Loading content ...
Killer, M., M. Wiggert, H. Krasowski, M. Doshi, P.F.J. Lermusiaux, and C.J. Tomlin, 2025. Maximizing Seaweed Growth on Autonomous Farms: A Dynamic Programming Approach for Underactuated Systems Operating in Uncertain Ocean Currents. In: 41st IEEE Conference on Robotics and Automation (ICRA 2024) Yokohama, May 13–17, 2024, in press.
Seaweed biomass presents a substantial opportunity for climate mitigation, yet to realize its potential, farming must be expanded to the expansive open oceans. However, in the open ocean neither anchored farming nor floating farms operating with powerful engines are economically viable. Recent studies have shown that vessels can navigate with low-power engines by going with the flow, utilizing minimal propulsion to strategically leverage beneficial ocean currents. In this work, we focus on low-power autonomous seaweed farms and design controllers that maximize seaweed growth by taking advantage of ocean currents. We first introduce a Dynamic Programming (DP) formulation to solve for the growth-optimal value function when the true currents are known. However, in reality only short-term imperfect forecasts with increasing uncertainty are available. Hence, we present three additional extensions. Firstly, we use frequent replanning to mitigate forecast errors. For that we compute the value function daily as new forecasts arrive, which also provides a feedback policy that is equivalent to replanning on the forecast at every time step. Second, to optimize for long-term growth, we extend the value function beyond the forecast horizon by estimating the expected future growth based on seasonal average currents. Lastly, we introduce a discounted finite-time DP formulation to account for the increasing uncertainty in future ocean current estimates. We empirically evaluate our approach with 30-day simulations of farms in realistic ocean conditions. Our method achieves 95.8% of the best possible growth using only 5-day forecasts. This confirms the feasibility of using low-power propulsion to operate autonomous farms in real-world conditions.
Lermusiaux, P.F.J., P.J. Haley, Jr., C. Mirabito, E.M. Mule, S.F. DiMarco, A. Dancer, X. Ge, A.H. Knap, Y. Liu, S. Mahmud, U.C. Nwankwo, S. Glenn, T.N. Miles, D. Aragon, K. Coleman, M. Smith, M. Leber, R. Ramos, J. Storie, G. Stuart, J. Marble, P. Barros, E.P. Chassignet, A. Bower, H.H. Furey, B. Jaimes de la Cruz, L.K. Shay, M. Tenreiro, E. Pallas Sanz, J. Sheinbaum, P. Perez-Brunius, D. Wilson, J. van Smirren, R. Monreal-Jiménez, D.A. Salas-de-León, V.K. Contreras Tereza, M. Feldman, and M. Khadka, 2024. Real-time Ocean Probabilistic Forecasts, Reachability Analysis, and Adaptive Sampling in the Gulf of Mexico. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, pp. 1–10. doi:10.1109/OCEANS55160.2024.10754153
The first steps towards integrating autonomous monitoring, probabilistic forecasting, reachability analysis, and adaptive sampling for the Gulf of Mexico were demonstrated in real-time during the collaborative Mini-Adaptive Sampling Test Run (MASTR) ocean experiment, which took place from February to April 2024. The emphasis of this contribution is on the use of the MIT Multidisciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) including Error Subspace Statistical Estimation (ESSE) large-ensemble forecasting and path planning systems to predict ocean fields and uncertainties, forecast reachable sets and optimal paths for gliders, and guide sampling aircraft and ocean vehicles toward the most informative observations. Deterministic and probabilistic ocean forecasts are exemplified and linked to the variability of the Loop Current (LC) and LC Eddies, demonstrating predictive skill by real-time comparisons to independent data. Risk forecasts in terms of probabilities of currents exceeding 1.5 kt were provided. The most informative sampling patterns for Remote Ocean Current Imaging System (ROCIS) flights were forecast using mutual information between surface currents and density anomaly. Finally, we guided four underwater gliders using probabilistic reachability and path-planning forecasts.
Mule, E.M., P.J. Haley, Jr., C. Mirabito, S.F. DiMarco, S. Mahmud, A. Dancer, X. Ge, A.H. Knap, Y. Liu, U.C. Nwankwo, S. Glenn, T.N. Miles, D. Aragon, K. Coleman, M. Smith, M. Leber, R. Ramos, J. Storie, G. Stuart, J. Marble, P. Barros, E.P. Chassignet, A. Bower, H.H. Furey, B. Jaimes de la Cruz, L.K. Shay, M. Tenreiro, E. Pallas Sanz, J. Sheinbaum, P. Perez-Brunius, D. Wilson, J. van Smirren, R. Monreal-Jiménez, D.A. Salas-de-León, V.K. Contreras Tereza, M. Feldman, M. Khadka, and P.F.J. Lermusiaux, 2024. Real-time Probabilistic Reachability Forecasting for Gliders in the Gulf of Mexico. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, pp. 1–10. doi:10.1109/OCEANS55160.2024.10754057
As part of the Mini-Adaptive Sampling Test Run (MASTR) experiment in the Gulf of Mexico (GoM) region from February to April 2024, we demonstrated real-time deterministic and probabilistic reachability analysis and time-optimal path planning to guide a fleet of four ocean gliders. The governing differential equations for reachability analysis and time-optimal path planning were numerically integrated in real-time and forced by currents from our large-ensemble ocean forecasts. We illustrate the real-time deterministic and probabilistic forward reachability analyses, reachability and path planning for glider pickups, time-optimal path planning for gliders in distress, and planning of future glider deployments. Results show that the actual paths of gliders were contained within our reachable set forecasts and in accord with the dynamic reachability fronts. Our time-optimal headings and paths also predicted real glider motions, even for longer-range predictions of weeks to a month duration. Reachability and time-optimal path planning forecasts were successfully employed for glider recovery. They also enabled exploring options for future glider deployments.
