L
2
e

2 (5.17)

e
− y2

2L2
e ↔ (2πL2

e)
1
2 e
−ω2

2L
2
e

2 . (5.18)

Multiplying Equations 5.17 and 5.18 gives:

e
−x

2+y2

2L2
e ↔ (2πL2

e)e
−(ω2

1+ω2
2)L2

e
2 . (5.19)

Using Equations 5.16 and 5.17, the Fourier transform of (x2 + y2)e
− x2

2L2
e w.r.t. the

variable x is given by:

(x2 + y2)e
− x2

2L2
e ↔ (2πL2

e)
1
2 e
−ω2

1L
2
e

2 [L2
e − ω2

1L
4
e] + y2(2πL2

e)
1
2 e
−ω2

1L
2
e

2 . (5.20)

Using Equations 5.20, 5.18 and 5.16, the Fourier transform of (x2 + y2)e
−x

2+y2

2L2
e w.r.t.

the variable y is given by:

(x2 + y2)e
−x

2+y2

2L2
e ↔ (2πL2

e)e
−(ω2

1+ω2
2)L2

e
2 [L2

e − ω2
1L

4
e] + (2πL2

e)e
−(ω2

1+ω2
2)L2

e
2 [L2

e − ω2
2L

4
e].

(5.21)

Finally, Equations 5.21 and 5.19 are combined to obtain the Fourier transform of the
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correlation function in equation 2.4. Thus:

(
1− x2 + y2

L2
0

)
e
−x

2+y2

2L2
e ↔ (2πL2

e)e
−(ω2

1+ω2
2)L2

e
2

[
1− 2

L2
e

L2
0

+ (ω2
1 + ω2

2)
L4
e

L2
0

]
(5.22)

Thus, Equation 5.22 shows that the correlation (Equation 2.4) will be positive definite

when
[
1− 2L

2
e

L2
0

+ (ω2
1 + ω2

2)L
4
e

L2
0

]
≥ 0, i.e. when L0 ≥

√
2Le, as the power spectrum will

then be non-negative for all ω. It is important to note that the above derivation

holds only when the Euclidean distance is used along with the correlation function in

a simply-connected convex domain.

5.3 Divergence issues with the Kalman filter

Our mapping schemes can encounter divergence problems associated with the

Kalman Filter state and covariance update equations (Brown and Hwang, 1997). If

the number of observations is large, divergence problems can arise under certain con-

ditions due to truncation errors even if the background covariance is positive definite.

Like any numerical procedure, the round off errors can lead to problems as the num-

ber of steps increase. This can also occur in the sequential processing of observations

(recursive algorithm). If the covariance matrix loses the property of positive defi-

niteness, then the solution of the Gauss Markov Estimation (equivalent here to the

Kalman Filter update) will not necessarily be stable. Of course, such problems due

to truncation errors can be minimized by using a high-precision arithmetic.

Some of the useful techniques described by Brown and Hwang (1997) to counter

the divergence problems are:

a. Introduce Process Noise: As the number of steps increases, the covariance

matrix approaches a semidefinite condition. A small numerical error can thus make

the covariance matrix non-positive definite, which may lead to divergence problems.

A solution is to add a small process noise (model wise or in the OA case background

noise) to the diagonal elements of the covariance matrix. This will lead to a degree

of sub-optimality but will prevent the divergence problems from arising.
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b. Symmetrize covariance matrix: The covariance matrix may become asym-

metric due to roundoff errors and this asymmetry can grow if it is left unchecked,

leading to divergence problems. The remedy is to symmetrize the covariance ma-

trix after each recursive step. One approach will be to assume the symmetry and to

use only the upper (or lower) triangular part of the covariance matrix for all matrix

operations.

c. Use Joseph’s form: If a large initial uncertainty (covariance matrix with large

eigen values) is followed by a very precise measurement (small observational error,

R), the covariance matrix has to transition from a large value to a small value in a

single step and this situation can numerically be very sensitive. The Kalman Filter

update equation for the covariance (P) is given by (see also Table 2.1):

Pt = (I −KtHt)Pt|t−1. (5.23)

It is recommended to use other covariance update formulas like the Joseph form

(Grewal and Andrews, 1993) which has a natural symmetry. The Joseph form is

given by:

Pt = (I −KtHt)Pt|t−1(I −KtHt)
T +KtRtK

T
t . (5.24)

The Joseph form (Equation 5.24) has a better numerical behavior (Grewal and An-

drews, 1993) for unusual numerical situations than the form in Equation 5.23.

d. U-D factorization: The U-D factorization algorithm (Bierman, 1977), which is

mathematically equivalent to the regular Kalman Filter algorithm and belongs to the

class of Kalman Filter algorithms known as square-root filtering (Battin, 1964, Bier-

man, 1977, Maybeck, 1979), has much better numerical behavior for a large number

of steps (equivalent to the number of observations). This algorithm, which will pre-

serve the symmetry and positive definiteness, is based on propagating the factors of

covariance (P) rather than the full covariance (P). This algorithm is favored over the

regular Kalman Filter when numerical stability is a concern. The U-D factorization

algorithm is now described. Note that it has some similarity to the Error Subspace
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Statistical Estimation (ESSE) update scheme (see Lermusiaux and Robinson (1999),

Lermusiaux (1999a,b)).

A symmetric, positive definite covariance matrix can be decomposed into the form:

P = UDUT . (5.25)

where U is a upper triangular matrix (having ones along the major diagonal) and D

is diagonal (D ≥ 0). The a-priori covariance matrix (P1|0) at t = 0 is factored using

the U-D decomposition:

P1|0 = U1|0D1|0U
T
1|0. (5.26)

The Kalman gain (K) and the state update are carried out using the usual Kalman

Filter equations by replacing the a-priori covariance using Equation 5.26. The covari-

ance update form is:

Pt = Pt|t−1 − Pt|t−1H(t)T (H(t)Pt|t−1H(t)T +R(t))−1H(t)Pt|t−1

= Pt|t−1 −
Pt|t−1H(t)TH(t)Pt|t−1

α
(5.27)

where the scalar α is given by:

α = H(t)Pt|t−1H(t)T +R(t) (5.28)

Note that in the sequential processing of observations, a single observation is taken in

each step of processing since the observational error matrix (R) is diagonal. Therefore,

α is a scalar. In the general case, when R is a block diagonal matrix, the covariance

update form is:

Pt = Pt|t−1 − Pt|t−1H(t)Tα−1H(t)Pt|t−1 (5.29)
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The covariances Pt and Pt|t−1 can be replaced by their U-D factors. This gives:

UtDtU
T
t = Ut|t−1Dt|t−1U

T
t|t−1 −

Ut|t−1Dt|t−1U
T
t|t−1H(t)TH(t)Ut|t−1Dt|t−1U

T
t|t−1

α

= Ut|t−1

[
Dt|t−1 −

(Dt|t−1U
T
t|t−1H(t)T )(Dt|t−1U

T
t|t−1H(t)T )T

α

]
UT
t|t−1

(5.30)

The bracketed term in Equation 5.30 is symmetric, so it can be factored using U-D

factorization.Thus:

[
Dt|t−1 −

(Dt|t−1U
T
t|t−1H(t)T )(Dt|t−1U

T
t|t−1H(t)T )T

α

]
= ŪtD̄tŪt

T
. (5.31)

This gives:

UtDtU
T
t = Ut|t−1ŪtD̄tŪt

T
UT
t|t−1

= (Ut|t−1Ūt)D̄t(Ut|t−1Ūt)
T (5.32)

Since (Ut|t−1Ūt) is an upper triangular and D̄t is diagonal, therefore:

Ut = Ut|t−1Ūt

Dt = D̄t. (5.33)

These equations are the same as the ESSE update equations (see Lermusiaux and

Robinson (1999), Lermusiaux (1999a,b)).

