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• Overview of internal gravity waves

• Nonhydrostatic (Navier-Stokes) modeling

• Grid-resolution requirements

Nonhydrostatic modeling is expensive!

• A nonhydrostatic isopycnal-coordinate model

The cost can be reduced!

• Conclusions
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Internal gravity waves

• Typical speeds in the ocean: 1-3 m/s

• Frequencies: Tidal (internal tides) - minutes (internal waves)

• Wavelengths: 100s of km to 10s of m

Venayagamoorthy & Fringer (2007) Arthur & Fringer (2014)
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Applications of internal gravity waves

• Breaking of internal tides and waves may provide the necessary 
mixing to maintain the ocean stratification (Munk and Wunsch
1998). 

• Internal waves are hypothesized to deliver nutrients that sustain 
thriving coral reef ecosystems (e.g. Florida Shelf, Leichter et al., 
2003; Dongsha Atol, Wang et al. 2007)

• Internal waves influence sediment transport in lakes and oceans 
and propagation of acoustic signals.

• Strong internal wave-induced currents can cause oil platform 
instability and pipeline rupture.

Cold Arctic water
Cold Antarctic 

water

Mixing induced by breaking internal waves prevents the ocean from turning 

into a "stagnant pool of cold, salty water"...

warm equatorial 

surface waters



Isopycnal vs z- or sigma-coordinates

Advantages of isopycnal coordinates:

• Reduces the number of vertical grid points 

from O(100) in traditional coordinates to O(1-10)

• No spurious vertical (diapycnal) diffusion/mixing

Challenges of isopycnal coordinates:

• Cannot represent unstable stratification

• Layer outcropping (drying of layers)

requires special numerical schemes

• Hydrostatic



Hydrostatic vs. nonhydrostatic flows

• Most ocean flows are hydrostatic 

– Long horizontal length scales relative to vertical length 

scales, i.e. long waves (i.e. Lh >> Lv)

• Only in small regions is the flow nonhydrostatic

– Short horizontal length scales relative to vertical scales

(i.e. Lh ~ Lv)

– Can cost 10X more to compute!

Steep bathymetry Lh~Lv (nonhydrostatic)

Long wave (Lh>>Lv)

(hydrostatic)

free surface

bottom



Nonhydrostatic effects: Overturning

Hydrostatic

Nonhydrostatic

Overturning motions and eddies are not the only nonhydrostatic process…



Nonhydrostatic effects:

Frequency dispersion of gravity waves

• Dispersion relation for irrotational surface gravity waves:

• Deep-water limit: e>>1 (nonhydrostatic)

• Shallow-water limit e<<1 (hydrostatic)
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When is a flow nonhydrostatic?

Aspect Ratio:

e = D/L = 2

Nonhydrostatic

Model

Hydrostatic

Model



Aspect Ratio:

e = D/L = 1/8 = 0.125

Nonhydrostatic

Model

Hydrostatic

Model

Nonhydrostatic result = Hydrostatic result + e2



Example 3D nonhydrostatic z-level simulation:

Internal gravity waves in the South China Sea
From: Zhang and Fringer (2011)

Taiwan

Luzon (Philippines)

China

Grid resolution: 

Horizontal: Dx=1 km

Vertical: 100 z-levels (Dz~10 m) 

Number of 3D cells: 12 million

15o isotherm
m



Generation of weakly nonlinear 

wavetrains

Isotherms: 16, 20, 24, 28 degrees C

x 100 km

Long internal tides O(100 km)  Short, solitary-like waves O(5 km)

How can we determine, apriori, how much horizontal grid resolution is 

needed to simulate this process?



Solitary wave: 

Balance between nonlinear steepening

and nonhydrostatic dispersion.

h1Upper layer

Lower layer h2>> h1

density r1

density r2

Speed c

a

Width L

Nonlinear effect (steepening): d = a/h1

Nonhydrostatic effect (frequency dispersion): e = h1/L

Internal solitary waves

d ~ e2



The KdV equation

When computing solitary waves, the behavior of a 3D, fully 

nonhydrostatic ocean model can be approximated very well 

with the KdV (Korteweg and de-Vries, 1895) equation:
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Numerical discretization of KdV

• Many ocean models discretize the equations with 

second-order accuracy in time and space. 
(e.g. SUNTANS, Fringer et al. 2006; POM, Blumberg and Mellor, 1987; 

MICOM, Bleck et al., 1992; MOM, Pacanowski and Griffes, 1999).