Schnitzler, B., P.J. Haley, Jr., C. Mirabito, E.M. Mule, J.-M. Moschetta, D. Delahaye, A. Drouin and P. F. J. Lermusiaux, 2024. Hazard-Time Optimal Path Planning for Collaborative Air and Sea Drones. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, pp. 1–10. doi:10.1109/OCEANS55160.2024.10753934
General differential equations for multi-objective reachability and optimal planning are used to guide autonomous air and sea drones in hazard-time optimal missions. The vehicles minimize exposure to hazards and travel time, leveraging the dynamic environments with strong flows and steering clear of dynamic hazardous regions. We demonstrate the approach first with an autonomous air drone that crosses the Atlantic Ocean optimizing travel time using trade winds while avoiding hazardous rain storms in the inter-tropical convergence zone. We then consider an air drone that exploits winds and avoids hazardous rains to transport an ocean vehicle to a target destination. The ocean vehicle then completes its own hazard-time optimal mission, leveraging ocean currents and avoiding vessel traffic hazards. In all cases, we predict hazard-time reachable sets, Pareto fronts, and optimal paths. The results highlight the benefits of considering hazards in optimal path planning.
Doering, A., M. Wiggert, H. Krasowski, M. Doshi, P.F.J. Lermusiaux, and C.J. Tomlin, 2023. Stranding Risk for Underactuated Vessels in Complex Ocean Currents: Analysis and Controllers. In: 2023 IEEE 62nd Conference on Decision and Control (CDC), Singapore. doi:10.1109/CDC49753.2023.10383383
Low-propulsion vessels can take advantage of powerful ocean currents to navigate towards a destination. Recent results demonstrated that vessels can reach their destination with high probability despite forecast errors. However, these results do not consider the critical aspect of safety of such vessels: because their propulsion is much smaller than the magnitude of surrounding currents, they might end up in currents that inevitably push them into unsafe areas such as shallow waters, garbage patches, and shipping lanes. In this work, we first investigate the risk of stranding for passively floating vessels in the Northeast Pacific. We find that at least 5.04% would strand within 90 days. Next, we encode the unsafe sets as hard constraints into Hamilton-Jacobi Multi-Time Reachability to synthesize a feedback policy that is equivalent to re-planning at each time step at low computational cost. While applying this policy guarantees safe operation when the currents are known, in realistic situations only imperfect forecasts are available. Hence, we demonstrate the safety of our approach empirically with large-scale realistic simulations of a vessel navigating in high-risk regions in the Northeast Pacific. We find that applying our policy closed-loop with daily re-planning as new forecasts become available reduces stranding below 1% despite forecast errors often exceeding the maximal propulsion. Our method significantly improves safety over the baselines and still achieves a timely arrival of the vessel at the destination.
Pereira, E., M. Tieppo, J. Faria, D. Hart, P. Lermusiaux, and the K2D Project Team, 2023. Subsea Cables as Enablers of a Next Generation Global Ocean Sensing System. Oceanography 36(Supplement 1). doi:10.5670/oceanog.2023.s1.22. Special issue: "Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean"
The ocean is vast, complex, and increasingly threatened by human activities. There is an urgent need to find complementary ways to gather information and promote the comprehensive understanding and management of the ocean. The global network of subsea cables provides an opportunity to support a holistic ocean observation system. Data gathered from this system can be employed to anticipate and provide warning about hazardous events. Large-scale and widespread ocean monitoring may also enable the oversight and tracing of global phenomena that have local impacts.
The Knowledge and Data from the Deep to Space (K2D) project aims to develop the critical components that will enable the large-scale coupling of autonomous underwater vehicles (AUVs) and subsea cables for global ocean environmental monitoring and multi-hazard warning. Funded by the Fundação para a Ciência e Tecnologia/Massachusetts Institute of Technology Portugal Program and involving teams from Portugal and the United States, the project started in 2021 with a global budget of 1.4 M€ and an estimated duration of three years. Sustained ocean observation systems are scarce, especially those that focus on or near the seafloor. The combination of subsea cables and marine robotics is promising not only because it allows access to remote locations and provides an extensive network (deep sea, open ocean), but also because it combines a large set of capabilities in a highly resource-efficient way, unmatched by any other ocean observation approach. These assets may initiate the first global ocean “nervous system” in the near future.