For Objective Analysis, using the sequential processing of observations, the co-

variance update in terms of U-D factors Uj and Dj (j=1,2,...J, J is the number of

observations) is:

Uj+1 = UjŪj (5.34)

Dj+1 = Dj. (5.35)
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where, U0 and D0 can be expressed in terms of the background covariance (Cor(x,x)):

U0D0U
T
0 = Cor(x,x) (5.36)

As mentioned, the U-D factorization helps in dealing with divergence issues by ensur-

ing that the covariance matrix always remains positive definite. In situations where

there are adequate process noise entering the system states, the usual Kalman Filter

update equation (Equation 5.23) is also capable of handling all the divergence issues

and the algorithm based on U-D factorization may not be necessary.

5.4 Comparison of Computational Costs

For a 2-dimensional domain with N points in each direction, a comparison of the

operation count for computing the optimal distance from a data location to all other

grid points in the domain using different Methods is given in Table 5.1.

Method Operation Count
Level Set Method O(N3)
Fast Marching Method O(N2logN)
Dijkstra’s Method O(N3)

Table 5.1: Comparison of the operation count for the optimal distance obtained using
LSM, FMM and Dijkstra’s Method.

There are a total of N2 grid points at each level and the operation count for LSM

is obtained from an optimistic guess that LSM will take roughly N steps to converge.

In reality, the iterations can take much longer to converge, and therefore LSM is not

a very efficient method for computing the optimal distance to perform OA. On the

other hand, FMM is an efficient technique which requires a fast method to locate

the smallest value grid point in the narrow band. The Min-Heap data structure with

backpointers (Sedgewick, 1988) is employed to efficiently locate the grid point with

the minimum value. The total work done in the DownHeap and UpHeap operations,

which ensure that the updated quantities do not violate the heap properties, is O(log
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N). Thus 2-dimensional FMM with N grid points in each direction has an operation

count of N2logN , which is a significant improvement over LSM. It has also been

observed that FMM requires less computational time (approximately 15 %) than the

SDE approach proposed by Lynch and McGillicuddy (2001). Thus, the OA based

on FMM is computationally the most efficient technique for mapping in multiply-

connected domains.

5.5 Higher order Fast Marching Method

In a domain with no islands or landforms, the optimal path length obtained using

the FMM/LSM should ideally be equal to the Euclidean distance. But the numer-

ical estimation of the optimal path length using the FMM/LSM has discretization

errors and this leads to an inaccurate estimation of the optimal path length. We have

discussed that the Weiner Khinchin and Bochner theorems are valid for covariances

computed using the Euclidean distance in a simply-connected convex domain. The

covariance matrix may no longer be positive definite due to the inaccurate computa-

tion of the optimal path length by FMM/LSM or due to the presence of islands. This

may lead to divergence problems in the resultant field maps based on the FMM/LSM

scheme as shown in Figure C-38. Specifically, the question which motivates this Sec-

tion is: What are the computational errors in optimal path lengths computed using

the FMM/LSM and how can they be reduced? In this section, we introduce the

higher order Fast Marching Method which will reduce errors in the estimation of the

optimal path length.

The Fast Marching Method presented in Section 3.2 is a first order scheme, since

the first order discretization form (Equation 3.10) of the Eikonal equation (Equation

3.7) was used. A different implementation of FMM with higher accuracy (Sethian,

1999a,b) is discussed here. Note that the second order backward approximation to

the first derivative Tx is given by:

Tx ≈
3Ti − 4Ti−1 + Ti−2

2∆x
⇔ Tx ≈ D−xT +

∆x

2
D−x−xT (5.37)
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Similarly, the second order forward approximation to the first derivative Tx is given

by:

Tx ≈
3Ti − 4Ti+1 + Ti+2

2∆x
⇔ Tx ≈ D+xT − ∆x

2
D+x+xT (5.38)

Here D−x and D+x are the first order forward and backward approximations for the

first derivative, respectively (Equation 3.6), D−x−x ≡ D−xD−xand D+x+x ≡ D+xD+x.

Consider the switch functions defined by:

switch−xij =

 1 if Ti−2,j and Ti−1,j are known (‘Alive’) and Ti−2,j ≤ Ti−1,j

0 otherwise



switch+x
ij =

 1 if Ti+2,j and Ti+1,j are known (‘Alive’) and Ti+2,j ≤ Ti+1,j

0 otherwise


(5.39)

Similar functions are defined in the y direction. The higher accuracy scheme attempts

to use a second order approximation for the derivative whenever the points are tagged

as ‘alive’ (the points inside the band where the value of the arrival time function is

frozen: see Section 3.2) but reverts to the first order scheme otherwise.

The modified discretization equation for the higher accuracy FMM is given by:


max([D−xij T + switch−xij

∆x
2 D−x−xij T ],−[D+x

ij T − switch+x
ij

∆x
2 D+x+x

ij T ], 0)2

+

max([D−yij T + switch−yij
∆y
2 D−y−yij T ],−[D+y

ij T − switch+y
ij

∆y
2 D+y+y

ij T ], 0)2

 =
1

F 2
ij

(5.40)

It should be noted that the above scheme is not necessarily a second order scheme.

The accuracy of the above scheme depends on how often the switches evaluate to

zero and how the number of points where the first order method is applied changes

as the mesh is refined. When the number of points where the first order method

is applied is relatively small (occurs only near the coastlines), the error is reduced

considerably by using the higher accuracy FMM. This is clearly evident from Figures
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C-39 and C-40, which show a comparison of the distances and correlation (difference

and normalized difference from Euclidean distance) obtained using the first order and

higher accuracy FMM schemes in the trivial case when a scalar speed function F is

equal to one everywhere in the domain. It should also be noted that a third or higher-

order approximations for the derivative Tx can similarly be used to construct more

accurate FMM schemes, but this will increase the computational cost. Figures C-39

and C-40 also show that the relative error in the optimal distance computed using

FMM is higher near the data point and it reduces as the distance increases. To keep

the computational cost low and a uniform relative error, one can use higher accuracy

FMM near the data point and then progressively shift to the lower order schemes as

the distance increases.

The higher order Fast Marching Method has been used to minimize errors in

the estimation of the optimal path length in Philippines Archipelago. Figure C-41

clearly shows that the use of higher order Fast Marching Method has attenuated the

divergence problems compared to the first order FMM. The divergence problems do

not vanish completely because of the presence of landforms and due to discretization

errors associated with higher order FMM. We introduce other methods to deal with

such divergence problems for multiply-connected coastal domains in Section 5.6.

5.6 Positive Definite covariance matrix for com-

plex multiply-connected coastal regions

We discussed in Section 5.2 that the Weiner-Khinchin and Bochner theorems

are valid for the background error covariance matrix computed using the Euclidean

distance for simply-connected convex domains. The matrix may become negative due

to the discretization error in the optimal path length computed using FMM/LSM. The

use of higher order FMM was therefore recommended in Section 5.5. The covariance

matrix may also become negative due to the presence of islands and coastlines.