• A second-order accurate discretization of the KdV

equation using leapfrog (i.e. POM) is given by

• Use the Taylor series expansion to determine the 

modified equivalent form of the terms, e.g.



Modified equivalent KdV equation

The discrete form of the KdV equation produces a solution to the 

modified equivalent PDE (Hirt 1968) which introduces new terms due to 

discretization errors:

KdV

Modified equivalent KdV:
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(Scotti and Mitran, 2008)

K=O(1) constant.

The numerical discretization of the first-order derivative produces numerical 

dispersion.   Note that the errors in the nonlinear term are smaller by a factor d. 

For numerical dispersion to be smaller than physical dispersion, l < 1.

Vitousek and Fringer (2011)



Hydrostatic vs. nonhydrostatic for l=0.25

Numerical dispersion is 16 times smaller than physical dispersion.

(Dx=h1/4)

Vitousek and Fringer (2011)



Hydrostatic vs. nonhydrostatic for l=8

Numerical dispersion is 64 times larger than physical dispersion.

(Dx=8h1)

"Numerical

solitary waves!"

Vitousek and Fringer (2011)



Nonhydrostatic isopycnal model?
• Zhang et al. simulation: 

12 million cells, Dx=1 km = 5 h1

• To begin to resolve nonhydrostatic effects, Dx=200 m = 

h1  300 million cells!  With Dx=100 m, 1.2 billion!

• The z-level SUNTANS model requires O(100) z-levels to 

minimize numerical diffusion of the pycnocline.

• Solution: Isopycnal model with O(2) layers 

= 50X reduction in computation time.

 Nonhydrostatic isopycnal

coordinate model.

2-layer hydrostatic result with 

isopycnal model of Simmons, U. 

Alaska Fairbanks.



Essential features of the nonhydrostatic 

isopycnal-coordinate model
• Staggered C-grid layout

• Split Montgomery potential 
into Barotropic (implicit) 
& Baroclinic (explicit) parts

• IMplicit-EXplicit (IMEX) multistep method. 
Durran (2012)

• MPDATA for upwinding of layer heights

• Implicit theta method for vertical diffusion 

• Explicit horizontal diffusion

• Predictor/corrector method for 
nonhydrostatic pressure

 Second-order accurate in time and space

Vitousek and Fringer (2014)



Nonhydrostatic test cases

Note: 
density need 
not change 
in each layer

No stratification

Two-layer

Smooth pycnocline



Hydrostatic internal seiche

2 layers

100 layers



Nonhydrostatic internal seiche

2 layers

100 layers



Dispersion relation 

speed = function(wavelength)

Vitousek and Fringer (2014)



Internal solitary wave formation

z-level model leads 

to numerical 

diffusion, or 

thickening of the 

pycnocline.

Isopycnal-

coordinate model: 

 eliminates 

spurious 

numerical 

diffusion

 captures solitary 

wave behavior at 

1/50 cost…

Vitousek and Fringer (2014)



10-layer isopycnal model following Buijsman et al. (2010)

Internal Solitary Waves in the (idealized) South China Sea 

(SCS)

Vitousek and Fringer (2014)



2-layer isopycnal model vs. an LES model (Bobby Arthur, 2014)
Test case similar to:

Michallet & Ivey 1999

Bourgault & Kelley 2004

Internal Wave Runup

LES model 

2-layer model 

Vitousek and Fringer (2014)



Conclusions

• Simulation of nonhydrostatic effects in the SCS requires 

Dx<h1  O(billion) grid cells in 3D with z-level model.

• We have developed a nonhydrostatic isopycnal-

coordinate model using stable higher-order time-

stepping.

• More isopycnal layers are needed:

– To resolve stratification

– To resolve nonhydrostatic effects

• Most oceanic/lake processes are weakly nonhydrostatic

and so <10 layers suffice for many applications. The 

result is a reduced computational cost by O(10).

• Ongoing work: Development of unstructured-grid model.