Doshi, M.M., M.S. Bhabra, and P.F.J. Lermusiaux, 2023. Energy-Time Optimal Path Planning in Dynamic Flows: Theory and Schemes. Computer Methods in Applied Mechanics and Engineering 405: 115865. doi:10.1016/j.cma.2022.115865
We obtain, solve, and verify fundamental differential equations for energy-time path planning in dynamic flows. The equations govern the energy-time reachable sets, optimal paths, and optimal controls for autonomous vehicles navigating to any destination in known dynamic environments, minimizing both energy usage and travel time. Based on Hamilton-Jacobi theory for reachability and the level set method, the resulting methodology computes the Pareto optimal solutions to the multi-objective path planning problem, numerically solving the exact equations governing the evolution of reachability fronts and optimal paths in the augmented energy and physical-space domain. Our approach is applicable to path planning in various dynamic flow environments and energy types. We first validate the methodology through a benchmark case of crossing a steady jet for which we compare our results to semi-analytical optimal energy-time solutions. We then consider unsteady flow environments and solve for energy-time optimal missions in a quasi-geostrophic double-gyre flow field. Results show that our theory and schemes can provide all the energy-time optimal solutions and that these solutions can be strongly influenced by unsteady flow conditions.
Tieppo, M., E. Pereira, L. González Garcia, M. Rolim, E. Castanho, A. Matos, A. Silva, B. Ferreira, M. Pascoal, E. Almeida, F. Costa, F. Zabel, J. Faria, J. Azevedo, J. Alves, J. Moutinho, L. Gonçalves, M. Martins, N. Cruz, N. Abreu, P. Silva, R. Viegas, S. Jesus, T. Chen, T. Miranda, A. Papalia, D. Hart, J. Leonard, M. Haji, O. de Weck, P. Godart, and P. Lermusiaux, 2022. Submarine Cables as Precursors of Persistent Systems for Large Scale Oceans Monitoring and Autonomous Underwater Vehicles Operation. In: OCEANS '22 IEEE/MTS Hampton Roads, 17–20 October 2022, pp. 1–7. doi:10.1109/OCEANS47191.2022.9977360
Long-term and reliable marine ecosystems monitoring is essential to address current environmental issues, including climate change and biodiversity threats. The existing oceans monitoring systems show clear data gaps, particularly when considering characteristics such as depth coverage or measured variables in deep and open seas. Over the last decades, the number of fixed and mobile platforms for in situ ocean data acquisition has increased significantly, covering all oceans’ regions. However, these are largely dependent on satellite communications for data transmission, as well as on research cruises or opportunistic ship surveys, generally presenting a lag between data acquisition and availability. In this context, the creation of a widely distributed network of SMART cables (Science Monitoring And Reliable Telecommunications) – sensors attached to submarine telecommunication cables – appears as a promising solution to fill in the current ocean data gaps and ensure unprecedented oceans health continuous monitoring. The K2D (Knowledge and Data from the Deep to Space) project proposes the development of a persistent oceans monitoring network based on the use of telecommunications cables and Autonomous Underwater Vehicles (AUVs). The approach proposed includes several modules for navigation, communication and energy management, that enable the cost-effective gathering of extensive oceans data. These include physical, chemical, and biological variables, both registered with bottom fixed stations and AUVs operating in the water column. The data that can be gathered have multiple potential applications, including oceans health continuous monitoring and the enhancement of existing ocean models. The latter, in combination with geoinformatics and Artificial Intelligence, can create a continuum from the deep sea to near space, by integrating underwater remote sensing and satellite information to describe Earth systems in a holistic manner.
Lermusiaux, P.F.J., D.N. Subramani, C. Kulkarni, and P.J. Haley, Jr., 2022. Route Determination in Dynamic and Uncertain Environments. U.S. Patent No. 11,435,199, September 6, 2022.
Techniques for use in connection with determining an optimized route for a vehicle include obtaining a target state, a fixed initial position of the vehicle, and dynamic flow information, and determining an optimized route from the fixed initial position to the target state using the dynamic flow information.
More details can be found here.
Doshi, M., M. Bhabra, M. Wiggert, C.J. Tomlin, and P.F.J. Lermusiaux, 2022. Hamilton–Jacobi Multi-Time Reachability. In: 2022 IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, pp. 2443–2450. doi:10.1109/CDC51059.2022.9993328
For the analysis of dynamical systems, it is fundamental to determine all states that can be reached at any given time. In this work, we obtain and apply new governing equations for reachability analysis over multiple start and terminal times all at once, and for systems operating in time-varying environments with dynamic obstacles and any other relevant dynamic fields. The theory and schemes are developed for both backward and forward reachable tubes with time-varying target and start sets. The resulting value functions elegantly capture not only the reachable tubes but also time-to-reach and time-to-leave maps as well as start time vs. duration plots and other useful secondary quantities for optimal control. We discuss the numerical schemes and computational efficiency. We first verify our results in an environment with a moving target and obstacle where reachability tubes can be analytically computed. We then consider the Dubin’s car problem extended with a moving target and obstacle. Finally, we showcase our multi-time reachability in a non-hydrostatic bottom gravity current system. Results highlight the novel capabilities of exact multi-time reachability in dynamic environments.