Specifically, the question which motivates this Section is: What are the compu-
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tational issues including non-positive definite covariances that arise in a multiply-

connected coastal domain and how can they be remedied? The presence of islands

and archipelagos results in stretching of the Euclidean path in the physical domain

which can potentially make the covariance matrix negative. A negative covariance

matrix results in divergence problems associated with the Kalman Filter (which is

linked to the algorithm for sequential processing of observations). Examples of this

will be shown next. Possible remedies are then discussed starting with curvilinear

coordinates (Section 5.6.1). Then, other methods to deal with the negative covari-

ance matrix due to the presence of islands and due to the inaccurate estimation of

the optimal path length using the FMM or LSM are discussed (Section 5.6.2).

Consider the idealized multiply-connected domain having an island, shown in

Figure C-42. This domain has 12 grid points which are marked as ocean points

and 4 grid points which are marked as land points. The length of the optimal path is

computed exactly to form the covariance matrix to keep it untouched from effects due

to discretization errors in the FMM/LSM. The positive-definite correlation function

Cor(r) = exp
[
− r2

2L2

]
with L=2 is used to form the covariance matrix. We find that

the covariance matrix is not positive definite. The maximum eigen value for the

covariance matrix is 6.3345 while the minimum is -0.0504. This idealized example

clearly shows that the covariance matrix based on the optimal path length for a

complex multiply-connected region may not necessarily be positive definite.

5.6.1 Curvilinear grids

If a very high accuracy FMM is used, the optimal distance computed using this

high accuracy FMM is equivalent to the Euclidean distance only for simply-connected

convex domain. Thus, to ensure that the Weiner-Khinchin relationship or Bochner

theorem hold, a mapping technique based on using curvilinear coordinates can be

used (Cebeci et al., 2005). However, this will stretch the correlation scales as we

will describe now. First, an irregular region having islands in the physical plane in

the Cartesian (x,y) or the polar (r,θ) coordinates is mapped on the curvilinear (ζ, η)

coordinates such that the mapped region is a simply-connected convex domain.
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A simple example of such a mapping in a domain having a circular island (which

is mapped to a rectangular domain and islands are absent in the mapped region) is

illustrated in Figure C-43. The domain having a circular island in the polar (r,θ)

coordinates is mapped on the curvilinear (ζ, η) coordinates. The optimal distance

in this transformed coordinate system will be the Euclidean distance for which the

Weiner-Khinchin and Bochner theorems hold. These optimal distances also satisfy

coastline constraints i.e. there is no direct relationship across landforms. For example,

the distance between the locations (ζ0,η3) and (ζ0,η7) (which are separated by the

island in the polar coordinates) in the curvilinear coordinates (Figure C-43) will be

equal to the length of the optimal path in the polar coordinates which is different

from the across-land Euclidean distance between the locations (r0,θ3) and (r0,θ7) in

the polar coordinates. It should also be noted that the distance between the locations

(ζ0,η3) and (ζ0,η7) is equal to the distance between the location (ζ3,η3) and (ζ3,η7)

in the curvilinear coordinates. This is not the case in the polar coordinates where

the length of the optimal path between (r0,θ3) and (r0,θ7) is smaller than the length

of the optimal path between (r3,θ3) and (r3,θ7). This corresponds to decreasing the

grid resolution away from the island. Thus, the mapping in transformed coordinates

will lead to deformations of the length scales specified for the Objective Analysis in

the physical region. Also, the mapping becomes complicated when the domain has

multiple islands of distorted shapes. Therefore, alternative methods are required to

remove problems arising due to the presence of islands.

5.6.2 Other methods

Other methods which are very useful in removing the divergence problems (Figure

C-44 (Top-Left)) due to the negative covariance matrix are:

a. Discarding the problematic data: One method to deal with the problem of a

negative covariance matrix is to discard the data corresponding to the negative values

of HjCor(x,x)j−1H
T
j . Even though, this will ensure that there are no divergence

issues in the resultant OA, this method is a not the most acceptable one since the

information in the data is discarded entirely. The field map obtained by discarding
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the problematic data is shown in Figure C-44 (Top-Right). Clearly, the divergence

problems are removed but loosing all the information in the data is not acceptable.

b. Introducing process noise: As discussed in Section 5.3, adding a small process

noise to the diagonal elements of the covariance matrix helps in dealing with the

divergence problems associated with a negative covariance matrix. The disadvantage

is that the process noise introduced will lead to a degree of sub-optimality. It is often

a more acceptable method compared to discarding the data. Once again, the field

map obtained by introducing the process noise is free from divergence problems and

the plot is shown in Figure C-44 (Bottom-Left).

c. Dominant Singular Value Decomposition (SVD) of a-priori covariance:

To construct the field maps using the OA techniques, the full covariance matrix is

not required. The computation of the full covariance matrix (Cor(x,x)) is expensive

and it is therefore rarely done for the OA in complex coastal regions. The necessary

requirement to obtain the field maps is the matrix corresponding to the grid and the

data point covariance (Cor(x,X)). The divergence problems in the Kalman update

or in the sequential processing of observations can be removed by first obtaining

the singular value decomposition (SVD) of Cor(x,X) and then reconstructing the

new covariance matrix by retaining only the dominant singular values and setting

the smaller singular values (less than 1 percent of the maximum singular value) to

zero. The above procedure will make the covariance positive definite. It has been

verified that the magnitude of the negative eigen values in the covariance matrix is

very small compared to the magnitude of the maximum eigen value. This verification

establishes that the use of the dominant singular value decomposition method is the

most acceptable method to remove the divergence problems in the update because it

looses the least information contained in the data. Once again, the field map obtained

by dominant singular value decomposition (SVD) of a-priori covariance is free from

divergence problems and the plot is shown in Figure C-44 (Bottom-Right). It has also

been verified that fields obtained by introducing the process noise and fields obtained

by dominant singular value decomposition of the a-priori covariance are very similar.

Another important and challenging problem in oceanography is estimating the

78



scales from the data. New methodologies for scale estimation based on the structure

function method, short term Fourier transform (STFT) and second generation wavelet

(SGW) analysis are discussed in the next Chapter.
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Chapter 6

Adaptive Scale Estimation

A major but apparently simple challenge in geophysical fluid dynamics at sea

is the estimation of the dominant spatial-time scales in field measurements. This

may seem basic for scientists and engineers not used to ocean data, but due to the

multi-scale, turbulent and/or intermittent ocean dynamics and due to the irregular

properties of the data, it is a very common question in ocean meetings. In this

chapter, we investigate new methods for adaptive spatial-time scale estimation from

irregular ocean field measurements. Solving this question would significantly help in

better understanding and sampling of ocean processes.

New adaptive schemes to learn the largest and the most energetic scales based

on structure functions (Denman and Freeland, 1985) and on non-linear least square

fitting methods (Appendix B) are first outlined in Section 6.1. An example of an

adaptive scheme based on short term Fourier transforms (STFT), which can be used

for non-stationary signals, is illustrated in Section 6.2. It is applied to an idealized

dataset generated using a chirp signal, in which the frequency and the wave number

varies with time. In Section 6.3, we illustrate another new adaptive scale-estimation

scheme based on second generation wavelets (Sweldens, 1998, Jansen and Oonincx,

2005). Second generation wavelets are applicable to both irregularly sampled and

non-dyadic data sets. This is important since we would like to estimate scales in

the data without mapping the data. To map the data, one needs scale estimates, as

described in previous chapters. Ultimately, the goal of all new methods investigated
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below would be to create a map of time and space scales that evolves as ocean data

are collected or are fed to the scale estimation scheme, all without requiring to map

the data.