Wiggert, M., M. Doshi, P.F.J. Lermusiaux, and C.J. Tomlin, 2022. Navigating Underactuated Agents by Hitchhiking Forecast Flows. In: 2022 IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, pp. 2417–2424. doi:10.1109/CDC51059.2022.9992375
In dynamic flow fields such as winds and ocean currents an agent can navigate by going with the flow, only using minimal propulsion to nudge itself into beneficial flows. This navigation paradigm of hitchhiking flows is highly energy-efficient. However, reliable navigation in this setting remains challenging as typically only forecasts are available which differ significantly from the true currents and the forecast error can be larger than can be handled by the actuation of the agent. In this paper, we propose a novel control method for reliable navigation of underactuated agents hitchhiking flows based on imperfect forecasts. In the spirit of Model Predictive Control our method allows for time-optimal replanning at every time step with only one computation per forecast. Using the recent Multi-Time Hamilton-Jacobi Reachability formulation we obtain a value function which is then used for closed-loop control. We evaluate the reliability of our method empirically over a large set of multi-day start-target missions in the ocean currents of the Gulf of Mexico with realistic forecast errors. Our method outperforms the baselines significantly, achieving high reliability, measured as the success rate of navigating from start to target, at low computational cost.
Cococcioni, M., L. Fiaschi, and P.F.J. Lermusiaux, 2021. Game Theory for Unmanned Vehicles Path Planning in the Marine Domain: State of the Art and New Possibilities. Journal of Marine Science and Engineering 9(11), 1175. doi:10.3390/jmse9111175. Special Issue on Machine Learning and Remote Sensing in Ocean Science and Engineering.
Thanks to the advent of new technologies and higher real-time computational capabilities, the use of unmanned vehicles in the marine domain received a significant burst in the last decade. Ocean and seabed sampling, missions in dangerous areas, and civilians security are just a few of the large number of applications which currently benefit from unmanned vehicles. One of the most actively studied topic is their full autonomy, i.e., the design of marine vehicles capable of pursuing a task while reacting to the changes of the environment without the intervention of humans, not even remote. Environment dynamicity may consist in variations of currents, presence of unknown obstacles, and attacks from adversaries (e.g., pirates). To achieve autonomy in such highly dynamic uncertain conditions, many types of autonomous path planning problems need to be solved. There has thus been a commensurate number of approaches and methods to optimize such path planning. This work focuses on game theoretic ones and provides a wide overview of the current state of the art, along with future directions.
Rajan, K., F. Aguado, P. Lermusiaux, J. Borges de Sousa, A. Subramaniam, and J. Tintore, 2021. METEOR: A Mobile (Portable) ocEan roboTic ObsErvatORy. Marine Technology Society Journal 55(3): 74-75. doi:10.4031/MTSJ.55.3.42
The oceans make this planet habitable and provide a variety of essential ecosystem services ranging from climate regulation through control of greenhouse gases to provisioning about 17% of protein consumed by humans. The oceans are changing as a consequence of human activity but this system is severely under sampled. Traditional methods of studying the oceans, sailing in straight lines, extrapolating a few point measurements have not changed much in 200 years. Despite the tremendous advances in sampling technologies, we often use our autonomous assets the same way. We propose to use the advances in multiplatform, multidisciplinary, and integrated ocean observation, artificial intelligence, marine robotics, new high-resolution coastal ocean data assimilation techniques and computer models to observe and predict the oceans “intelligently”—by deploying self-propelled autonomous sensors and Smallsats guided by data assimilating models to provide observations to reduce model uncertainty in the coastal ocean. This system will be portable and capable of being deployed rapidly in any ocean.
Bhabra, M.S., M.M. Doshi, B.C. Koenig, P.J. Haley, Jr., C. Mirabito, P.F.J. Lermusiaux, C.A. Goudey, J. Curcio, D. Manganelli, and H. Goudey, 2020. Optimal Harvesting with Autonomous Tow Vessels for Offshore Macroalgae Farming. In: OCEANS '20 IEEE/MTS, 5-30 October 2020, pp. 1-10. doi:10.1109/IEEECONF38699.2020.9389474
The rising popularity of aquaculture has led to increased research in offshore algae farming. Central to the efficient operation of such farms is the need for (i) accurate models of the dynamic ocean environment including macroalgae ecosystem dynamics and (ii) intelligent path planning algorithms for autonomous vessels that optimally manage and harvest the algae fields. In this work, we address both these challenges. We first integrate our modeling system of the ocean environment with a model for forecasting the growth and decay of algae fields. These fields are then input into our exact optimal path planning, augmented with the optimal harvesting goals and solved using level set methods. The resulting path is a provable time-optimal route for the vehicle to follow under the constraint of having to monitor or harvest a specified amount of the field to collect. To demonstrate the theory, we simulate algal growth in both idealized and realistic data-assimilative dynamic ocean environments and compute the optimal paths for an autonomous collection vehicle. We demonstrate that our theory and schemes can be used to compute the optimal path in a variety of scenarios – harvesting in the case of discrete farms, a large kelp farm field, or large scale dynamic algal bloom fields.