6.1 A new adaptive scale estimation method using

structure functions

The new adaptive algorithm derived in this section can be employed to estimate

the spatial-time scales from the available oceanic data field. The approach proposed

by Denman and Freeland (1985) is utilized to obtain the isotropic structure function

(B(r)) from the data field (θ). The structure function (B(r)) is defined by:

Bi(r) = E[(θ(xi + r)− θ(xi))2] + 2N

= E[θ(xi + r)θ(xi + r)] + E[θ(xi)θ(xi)]− 2E[θ(xi + r)θ(xi)] + 2N

= 2[F (0)− F (r) +N ]

= 2N + 2F (0)[1− Cor(r)] (6.1)

where F (r) = E[θ(xi + r)θ(xi)], Cor(r) = F (r)/F (0) and N is the noise variance.

We have assumed that errors in measurements θ(xi + r) and θ(xi) are independent.

So the variance of the error in (θ(xi + r) − θ(xi)) is given by 2N . The noise-free

correlation function with properties Cor(0) = 1 and Cor(r)→ 0 as r →∞ has been

given in Equation 2.4.

Our new adaptive learning algorithm utilizes the structure function B(r) obtained

from the available data to learn the unknown scale parameters by using the non-

linear least squares fitting method (Appendix B). An adaptive learning algorithm for

estimating the length scale (L) and the time scale (τ) is as follows:

1. Assume an initial approximation for the scales. Consider the data in the time

window ∆t = τs/4.

2. Obtain the structure function from the data available in the time interval ∆t
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and the spatial window |x− xi| ≤ Ll for all the grid points.

3. Length scales (LSs and LSl ) are obtained by the non-linear least square fit of the

structure function from the data to the analytical structure function.

4. The following learning equation is used to obtain the new length scales.

L
(k+1)
l = Lkl + lr(LSl − Lkl )

L(k+1)
s = Lks + lr(LSs − Lks) (6.2)

Here, lr is the learning rate.

5. A similar analysis is repeated for obtaining the time scales.

It should be noted that more than one spatial or time scales can be estimated by ap-

propriately selecting the spatial and temporal window. The data in the corresponding

spatial-temporal window can be used for estimating the large and small scales.

Scales estimated from the adaptive learning algorithm based on the structure func-

tion in the complex domain of Philippines Archipelago using the Melville (Summer

2007) exploratory cruise data (Figure C-23) are shown in Figure C-45. Small scale

estimates on 26th June, 2007 are obtained from the exploratory cruise data collected

on and before 26th June, 2007. Scale estimates are available in the Bohol Sea and

near the Panay island. As more data gets collected, the new scale estimate plot on

15th July, 2007 shows that estimates are also available in the Mindoro strait. It can

also be observed that scales in the Bohol Sea are slightly smaller due to the change

in wind circulation during the period between 26th June, 2007 and 15th July, 2007.

6.2 A new adaptive scale estimation method using

short term Fourier transforms (STFT)

Another adaptive learning scheme based on short term Fourier transforms (STFT)

is proposed in this section to estimate the spatial-time scales, but assuming a regularly
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spaced and idealized dataset. This allows us to evaluate capabilities of the STFT

method.

Idealized data corresponding to the chirp signals (swept sinusoids) has been gen-

erated and the adaptive algorithm is employed to learn the instantaneous frequency

of the chirp signal. The data has been generated at N (N = 40000) time instances

for the spatial domain (0 ≤ x ≤ X = 50) and the time domain (0 ≤ t ≤ T = 50).

The data function is given by:

u(xi, ti) = 3sin{k1(xi)xi + ω1(ti)ti}+ sin{k2(xi)xi + ω2(ti)ti}

where,

ti = T
i− 1

N
; xi = X

mod(i− 1,
√
N)√

N − 1
;

k1(xi) =
2π

1.5
+

xi
2X

(
2π

2.5
− 2π

1.5
) ; k2(xi) =

2π

6
+

xi
2X

(
2π

12
− 2π

6
);

ω1(ti) =
2π

2.5
+

ti
2T

(
2π

1.5
− 2π

2.5
) ; ω2(ti) =

2π

12
+

ti
2T

(
2π

6
− 2π

12
). (6.3)

The instantaneous wave numbers (k1inst, k2inst), frequencies (ω1inst, ω2inst), length

scales (L1inst, L2inst) and time scales (T1inst, T2inst) corresponding to this chirp signal

are given by:

k1inst(xi) =
2π

1.5
+
xi
X

(
2π

2.5
− 2π

1.5
) ; k2inst(xi) =

2π

6
+
xi
X

(
2π

12
− 2π

6
);

ω1inst(ti) =
2π

2.5
+
ti
T

(
2π

1.5
− 2π

2.5
) ; ω2inst(ti) =

2π

12
+

ti
2T

(
2π

6
− 2π

12
);

L1inst(xi) =
2π

k1inst(xi)
; L2inst(xi) =

2π

k2inst(xi)

T1inst(xi) =
2π

ω1inst(xi)
; T2inst(xi) =

2π

ω2inst(xi)
(6.4)

The stepwise algorithm based on STFT, which has been implemented to adaptively

learn the length and time scales, is as follows:

1. Assume an initial approximation for the small and large spatial scales (Ls, Ll)

and the small and large time scales (Ts, Tl) at all the grid points.
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2. Consider the data in a time interval which is significantly smaller than the small-

est time scale (Ts/8 ≥ ∆t). Apply the short term Fourier transform (STFT) in

the spatial window (|x− xi| ≤ Ll) and analyze the corresponding wave number

spectrum. The two wave numbers corresponding to the peak amplitudes of the

wave number spectrum will give an estimate of the small (LFs ) and the large

(LFl ) spatial scales in the signal. The new length scales are obtained using the

learning equations:

L
(k+1)
l = Lkl + lr(LSl − Lkl )

L(k+1)
s = Lks + lr(LSs − Lks) (6.5)

Here, lr is the learning rate.

3. A similar analysis is repeated for obtaining the time scales. STFT is applied

in the time window (|t − ti| ≤ Tl) to analyze the data frequency. The two

frequencies corresponding to the peak amplitudes of the frequency spectrum

will give an estimate of the small (T Fs ) and the large (T Fl ) time scales in the

signal. The new time scales can be obtained by using the learning equations

(similar to Equation 6.5). The process is repeated to adaptively learn the new

length and time scales as the new data is received for the next time interval ∆t

(Ts/8 ≥ ∆t).

Plots for the small and the large length scales for chirp signal data (Equation 6.3)

computed using the adaptive learning algorithm described above, are shown in Figure

C-46. A comparison has been made between the analytical instantaneous length scales

(Equation 6.4) and the scales adaptively learned from the data with a learning rate,

lr = 0.1. The accuracy of scales depends on the resolution of Fourier spectrum.