Mannarini, G., D.N. Subramani, P.F.J. Lermusiaux, and N. Pinardi, 2020. Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves, IEEE Transactions on Intelligent Transportation Systems 21(8), 3581-3593, doi:10.1109/TITS.2019.2935614
Time-optimal paths are evaluated by VISIR (“discoVerIng Safe and effIcient Routes”), a graph-search ship routing model, with respect to the solution of the fundamental differential equations governing optimal paths in a dynamic wind-wave environment. The evaluation exercise makes use of identical setups: topological constraints, dynamic wave environmental conditions, and vessel-ocean parametrizations, while advection by external currents is not considered. The emphasis is on predicting the time-optimal ship headings and Speeds Through Water constrained by dynamic ocean wave fields. VISIR upgrades regarding angular resolution, time-interpolation, and static navigational safety constraints are introduced. The deviations of the graph-search results relative to the solution of the exact differential equations in both the path duration and length are assessed. They are found to be of the order of the discretization errors, with VISIR’s solution converging to that of the differential equation for sufficient resolution.
Kulkarni, C.S. and P.F.J. Lermusiaux, 2020. Three-Dimensional Time-Optimal Path Planning in the Ocean, Ocean Modelling, 152, 101644. doi:10.1016/j.ocemod.2020.101644
Autonomous underwater vehicles (AUVs) operate in the three-dimensional and time-dependent marine environment with strong and dynamic currents. Our goal is to predict the time history of the optimal three-dimensional headings of these vehicles such that they reach the given destination location in the least amount of time, starting from a known initial position. We employ the exact differential equations for time-optimal path planning and develop theory and numerical schemes to accurately predict three-dimensional optimal paths for several classes of marine vehicles, respecting their specific propulsion constraints. We further show that the three-dimensional path planning problem can be reduced to a two-dimensional one if the motion of the vehicle is partially known, e.g. if the vertical component of the motion is forced. This reduces the computational cost. We then apply the developed theory in three-dimensional analytically known flow fields to verify the schemes, benchmark the accuracy, and demonstrate capabilities. Finally, we showcase time-optimal path planning in realistic data-assimilative ocean simulations for the Middle Atlantic Bight region, integrating the primitive-equation of the Multidisciplinary Simulation Estimation and Assimilation System (MSEAS) with the three-dimensional path planning equations for three common marine vehicles, namely propelled AUVs (with unrestricted motion), floats (that only propel vertically), and gliders (that often perform sinusoidal yo-yo motions in vertical planes). These results highlight the effects of dynamic three-dimensional multiscale ocean currents on the optimal paths, including the Gulf Stream, shelfbreak front jet, upper-layer jets, eddies, and wind-driven and tidal currents. They also showcase the need to utilize data-assimilative ocean forecasts for planning efficient autonomous missions, from optimal deployment and pick-up, to monitoring and adaptive data collection.
Subramani, D.N. and P.F.J. Lermusiaux, 2019. Risk-Optimal Path Planning in Stochastic Dynamic Environments. Computer Methods in Applied Mechanics and Engineering, 353, 391–415. doi:10.1016/j.cma.2019.04.033
We combine decision theory with fundamental stochastic time-optimal path planning to develop partial-differential-equations-based schemes for risk-optimal path planning in uncertain, strong and dynamic flows. The path planning proceeds in three steps: (i) predict the probability distribution of environmental flows, (ii) compute the distribution of exact time-optimal paths for the above flow distribution by solving stochastic dynamically orthogonal level set equations, and (iii) compute the risk of being suboptimal given the uncertain time-optimal path predictions and determine the plan that minimizes the risk. We showcase our theory and schemes by planning risk-optimal paths of unmanned and/or autonomous vehicles in illustrative idealized canonical flow scenarios commonly encountered in the coastal oceans and urban environments. The step-by-step procedure for computing the risk-optimal paths is presented and the key properties of the risk-optimal paths are analyzed.
Moore, A.M., M. Martin, S. Akella, H. Arango, M. Balmaseda, L. Bertino, S. Ciavatta, B. Cornuelle, J. Cummings, S. Frolov, P. Lermusiaux, P. Oddo, P.R. Oke, A. Storto, A. Teruzzi, A. Vidard, and A.T. Weaver, 2019. Synthesis of Ocean Observations using Data Assimilation for Operational, Real-time and Reanalysis Systems: A More Complete Picture of the State of the Ocean. Frontiers in Marine Science 6(90), 1–6. doi:10.3389/fmars.2019.00090
Gil, Y., S.A. Pierce, H. Babaie, A. Banerjee, K. Borne, G. Bust, M. Cheatham, I. Ebert-Uphoff, C. Gomes, M. Hill, J. Horel, L. Hsu, J. Kinter, C. Knoblock, D. Krum, V. Kumar, P.F.J. Lermusiaux, Y. Liu, C. North, V. Pankratius, S. Peters, B. Plale, A. Pope, S. Ravela, J. Restrepo, A. Ridley, H. Samet, and S. Shekhar, 2019. Intelligent Systems for Geosciences: An Essential Research Agenda. Communications of the ACM, 62(1), 76–84. doi:10.1145/3192335
Many aspects of geosciences pose novel problems for intelligent systems research. Geoscience data is challenging because it tends to be uncertain, intermittent, sparse, multiresolution, and multiscale. Geosciences processes and objects often have amorphous spatiotemporal boundaries. The lack of ground truth makes model evaluation, testing, and comparison difficult. Overcoming these challenges requires breakthroughs that would significantly transform intelligent systems, while greatly benefitting the geosciences in turn. Although there have been significant and beneficial interactions between the intelligent systems and geosciences communities, the potential for synergistic research in intelligent systems for geosciences is largely untapped. A recently launched Research Coordination Network on Intelligent Systems for Geosciences followed a workshop at the National Science Foundation on this topic. This expanding network builds on the momentum of the NSF EarthCube initiative for geosciences, and is driven by practical problems in Earth, ocean, atmospheric, polar, and geospace sciences. Based on discussions and activities within this network, this article presents a research agenda for intelligent systems inspired by geosciences challenges.
Ferris, D.L., D.N. Subramani, C.S. Kulkarni, P.J. Haley, and P.F.J. Lermusiaux, 2018. Time-Optimal Multi-Waypoint Mission Planning in Dynamic Environments. In: Oceans '18 MTS/IEEE Charleston, 22-25 October 2018. doi:10.1109/oceans.2018.8604505
The present paper demonstrates the use of exact equations to predict time-optimal mission plans for a marine vehicle that visits a number of locations in a given dynamic ocean current field. This problem bears close resemblance to that of the classic “traveling salesman”, albeit with the added complexity that the vehicle experiences a dynamic flow field while traversing the paths. The paths, or “legs”, between all goal waypoints are generated by numerically solving the exact time-optimal path planning level-set differential equations. Overall, the planning proceeds in four steps. First, current forecasts for the planning horizon is obtained utilizing our data-driven 4-D primitive equation ocean modeling system (Multidisciplinary Simulation Estimation and Assimilation System; MSEAS), forced by high-resolution tidal and real-time atmopsheric forcing fields. Second, all tour permutations are enumerated and the minimum number of times the time-optimal PDEs are to be solved is established. Third, due to the spatial and temporal dynamics, a varying start time results in different paths and durations for each leg and requires all permutations of travel to be calculated. To do so, the minimum required time-optimal PDEs are solved and the optimal travel time is computed for each leg of all enumerated tours. Finally, the tour permutation for which travel time is minimized is identified and the corresponding time-optimal paths are computed by solving the backtracking equation. Even though the method is very efficient and the optimal path can be computed serially in real-time for common naval operations, for additional computational speed, a high-performance computing cluster was used to solve the level set calculations in parallel. Our equation and software is applied to simulations of realistic naval applications in the complex Philippines Archipelago region. Our method calculates the global optimum and can serve two purposes: (a) it can be used in its present form to plan multiwaypoint missions offline in conjunction with a predictive ocean current modeling system, or (b) it can be used as a litmus test for approximate future solutions to the traveling salesman problem in dynamic flow fields.
Dutt, A., D.N. Subramani, C.S. Kulkarni, and P.F.J. Lermusiaux, 2018. Clustering of Massive Ensemble of Vehicle Trajectories in Strong, Dynamic and Uncertain Ocean Flows. In: Oceans '18 MTS/IEEE Charleston, 22-25 October 2018. doi:10.1109/oceans.2018.8604634
Recent advances in probabilistic forecasting of regional ocean dynamics, and stochastic optimal path planning with massive ensembles motivate principled analysis of their large datasets. Specifically, stochastic time-optimal path planning in strong, dynamic and uncertain ocean flows produces a massive dataset of the stochastic distribution of exact timeoptimal trajectories. To synthesize such big data and draw insights, we apply machine learning and data mining algorithms. Particularly, clustering of the time-optimal trajectories is important to describe their PDFs, identify representative paths, and compute and optimize risk of following these paths. In the present paper, we explore the use of hierarchical clustering algorithms along with a dissimilarity matrix computed from the pairwise discrete Frechet distance between all the optimal trajectories. We apply the algorithms to two datasets of massive ensembles of vehicle trajectories in a stochastic flow past a circular island and stochastic wind driven double gyre flow. These paths are computed by solving our dynamically orthogonal level set equations. Hierarchical clustering is applied to the two datasets, and results are qualitatively and quantitatively analyzed.
Lermusiaux, P.F.J., D.N. Subramani, J. Lin, C.S. Kulkarni, A. Gupta, A. Dutt, T. Lolla, P.J. Haley Jr., W.H. Ali, C. Mirabito, and S. Jana, 2017. A Future for Intelligent Autonomous Ocean Observing Systems. The Sea. Volume 17, The Science of Ocean Prediction, Part 2, J. Marine Res. 75(6), pp. 765–813. https://doi-org.ezproxyberklee.flo.org/10.1357/002224017823524035
Centurioni, L.R., V. Hormann, L. D. Talley, I. Arzeno, L. Beal, M. Caruso, P. Conry, R. Echols, H. J. S. Fernando, S. N. Giddings, A. Gordon, H. Graber, R. Harcourt, S. R. Jayne, T. G. Jensen, C. M. Lee, P. F. J. Lermusiaux, P. L’Hegaret, A. J. Lucas, A. Mahadevan, J. L. McClean, G. Pawlak, L. Rainville, S. Riser, H. Seo, A. Y. Shcherbina, E. Skyllingstad, J. Sprintall, B. Subrahmanyam, E. Terrill, R. E. Todd, C. Trott, H. N. Ulloa, and H. Wang, 2017. Northern Arabian Sea Circulation-Autonomous Research (NASCar): A Research Initiative Based on Autonomous Sensors. Oceanography 30(2):74–87, https://doi-org.ezproxyberklee.flo.org/10.5670/oceanog.2017.224.