The analytical small scales and the small scales obtained using the adaptive learning

algorithm compare well, since the STFT wave number resolution is good (see Figure

C-46 (Top-Left)). Jumps observed in the small scales are due to the finite resolution

of wave numbers. However, for the large scales, the STFT wave number resolution is

not as good as the small scales, and the scale estimate obtained using the adaptive
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learning algorithm does not match well with the analytical instantaneous scales (see

Figure C-46 (Top-Right)). Similar trends are observed from plots for time scales

shown in Figure C-46. There is a good comparison between plots for small time-scales

obtained using the learning algorithm with a learning rate 0.1 and the instantaneous

small time scales corresponding to the chirp signal data (see Figure C-46 (Bottom-

Left)). But, the large time scales do not compare well since the frequency resolution

is not good (see Figure C-46 (Bottom-Right)).

Results obtained above are encouraging and a possible approach to improve the

scale estimates is by adaptively learning scales using the wavelet analysis (since the

signal is not stationary and the frequency changes with time). To understand effects

of varying the learning rate (lr), spatial-time scales have been obtained for the same

chirp signal data with a learning rate lr = 0.2. With an enhanced learning rate, the

scales are now more sensitive to the incoming data. The plots for the large spatial

scales and the large time scales (see Figure C-47 (Right panel)) obtained using the

adaptive learning algorithm with learning rate lr = 0.2 show that the oscillations in

the estimated length and time scales are severe compared to the adaptive learning

with learning rate lr = 0.1. The advantage of having a larger learning rate is that

scales will converge to the true scales in a small number of steps, but at the cost of

higher sensitivity to the incoming data.

Another data set has been generated at N (N = 40000) time instances for the

spatial domain (0 ≤ x ≤ X = 50) and the time domain (0 ≤ t ≤ T = 50) to

validate the adaptive algorithm based on STFT for learning the spatial-time scales.

The wavenumber and frequency for the data function (Data Set 2) are given by:



k1(xi, ti)

k2(xi, ti)

ω1(xi, ti)

ω2(xi, ti)


=



2π
1.5

2π
12

2π
1.5

2π
12


0≤xi≤X/2
0≤ti≤T/2

;
X/2≤xi≤X
T/2≤ti≤T

;



2π
2.5

2π
6

2π
2.5

2π
6


X/2≤xi≤X
0≤ti≤T/2

;
0≤xi≤X/2
T/2≤ti≤T
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ti = T
i− 1

N
;xi = X

mod(i− 1,
√
N)√

N − 1
; (6.6)

The true spatial-time scales are given by:

L1true(xi, ti) =
2π

k1(xi, ti)
; L2true(xi, ti) =

2π

k2(xi, ti)

T1true(xi, ti) =
2π

ω1(xi, ti)
; T2true(xi, ti) =

2π

ω2(xi, ti)
(6.7)

Our new STFT-based adaptive algorithm for learning the spatial-time scales is em-

ployed, and the estimated scales are compared with the true scales. Plots comparing

the spatial-time scales obtained using the learning algorithm and the true spatial-time

scales are shown in Figure C-48. The estimated small spatial-temporal scales com-

pare well with the true small spatial-temporal scales (see Figure C-48 (Left panel))

but oscillations are observed in the large spatial-temporal scale estimates (see Figure

C-48 (Right panel)) due to limited resolution by STFT. These results indicate that

the learning algorithm suggested in this section is a reasonable approach to estimate

the spatial-temporal scales. Further improvement in accuracy of the estimated scales

can be expected by using wavelet analysis.

Note that STFT can only be used on data signals which are regularly spaced. But

the oceanic data is collected by platforms whose positions vary irregularly with time.

Therefore, the learning algorithm based on the structure function (Section 6.1) and

the algorithm based on second generation wavelets (Section 6.3) will be more relevant

to the ocean data. The above work was mainly carried out to quantify capabilities of

the STFT method.

6.3 A new adaptive scale estimation method using

second generation wavelets

Scales in the ocean vary with time. The scale estimation is thus a non-stationary

problem, which makes the use of Fourier Transform less adequate. Short term Fourier
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transforms (STFT) and first generation wavelets are applicable to non-stationary

signals and are proven to be very useful in engineering and computer science, but

they require regularly spaced dyadic data which is not the case with ocean data.

The ocean data is irregular and non-dyadic. The use of a regular field obtained by

mapping the data should also be avoided if possible, since the mapping procedure

introduces artificial scales and therefore scales estimated from mapped fields will be

different from scales estimated using the ocean data.

Wavelets are mathematical functions that divide the data into different frequency

components and each component is then studied with a resolution that matches its

scale. Two well-known admissible wavelets (Figure C-49) which have been used in

several applications are:

a. Haar Wavelet: The Haar wavelet is defined by:

ψ(x) =


1, xε[0, 1/2),

−1, xε[1/2, 1),

0, otherwise.

(6.8)

a. Mexican Hat Wavelet: Mexican hat wavelet is the second derivative of the

Gaussian function. It is given by:

ψ(x) =
−d2

dx2
e−x

2/2 = (1− x2)e−x
2/2 (6.9)

Second generation wavelet (SGW) decomposition (Sweldens, 1998, Jansen and Oon-

incx, 2005), which is evaluated directly on irregular locations and does not need dyadic

data, is now discussed. The approach can also automatically adapt to the data on

finite intervals, without requiring artificial techniques like extension of data near the

boundaries. SGW is based on using the so called lifting scheme. Lifting can be viewed

as a method to construct a wavelet transform, which has the ability to enhance the

first generation wavelet transform, by adding desirable properties. A description of

the lifted version of the Haar wavelet transform (Sweldens, 1998, Jansen and Oonincx,

2005) is now provided.
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A Haar decomposition takes the fine scale scaling coefficients as inputs. It can be

assumed that these fine scale coefficients are observations. The resolution level cor-

responding to observations is the finest. Second generation wavelet analysis proceeds

in successive steps by extracting the coarser scale trends in each successive step. A

lifting scheme consists of three operations: a split, followed by a sequence of dual

and primal lifting operations. As shown in Figure C-50, the splitting step divides

the input signal f into two disjoint sets: observations with odd indices (γ1) and even

indices(λ1). Each step of the Haar decomposition computes averages and differences

of the adjacent input values. Let sj+1,k be the input at scale j + 1. One step of Haar

decomposition transforms the input into averages sj,k and details (differences) dj,k at

the scale j. The corresponding equations are:

dj,k = sj+1,2k+1 − sj+1,2k (6.10)

sj,k =
sj+1,2k + sj+1,2k+1

2

= sj+1,2k +
dj,k
2

(6.11)

Thus the dual lifting step of the second generation Haar wavelet decomposition re-

places the odd indexed input values by the difference between the odd and the even

indexed input value. Similarly, the primal lifting step of the second generation Haar

wavelet decomposition replaces the even indexed input values by the mean of the odd

and the even indexed input value. The rectangular boxes linking the odd and the

even branches in Figure C-50 stand for the convolution operations. In the dual lifting

step (Predict), the even indexed coefficients are convolved with some sequence (P)

and the result is subtracted from the odd indexed coefficients. The primal lifting step

(Update) convolves the resulting difference with another sequence (U) and add the

result to the even indexed coefficients. The convolution operators P and U for the

Haar transform are 1 and 1/2 respectively.