Lermusiaux, P.F.J., P.J. Haley Jr., S. Jana, A. Gupta, C.S. Kulkarni, C. Mirabito, W.H. Ali, D.N. Subramani, A. Dutt, J. Lin, A. Y. Shcherbina, C. M. Lee, and A. Gangopadhyay, 2017. Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian Sea. Oceanography 30(2):172–185, https://doi-org.ezproxyberklee.flo.org/10.5670/oceanog.2017.242.
Mirabito, C., D.N. Subramani, T. Lolla, P.J. Haley, Jr., A. Jain, P.F.J. Lermusiaux, C. Li, D.K.P. Yue, Y. Liu, F.S. Hover, N. Pulsone, J. Edwards, K.E. Railey, and G. Shaw, 2017. Autonomy for Surface Ship Interception. In: Oceans '17 MTS/IEEE Aberdeen, 1-10, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084817
Edwards, J., J. Smith, A. Girard, D. Wickman, P.F.J. Lermusiaux, D.N. Subramani, P.J. Haley, Jr., C. Mirabito, C.S. Kulkarni, and, S. Jana, 2017. Data-driven Learning and Modeling of AUV Operational Characteristics for Optimal Path Planning. In: Oceans '17 MTS/IEEE Aberdeen, 1-5, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084779
Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. Leslie, 2016. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. Chapter 21, Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.), pp. 481-498. doi:10.1007/978-3-319-16649-0_21.
Lolla, T., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015. Path Planning in Multi-scale Ocean Flows: Coordination and Dynamic Obstacles. Ocean Modelling, 94, 46-66. DOI: 10.1016/j.ocemod.2015.07.013.
As the concurrent use of multiple autonomous vehicles in ocean missions grows, systematic control for their coordinated operation is becoming a necessity. Many ocean vehicles, especially those used in longer–range missions, possess limited operating speeds and are thus sensitive to ocean currents. Yet, the effect of currents on their trajectories is ignored by many coordination techniques. To address this issue, we first derive a rigorous level-set methodology for distance–based coordination of vehicles operating in minimum time within strong and dynamic ocean currents. The new methodology integrates ocean modeling, time-optimal level-sets and optimization schemes to predict the ocean currents, the short-term reachability sets, and the optimal headings for the desired coordination. Schemes are developed for dynamic formation control, where multiple vehicles achieve and maintain a given geometric pattern as they carry out their missions. Secondly, we obtain an efficient, non–intrusive technique for level-set-based time–optimal path planning in the presence of moving obstacles. The results are time-optimal path forecasts that rigorously avoid moving obstacles and sustain the desired coordination. They are exemplified and investigated for a variety of simulated ocean flows. A wind–driven double–gyre flow is used to study time-optimal dynamic formation control. Currents exiting an idealized strait or estuary are employed to explore dynamic obstacle avoidance. Finally, results are analyzed for the complex geometry and multi–scale ocean flows of the Philippine Archipelago.
Petillo, S., H. Schmidt, P.F.J. Lermusiaux, D. Yoerger and A. Balasuriya, 2015. Autonomous & Adaptive Oceanographic Front Tracking On Board Autonomous Underwater Vehicles. Proceedings of IEEE OCEANS'15 Conference, Genoa, Italy, 18-21 May, 2015.
Oceanic fronts, similar to atmospheric fronts, occur at the interface of two fluid (water) masses of varying characteristics. In regions such as these where there are quantifiable physical, chemical, or biological changes in the ocean environment, it is possible—with the proper instrumentation—to track, or map, the front boundary.
In this paper, the front is approximated as an isotherm that is tracked autonomously and adaptively in 2D (horizontal) and 3D space by an autonomous underwater vehicle (AUV) running MOOS-IvP autonomy. The basic, 2D (constant depth) front tracking method developed in this work has three phases: detection, classification, and tracking, and results in the AUV tracing a zigzag path along and across the front. The 3D AUV front tracking method presented here results in a helical motion around a central axis that is aligned along the front in the horizontal plane, tracing a 3D path that resembles a slinky stretched out along the front.
To test and evaluate these front tracking methods (implemented as autonomy behaviors), virtual experiments were conducted with simulated AUVs in a spatiotemporally dynamic MIT MSEAS ocean model environment of the Mid-Atlantic Bight region, where a distinct temperature front is present along the shelfbreak. A number of performance metrics were developed to evaluate the performance of the AUVs running these front tracking behaviors, and the results are presented herein.
Cococcioni M., B. Lazzerini and P.F.J. Lermusiaux, 2015. Adaptive Sampling Using Fleets of Underwater Gliders in the Presence of Fixed Buoys using a Constrained Clustering Algorithm. Proceedings of IEEE OCEANS'15 Conference, Genoa, Italy, 18-21 May, 2015.
This paper presents a novel way to approach the problem of how to adaptively sample the ocean using fleets of underwater gliders. The technique is particularly suited for those situations where the covariance of the field to sample is unknown or unreliable but some information on the variance is known. The proposed algorithm, which is a variant of the well-known fuzzy C-means clustering algorithm, is able to exploit the presence of non-maneuverable assets, such as fixed buoys. We modified the fuzzy C-means optimization problem statement by including additional constraints. Then we provided an algorithmic solution to the new, constrained problem.
Ramp, S.R., R. E. Davis, N. E. Leonard, I. Shulman, Y. Chao, A. R. Robinson, J. Marsden, P.F.J. Lermusiaux, D. Fratantoni, J. D. Paduan, F. Chavez, F. L. Bahr, S. Liang, W. Leslie, and Z. Li, 2009. Preparing to Predict: The Second Autonomous Ocean Sampling Network (AOSN-II) Experiment in the Monterey Bay. Special issue on AOSN-II, Deep Sea Research, Part II, 56, 68-86, doi: 10.1016/j.dsr2.2008.08.013.
Haley, P.J. Jr., P.F.J. Lermusiaux, A.R. Robinson, W.G. Leslie, O. Logutov, G. Cossarini, X.S. Liang, P. Moreno, S.R. Ramp, J.D. Doyle, J. Bellingham, F. Chavez, S. Johnston, 2009. Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment. Special issue on AOSN-II, Deep Sea Research, Part II. ISSN 0967-0645, doi: 10.1016/j.dsr2.2008.08.010.
Wang, D., P.F.J. Lermusiaux, P.J. Haley, D. Eickstedt, W.G. Leslie and H. Schmidt, 2009. Acoustically Focused Adaptive Sampling and On-board Routing for Marine Rapid Environmental Assessment. Special issue of Journal of Marine Systems on "Coastal processes: challenges for monitoring and prediction", Drs. J.W. Book, Prof. M. Orlic and Michel Rixen (Guest Eds), 78, S393-S407, doi: 10.1016/j.jmarsys.2009.01.037.
Lermusiaux, P.F.J, 2007. Adaptive Modeling, Adaptive Data Assimilation and Adaptive Sampling. Refereed invited manuscript. Special issue on "Mathematical Issues and Challenges in Data Assimilation for Geophysical Systems: Interdisciplinary Perspectives". C.K.R.T. Jones and K. Ide, Eds. Physica D, Vol 230, 172-196, doi: 10.1016/j.physd.2007.02.014.
Yilmaz, N.K., C. Evangelinos, N.M. Patrikalakis, P.F.J. Lermusiaux, P.J. Haley, W.G. Leslie, A.R. Robinson, D. Wang and H. Schmidt, 2006a. Path Planning Methods for Adaptive Sampling of Environmental and Acoustical Ocean Fields, Oceans 2006, 6pp, Boston, MA, 18-21 Sept. 2006, doi: 10.1109/OCEANS.2006.306841.
Robinson, A.R., J. Sellschopp, W.G. Leslie, A. Alvarez, G. Baldasserini, P.J. Haley, P.F.J. Lermusiaux, C.J. Lozano, E. Nacini, R. Onken, R. Stoner, P. Zanasca, 2003. Forecasting synoptic transients in the Eastern Ligurian Sea. In "Rapid Environmental Assessment", Bovio, E., R. Tyce and H. Schmidt (Editors), SACLANTCEN Conference Proceedings Series CP-46, Saclantcen, La Spezia, Italy.
Oceanographic conditions in the Gulf of Procchio, along the northern Elba coast, are influenced by the circulation in the Corsica channel and the southeastern Ligurian Sea. In order to support ocean prediction by nested models, an initial 4-day CTD survey provided initial ocean conditions. The purposes of the forecasts were threefold: i) in support of AUV exercises; ii) as an experiment in the development of rapid environmental assessment (REA) methodology; and, iii) as a rigorous real time test of a distributed ocean ocean prediction system technology. The Harvard Ocean Prediction System (HOPS) was set up around Elba in a very high resolution domain (225 m horizontally) which was two-way nested in a high resolution domain (675 m) in the channel between Italy and Corsica. The HOPS channel domain was physically interfaced with a one-way nest to the CU-POM model run in a larger Ligurian Sea domain. Eleven nowcasts and 2-3 day forecasts were issued during the period 26 September to 10 October, 2000 for the channel domain and for a Procchio Bay operational sub-domain of the Elba domain.
After initialization with the NRV Alliance, CTD survey data adaptive sampling patterns for nightly excursions of the Alliance were designed on the basis of forecasts to obtain data for assimilation which would most efficiently maintain the structures and variability of the flow in future dynamical forecasts. Images of satellite sea surface temperature were regularly processed and used for track planning and also for model verification. Rapid environmental assessment (REA) techniques were used for data processing and transmission from ship to shore and vice versa for model results. ADCP data validated well the flow in the channel. Additionally and importantly, the direction and strength of the flow in Procchio Bay were correctly forecast by dynamics supported only by external observations. CU-POM model hydrographic and geostrophic flow data was assimilated successfully on boundary strips of the HOPS domain. Flow fields with/without CU-POM nesting were qualitatively similar and a quantitative analysis of differences is under study. A significant result was the demonstration of a powerful and efficient distributed ocean observing and prediction system with in situ data collected in the Ligurian Sea, satellite data collected at SACLANTCEN, forecast modeling at Harvard University and the University of Colorado, and adaptive sampling tracks designed at Harvard. The distributed system functioned smoothly and effectively and coped with the adverse six-hour time difference between Massachusetts and Italy.