The second generation wavelet transformation based on the Haar decomposition is

utilized to obtain scales in the chirp signal. A Data set was generated at N (N = 1025)
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time instances for the time domain (0 ≤ t ≤ T = 256) using the function:

3sin(ω(t)t)

where,

ω(t) =
2π

32
+
.5t

T

[
2π − 2π

32

]
(6.12)

The instantaneous time scale corresponding to the above data is given by:

Tinst(t) =
1

1
32

+ t
T

[
1− 1

32

] (6.13)

Figure C-51 shows the contour plot of the scale coefficients varying with time. The

scale coefficients are obtained by the SGW transformation based on the Haar decom-

position of the chirp signal given by Equation 6.12. The true instantaneous scales

(Equation 6.13) are plotted in the same figure to study the behavior of the scale

coefficients obtained using the SGW. There is a good comparison between the true

instantaneous scales and the estimated scales, but a dispersion of the scale coeffi-

cients is also observed. Haar wavelets are an example of the simplest wavelet, with

low resolution. However, the above illustration using chirp signals shows that SGW

can potentially be a powerful tool for scale estimation in the ocean.

Adaptive scale estimation in the ocean using second generation wavelets based

on other admissible wavelets like the Mexican Hat or Morkel wavelets is a subject of

further research study. The primal and dual lifting steps needs to be appropriately

tuned for using these wavelets. A goal will be to reduce the dispersion of scale

coefficients for accurate adaptive scale estimation for oceans.

Among the three methods discussed above, the method based on the structure

function and the method based on the second generation wavelets look more promis-

ing, since these methods are valid for the non-dyadic and irregularly spaced ocean

dataset.
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Chapter 7

Summary and Conclusions

Our research consisted of three related investigations: a. new methodologies for

the mapping and dynamical inference of ocean fields from irregular data in complex

multiply-connected domains, b. computational studies of properties of the new map-

ping schemes, and c. the adaptive estimation of spatial and temporal scales. Results,

findings and future work are summarized next.

New methods for efficient field mapping, i.e. Objective Analysis, in complex

coastal regions were researched, implemented and utilized. These new OA methods,

which satisfy coastline constraints (e.g. there is no direct relationship across land-

forms), are based on estimating the length of the optimal path using either the Level

Set Method (LSM) or the Fast Marching Method (FMM). These novel methods were

applied and studied in complex domains of the Philippines Archipelago and Dabob

Bay using realistic datasets to obtain field estimates such as temperature, salinity and

biology (chlorophyll). Results were compared with those of a standard OA scheme

(using across-landforms Euclidean distance in the analytical correlation function) and

of OA schemes based on the use of stochastically forced differential equations (SDE),

including that proposed by Lynch and McGillicuddy (2001). We have shown that our

new FMM-based scheme is computationally inexpensive compared to our LSM-based

scheme and the SDE approach. Our illustrations and studies show that field maps

obtained using our FMM-based scheme do not require postprocessing (smoothing) of

fields e.g. they are devoid of any spurious hydrographic field gradients which are un-
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acceptable for flow computation. We have also shown that the use of FMM is the most

appropriate method for the optimal distance estimation among the distance estima-

tion methodologies like Dijkstra’s optimization algorithm and the classic Bresenham

line algorithm. The optimal distance computed using Dijkstra’s algorithm is com-

putationally expensive and inaccurate. Apart from being computationally expensive,

the optimal distance computed using the Bresenham line algorithm is discontinuous.

This results in the formation of fronts with high field gradients. Such high gradient

fronts do not occur when our FMM-based scheme is utilized. We have also utilized

our new FMM-based OA scheme for incorporating non-homogeneous dynamical ef-

fects by appropriately modifying the scalar speed function in the Eikonal equation.

In particular, we have used a bathymetry-dependent scalar speed function to include

bathymetric effects at lower depth levels. We also proposed the use of the smallest

length scale on the optimal path to include the non-homogeneous effects due to the

existence of fronts in a continental shelf. In the future, analogous modification of the

scalar speed function or the length scale can be used to incorporate other dynamical

effects (e.g. conservation of potential vorticity). The optimal path length obtained

using our FMM/LSM-based scheme can also be used to extend the methodology

proposed by Lermusiaux et al. for three-dimensional, multivariate and multi-scale

spatial mapping of geophysical fields and their dominant errors (Lermusiaux et al.,

1998, 2000, Lermusiaux, 2002) to complex coastal regions. Three-dimensional, multi-

variate and multi-scale spatial mapping using our FMM based scheme is also a subject

of further research.

Computational studies of properties of the new mapping schemes were carried

out. The sequential processing of observations reduces the computational cost and

also helps in understanding the impact of individual data. We have used the Wiener-

Khinchin and Bochner theorem to obtain the relationship among parameters of the

analytical correlation function for it to be positive definite. Such analysis is valid

only for the correlation functions based on the Euclidean distance for convex simply-

connected domains. When the number of observations is large, the Kalman Filter

or the sequential processing of observations may have divergence problems due to
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numerical reasons. Methods to remove divergence problems arising from numerical

issues were discussed. It was found that the covariance matrix is no longer positive

definite when the optimal path length is computed using FMM. Therefore, the use

of high order FMM was discussed and implemented to obtain more accurate length

of shortest sea paths. However, we found that the covariance matrix also becomes

negative due to the presence of islands and other non-convex landforms. Several

approaches to overcome this issue were discussed. These include discarding problem-

atic data points, introducing process noise, and reducing the covariance matrix based

on the dominant singular value decomposition (SVD). Among these, we argue that

introducing process noise and using the dominant SVD are the best solutions.

We have also derived and implemented new FMM based methodology for the esti-

mation of absolute velocity under geostrophic balance in complex multiply-connected

domains. FMM is used for the computation of the minimum vertical area between all

pairs of islands. The minimum area is required for obtaining the transport streamfunc-

tion which minimizes the inter-island transport and produces a smooth velocity flow

field. The transport streamfunction can then be utilized to estimate the geostrophic

flow velocity from the temperature and salinity field maps alone. We have illustrated

this method by applying it in a subdomain of the Philippines Archipelago.

The estimation of spatial-temporal scales from irregular ocean field measurements

would be potentially a significant advance to the ocean community for better under-

standing and sampling of ocean processes. This is a challenging problem due to the

multi-scale, turbulent and/or intermittent ocean dynamics and due to the irregular

properties of the data. Three new methods for adaptive spatial-temporal scale estima-

tion were proposed and implemented. These methods are based on using the structure

function, short term Fourier transforms and second generation wavelet analysis. To

our knowledge, this is the first time that adaptive methods for the spatial-temporal

scale estimation are proposed and used in ocean studies. The application of our new

scale estimation schemes based on the structure function method was illustrated using

Melville (Summer 2007) exploratory cruise data. We also illustrated the application

of short term Fourier transforms and second generation wavelet analysis using chirp
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signal data. Second generation wavelet analysis for adaptive spatial-time scale esti-

mation from the irregularly spaced ocean data is shown to be a promising technique

and will be a subject of further research.
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Appendix A

Proof of Algorithm for Sequential

Processing of Observations

The equivalence of Equations 5.1 − 5.3 and Equations 5.7 − 5.9, as proven by

Parrish and Cohn (1985), is given here. The proof will follow from an inductive

argument after establishing the equivalence for J=2. Here we denote the background

field and covariance by ψ̄ and Cor(x,x), respectively and the estimated field and its

error covariance by ψ̄OA and POA, respectively. Equation 5.1 can be rearranged to

the form:

K = (I −KH)Cor(x, x)HTR−1. (A.1)

Using Equation 5.2, Equation A.1 can be written as:

K = POAHTR−1. (A.2)

Using Equation A.2, Equation 5.3 becomes

ψOA = ψ̄ + POAHTR−1(d−Hψ̄). (A.3)
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According to Equations 5.4 and 5.5,

R =

 R1 0

0 R2

 , d =

 d1

d2

 , H =

 H1

H2

 . (A.4)

Using A.4, Equation A.3 can be written as

ψOA = ψ̄ + POA[HT
1 R
−1
1 (d1 −H1ψ̄) +HT

2 R
−1
2 (d2 −H2ψ̄)] (A.5)

The Woodbury formula establishes the equivalence of equations in A.6 for arbitrary

conformable matrices A, B, C, R, provided that the indicated inverse exists.

C = B −BAT (ABAT +R)−1AB ⇔ C−1 = B−1 + ATR−1A (A.6)

The Equations 5.1 and 5.2 lead to

POA = Cor(x, x)− Cor(x, x)HT (HCor(x, x)HT +R)−1HCor(x, x) (A.7)

Using A.6, the equivalent statement of A.7 will be:

(POA)−1 = (Cor(x, x))−1 +HTR−1H (A.8)

The a-posterior error covariance is obtained by substituting A.4 in Equation A.8

(POA)−1 = (Cor(x, x))−1 +HT
1 R
−1
1 H1 +HT

2 R
−1
2 H2 (A.9)

To show the equivalence of Equations 5.1 − 5.3 and Equations 5.7 − 5.9, it needs

to be shown that A.5 and A.9 holds for the sequential processing of observations

(Equations 5.7 − 5.9). Apply the Woodbury formula to equations 5.7 and 5.8 and

get

(Cor(x, x)1)−1 = (Cor(x, x))−1 +HT
1 R
−1
1 H1 (A.10)
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(POA)−1 = (Cor(x, x)1)−1 +HT
2 R
−1
2 H2 (A.11)

Equations A.10 and A.11 can be combined to eliminate (Cor(x, x)1). This leads to

a-posterior error covariance Equation A.9. To verify that A.5 holds, Equation 5.9 is

written as:

ψ1 = ψ̄ + Cor(x, x)1H
T
1 R
−1
1 (d1 −H1ψ̄). (A.12)

ψOA = ψ1 + POAHT
2 R
−1
2 (d2 −H2ψ1). (A.13)

Eliminate ψ1 from Equations A.12 and A.13 to obtain

ψOA = ψ̄ + (I − POAHT
2 R
−1
2 H2)Cor(x, x)HT

1 R
−1
1 (d1 −H1ψ̄) +

POAHT
2 R
−1
2 (d2 −H2ψ̄). (A.14)

Premultiply A.11 by POA and postmultiply it by Cor(x, x) to obtain

POA = (I − POAHT
2 R
−1
2 H2)Cor(x, x). (A.15)

Using Equation A.15 in A.14 gives Equation A.5. This proves the equivalence of

Equations 5.1 − 5.3 and Equations 5.7 − 5.9 for J=2. The proof of the general case

follows from an inductive argument.
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Appendix B

Nonlinear least squares fitting

method

Given a non-linear function having a known analytic form with n independent pa-

rameters i.e f(x;µ1, µ2, µ3, ...µn) and consider the over-determined set of m equations

(m > n):

y1 = f(x1;µ1, µ2, µ3, ...µn)

y2 = f(x2;µ1, µ2, µ3, ...µn)

...

ym = f(xm;µ1, µ2, µ3, ...µn). (B.1)

The values µ1,µ2,µ3,...µn, which best satisfy the above system of equations (by min-

imizing the sum of the squared residuals) can be obtained using the nonlinear least

squares fitting method. The approach is outlined next:

1. An initial guess for µi is chosen. Define the error (βi) as:

βi = yi − f(xi;µ1, µ2, µ3, ...µn) (B.2)

2. A linearized estimate for the change in parameters (dµi) which reduces the error
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(βi) to zero is given by:

β = Adµ (B.3)

where m− by − n matrix A is given by

A =



∂f
∂µ1

∣∣∣
(x1,µ)

... ∂f
∂µn

∣∣∣
(x1,µ)

∂f
∂µ1

∣∣∣
(x2,µ)

... ∂f
∂µn

∣∣∣
(x2,µ)

. ... .

∂f
∂µ1

∣∣∣
(xm,µ)

... ∂f
∂µn

∣∣∣
(xm,µ)



Apply the matrix AT to both sides of Equation B.3 to obtain

ATβ = (ATA)dµ (B.4)

Equation B.4 can be solved for dµ using the standard linear algebraic equation

solvers such as Gaussian elimination or LU decomposition. The offset dµ is

applied to µ.

3. The process is iteratively applied till the offset dµ becomes smaller than the

desired tolerance level.

This is the nonlinear least squares fitting method, which is utilized in the adaptive

scale estimation using the structure function method.
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Appendix C

Figures

Figure C-1: MSEAS 2-stage Objective Analysis
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Figure C-2: Comparison between FMM (Left) and the Dijkstras (Network Flow)
algorithm (order = 2) (Right) for optimal path planning (Takei, 2006)
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Figure C-3: Illustration of the Bresenham Line Algorithm
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Figure C-4: Temperature data in Dabob Bay
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Figure C-5: Temperature (oC) (Left) and Salinity (PSU) (Right) OA Fields in Dabob
Bay from the optimal path length computed using: (Top) Bresenham Algorithm;
(Middle) Averaged Bresenham Approach; (Bottom) Fast Marching Method
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Figure C-6: World Ocean Atlas 2005 Climatology in situ temperature (oC) at 0.0m
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Figure C-7: Temperature (oC) OA Fields obtained using the Level Set Method at
Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle - Right)
450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-8: Temperature (oC) OA Fields obtained using the Fast Marching Method
at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle - Right)
450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-9: Temperature (oC) OA Fields (Standard OA without taking islands into
account) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle
- Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-10: Temperature (oC) OA Fields using the SDE approach (representing
covariance by Helmholtz equation) at Level: (Top - Left) 0m; (Top - Right) 40m;
(Middle - Left) 200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom -
Right) 3000m
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Figure C-11: Temperature (oC) OA Fields using the SDE approach (representing field
by Helmholtz equation) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left)
200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-12: Salinity (PSU) OA Fields obtained using the Level Set Method at Level:
(Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle - Right) 450m;
(Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-13: Salinity (PSU) OA Fields obtained using the Fast Marching Method at
Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle - Right)
450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-14: Salinity (PSU) OA Fields (Standard OA without taking islands into
account) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m; (Middle
- Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-15: Salinity (PSU) OA Fields using the SDE approach (representing covari-
ance by Helmholtz equation) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle -
Left) 200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-16: Salinity (PSU) OA Fields using the SDE approach (representing field
by Helmholtz equation) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left)
200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-17: Comparison of the Temperature (oC) field at Level = 1000m by using:
(Top - Left) Level Set Method; (Top - Right) Fast Marching Method; (Bottom - Left)
SDE Approach; (Bottom - Right) Standard OA
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Figure C-18: Comparison of the Salinity (PSU) field at Level = 1000m by using:
(Top - Left) Level Set Method; (Top - Right) Fast Marching Method; (Bottom - Left)
SDE Approach; (Bottom - Right) Standard OA
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Figure C-19: Difference between Temperature (oC) field at Level = 1000m obtained
using Fast Marching Method and using: (Top - Left) Level Set Method; (Top - Right)
Standard OA; (Bottom - Left) SDE Approach (representing covariance by Helmholtz
equation); (Bottom - Right) SDE (representing field by Helmholtz equation)
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Figure C-20: Difference between Salinity (PSU) field at Level = 1000m obtained
using Fast Marching Method and using: (Top - Left) Level Set Method; (Top - Right)
Standard OA; (Bottom - Left) SDE Approach (representing covariance by Helmholtz
equation); (Bottom - Right) SDE (representing field by Helmholtz equation)
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Figure C-21: Melville exploratory Cruise + GTSPP + HB2 Climatology (Summer
2007) in situ temperature (oC) at 0.0m
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Figure C-22: Temperature (oC) and Salinity (PSU) Field Maps (Melville exploratory
Cruise + GTSPP + HB2 Climatology (Summer 2007) data)
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Figure C-23: Melville exploratory cruise and glider data (Summer 2007) in Philippines
Archipelago
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Figure C-24: Temperature (oC) OA Fields using the FMM with Melville exploratory
cruise and glider data (Summer 2007) at Level: (Top - Left) 0m; (Top - Right) 40m;
(Middle - Left) 200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom -
Right) 3000m
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Figure C-25: Salinity (PSU) OA Fields using the FMM with Melville exploratory
cruise and glider data (Summer 2007) at Level: (Top - Left) 0m; (Top - Right) 40m;
(Middle - Left) 200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom -
Right) 3000m
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Figure C-26: Philippines Archipelago - Melville joint cruise Data (Winter 2008)

126



Figure C-27: Temperature (oC) OA Fields using the FMM with Melville joint cruise
data (Winter 2008) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left)
200m; (Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-28: Salinity (PSU) OA Fields using the FMM with Melville joint cruise data
(Winter 2008) at Level: (Top - Left) 0m; (Top - Right) 40m; (Middle - Left) 200m;
(Middle - Right) 450m; (Bottom - Left) 1000m; (Bottom - Right) 3000m
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Figure C-29: Biology (chlorophyll) data in Philippines Archipelago
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Figure C-30: Chlorophyll (µmol/Kg) OA Fields using the FMM at Level: (Top -
Left) 0m; (Top - Right) 10m; (Middle - Left) 50m; (Middle - Right) 100m; (Bottom
- Left) 160m; (Bottom - Right) 200m
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Figure C-31: Velocity estimation under geostrophic balance (weight functions based
on the minimum vertical area) from field maps (WOA05) obtained using the FMM:
(Top - Left) Streamfunction, Velocity at depths: (Top - Right) 0m; (Bottom - Left)
100m; (Bottom - Right) 1000m
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Figure C-32: Velocity estimation under geostrophic balance (weight functions based
on the minimum vertical area) from field maps (WOA05) obtained using the SDE
(Helmholtz equation) for field: (Top - Left) Streamfunction, Velocity at depths: (Top
- Right) 0m; (Bottom - Left) 100m; (Bottom - Right) 1000m
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Figure C-33: Velocity estimation under geostrophic balance (weight functions based
on the minimum distance) from field maps (WOA05) obtained using the FMM: (Top
- Left) Streamfunction, Velocity at depths: (Top - Right) 0m; (Bottom - Left) 100m;
(Bottom - Right) 1000m
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Figure C-34: Velocity estimation under geostrophic balance (weight functions based
on the minimum distance) from field maps (WOA05) obtained using the SDE
(Helmholtz equation) for field: (Top - Left) Streamfunction, Velocity at depths: (Top
- Right) 0m; (Bottom - Left) 100m; (Bottom - Right) 1000m

134



Figure C-35: Cartoon illustrating non-homogeneous scales in a continental shelf with
a front having small scales in y-direction separating regions having large scales in
y-direction
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Figure C-36: Inclusion of bathymetry effects by modifying scalar speed function in
Philippines Archipelago at a depth of 450m: (Top - Left) Regular scalar speed function
(F1) with 0 for landforms and 1 for ocean; (Top - Right) Modified scalar speed function
(F2) given by bathymetry / OA level; (Middle - Left) Temperature (oC) field map
based on F1; (Middle - Right) Temperature (oC) field map based on F2; (Bottom -
Left) Salinity (PSU) field map based on F1; (Bottom - Right) Salinity (PSU) field
map based on F2
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Figure C-37: World Ocean Atlas 2005 (Spliced February and Winter Climatology) in
situ temperature (oC) at 0.0m
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Figure C-38: Temperature (oC) OA Fields using the Fast Marching Method at the
surface (0m) using the following scales: (Left) L0 = 540Km, Le = 180Km; (Right)
L0 = 1080Km, Le = 360Km

138



Figure C-39: Comparison between distance and correlation (exp(−r
2

2L2 );L = 10) ob-
tained using the first order FMM and the Euclidean distance on a 30-by-30 domain
without islands. (Top - Left) Difference in distance; (Top - Right) Normalized differ-
ence in distance; (Bottom - Left) Difference in correlation; (Bottom - Right) Normal-
ized difference in correlation
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Figure C-40: Comparison between distance and correlation (exp(−r
2

2L2 );L = 10) ob-
tained using the higher (second) order FMM and the Euclidean distance on a 30-by-30
domain without islands. (Top - Left) Difference in distance; (Top - Right) Normal-
ized difference in distance; (Bottom - Left) Difference in correlation; (Bottom - Right)
Normalized difference in correlation
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Figure C-41: Temperature (oC) OA Fields at the surface (0m) (scales L0 = 1080Km,
Le = 360Km) using: (Left) First Order FMM; (Right) Higher order FMM
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Figure C-42: Example of an idealized (multiply-connected) domain having an island
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Figure C-43: Example illustrating the mapping and stretching in a domain with a
circular island. Multiply-connected domain in the polar (r,θ) coordinates is mapped
to a simply-connected rectangular domain in the curvilinear (ζ,η) coordinates.
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Figure C-44: Temperature (oC) OA Fields at the surface (0m) (scales L0 = 1080Km,
Le = 360Km) using: (Top - Left) FMM; (Top - Right) FMM and by discarding
the problematic data; (Bottom - Left) FMM and by introducing process noise; (Bot-
tom - Right) FMM and by dominant singular value decomposition (SVD) of a-priori
covariance
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Figure C-45: Scale estimates for Philippines Archipelago from Melville exploratory
cruise data (Summer 2007) on 26th June 2007 (Left) and 15th July 2007 (Right) using
structure function
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Figure C-46: Small and large length scales (Top) and time scales (Bottom) from the
adaptive learning algorithm (learning rate = 0.1) based on STFT applied on the chirp
signal data
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Figure C-47: Small and large length scales (Top) and time scales (Bottom) from the
adaptive learning algorithm (learning rate = 0.2) based on STFT applied on the chirp
signal data
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Figure C-48: Small and large length scales (Top) and time scales (Bottom) from the
adaptive learning algorithm (learning rate = 0.1) based on STFT applied on Data
Set 2
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Figure C-49: Haar Wavelet (Left) and Mexican Hat Wavelet (Right) (Jansen and
Oonincx, 2005)
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Figure C-50: Block diagram of second generation wavelet transform (Jansen and
Oonincx, 2005)
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Figure C-51: Scale coefficients for idealized chirp signal using second generation
wavelets (Lifting scheme corresponds to Haar Wavelet). Black line is the plot of
instantaneous scale of the chirp signal varying with time.
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